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On the Convergence of Constrained Particle Filters
Nesrine Amor, Nidhal Carla Bouaynaya, Roman Shterenberg and Souad Chebbi

Abstract—The power of particle filters in tracking the state of
non-linear and non-Gaussian systems stems not only from their
simple numerical implementation but also from their optimality
and convergence properties. In particle filtering, the posterior
distribution of the state is approximated by a discrete mass
of samples, called particles, that stochastically evolve in time
according to the dynamics of the model and the observations.
Particle filters have been shown to converge almost surely toward
the optimal filter as the number of particles increases. However,
when additional constraints are imposed, such that every particle
must satisfy these constraints, the optimality properties and error
bounds of the constrained particle filter remain unexplored.
This paper derives performance limits and error bounds of the
constrained particle filter. We show that the estimation error
is bounded by the area of the state posterior density that does
not include the constraining interval. In particular, the error is
small if the target density is “well-localized” in the constraining
interval.

Index Terms—Constrained Particle Filter; Convergence.

I. INTRODUCTION

MANY real-world applications, such as target tracking,
(electric and renewable) power grids, navigation and

chemical processes, can be formulated as a state-space model,
where the state of the dynamical system is subject to additional
constraints that arise from physical laws, natural phenomena
or model restrictions [1]–[3]. These constraints cannot be
incorporated into the state-space model easily [4]–[6].

The particle filter (PF) has been proven a powerful Monte
Carlo approach for solving nonlinear and non-Gaussian state
estimation problems [7]. The PF approximates the state poste-
rior density using a set of weighted samples, called particles.
This approximation converges, almost surely and in mean-
square error, to the optimal posterior density of the state
when the number of particles increases [8]. In comparison
with standard approximation methods, such as the Extended
Kalman Filter [1], the principle advantage of PF is that
they do not rely on any local linearisation technique or any
crude functional approximation. However, PF do not handle
additional constraints on the state.

There are two major approaches that handle constraints
within the PF framework: the acceptance/rejection method
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[9]–[11] and the constrained distribution approach [12], [13].
The acceptance/rejection approach enforces the constraints
by simply rejecting the particles violating them [9], [11].
Although the acceptance/rejection procedure does not make
any assumptions on the distributions and therefore maintains
the generic properties of the particle filter, it is computationally
inefficient as resources are wasted in drawing particles that
may be rejected later on. Moreover, the number of samples will
be reduced and hence the estimation accuracy may decrease,
especially with a poor choice of the sampling density. An
extreme example is when most (or all) of the particle violate
the constraint and the algorithm fails [10]. Also, unconstrained
sampling from a density followed by verification against con-
straints (especially nonlinear) may be computationally more
demanding than sampling directly from the constrained region
[11].

An alternative way to impose state constraints within the
particle filter framework is to impose the constraints on
all particles or equivalently sample from a constrained im-
portance distribution [11], [13]–[15]. Assuming interval-type
constraints, constraining every particle to be within the interval
is equivalent to constraining the support of the posterior
distribution to this interval. For this reason, this approach
has been termed POintwise DEnsity Truncation (PoDeT) in
[16], and we will be adopting this nomenclature in this
paper. Although most constrained particle filtering methods
adopt the PoDeT approach [12], [13], [17]–[19], there are
no mathematical grounds, including optimality properties and
convergence results, of PoDeT.

In this letter, we will investigate the optimality properties
and the estimation error of the PoDeT approach. We will
derive performance limits and errors bounds of this approach.
In particular, we will show that if the posterior density is not
“well-localized” within the constraining interval, then PoDeT
will result in a large estimation error. On the other hand,
if most of the posterior density lies within the constraining
interval, then PoDeT will result in a bounded estimation error.
Simulation resuls will support our fundamental theorems.

II. CONSTRAINED PARTICLE FILTERING

A. Unconstrained State-Space Model

Consider a discrete-time state-space model defined by a
state transition and observation models:

xt = f(xt−1) + ut, (1)
yt = h(xt) + vt, (2)

where f and h are, respectively, the state and observation
potentially non-linear functions. ut and vt are the zero-
mean transition and observation noise with known probability
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density functions, respectively, Kt and gt. To simplify the
notations, we will omit the time dependence t and write K, g.

Let (Ω, F, P ) be a probability space where we define the
stochastic processes X = {Xt, t ∈ N} and Y = {Yt, t ∈
N \ {0}}. let nx and ny be the dimensions of the state
space of X and Y , respectively. The process X is a Markov
process with initial distribution X0 ∼ µ(dx0) and probability
transition kernel K(xt|xt−1). The history of observations up
to time t is denoted by y1:t = [y1, · · · ,yt]. In a Bayesian
context, inference of xt given a realization of the observations
y1:t relies upon the posterior density p(xt|y1:t). Using the
Bayesian rule, we obtain the following two-step Bayesian
recursion:
Prediction step:

p(xt|y1:t−1) =

∫
p(xt−1|y1:t−1) K(xt|xt−1) dxt−1 (3)

Update step:

p(xt|y1:t) =
g(yt|xt) p(xt|y1:t−1)∫
g(yt|xt) p(xt|y1:t−1) dxt

. (4)

Unfortunately, for the nonlinear case, it is impossible to
evaluate equations (3)-(4) in a closed-form expression, due to
the fact that the integrals are generally intractable.

B. Unconstrained Particle Filtering

The particle filter (PF) is a sequential Monte Carlo method
that estimates the posterior density of the state without making
any assumptions about the probability density functions (pdfs)
or the linearity of the system model [7], [20]. The particle filter
approximates the posterior pdf by an ensemble of particles
{x(i)

t }Ni=1 and their associated weights {w(i)
t }, i.e.,

pN (xt|y1:t) =
N∑
i=1

w
(i)
t δ(xt − x

(i)
t ) (5)

where δ is the dirac delta function.
The particles are sampled from an importance distribution,

also called a proposal distribution, q(xt|xt−1,xt) because
the true posterior is not available. To make up the difference
between the proposal distribution and the posterior density, the
importance weights are computed as [7], [21]

w̃
(i)
t = w

(i)
t−1

g(yt|x
(i)
t )K(x

(i)
t |x(i)

t−1)

q(x
(i)
t |x(i)

t−1,yt)
, (6)

The weights are then normalized such that:
N∑
i=1

w
(i)
t = 1. The

conditional mean estimate of the state is given by the weighted
sample mean as:

x̂t = E[xt|y1:t] ≈
N∑
i=1

w
(i)
t x

(i)
t . (7)

Moreover, for any integrable function φ, it is easy to approx-
imate the integral (φ, p) such as

(φ, p) ≈ (φ, pN ) =
N∑
i=1

w
(i)
t φ(x

(i)
t ) (8)

C. Constrained Particle Filtering

Consider the state-space model given in (1)-(2) with the
following additional constraint on the state

at ≤ ϕt(xt) ≤ bt. (9)

where ϕt denotes the constraint function at time t. Without
loss of generality, we can assume at = a and bt = b.

III. OPTIMALITY PROPERTIES

A. Error Bounds of Empirical Measures

Lemma 1. Let µ be a probability measure on Ω, and I a set
such that µ(I) ≥ 1 − η, 0 ≺ η ≺ 1

2 . We denote by µI the
truncation of µ onto I , i,e. for any set A, we have

µ̂(A) = µI(A) =
µ(A ∩ I)

µ(I)
. (10)

Then, the variation of the signed measure µI − µ satisfies

|µ̂− µ|(Ω) ≤ 2η. (11)

Proof. We have

|µ̂− µ|(Ω) = |µ̂− µ|(I) + |µ̂− µ|(Ω \ I)
= 1− µ(I) + µ(Ω \ I) ≤ 2η. (12)

Denote by E = P(Rnx) the space of probability measures
over Rnx . Let Cb(Rn) be the set of all continuous bounded
functions on Rnx . We endow the space E with the topology
of weak convergence. In this topology, we say that a sequence
of probability measures µN converge (weakly) to µ if, for any
φ ∈ Cb(Rnx), we have [8]

lim
N→∞

(µN , φi) = (µ, φi), (13)

where (µ, φ) =
∫
µφ.

Let (at)
∞
t=1 and (bt)

∞
t=1 be two sequences of continuous

functions on this space. We define bt : P(Rnx) → P(Rnx)
to be the mapping such that for any ν ∈ P(Rnx), bt(ν) is a
probability measure defined as

(bt(ν), φ) =

∫
Rnx

∫
Rnx

φ(xt)K(dxt|xt−1)ν(dxt−1) = (ν,Kφ),

(14)
for any φ ∈ Cb(Rnx). at : P(Rnx) → P(Rnx) is defined as
the mapping such that

(at(ν), φ) = (ν, g)−1(ν, φg), (15)

for any φ ∈ Cb(Rnx).
Moreover, let kt = at◦bt be another sequence of continuous

functions, where “◦” denotes the composition of functions
operator. Consider

k̂t = T ◦ at ◦ T ◦ bt, (16)

where T is the operator truncating every probability measure
µ onto some set I , where µ(I) ≥ 1− η. Note that I depends
on µ.

Let cN : E → E be a function (not necessarily continuous)
that approximates a measure by N of its random samples.

k̂Nt = cN ◦ T ◦ at ◦ cN ◦ T ◦ bt. (17)



3

B. Optimal Stochastic Filtering

In the stochastic filtering framework, bt denotes the map
that takes p(xt−1|y1:t−1) to p(xt|y1:t−1), and at is the
map that takes p(xt|y1:t−1) to p(xt|y1:t). Thus, kt maps
p(xt−1|y1:t−1) to p(xt|y1:t).

If the likelihood g(yt|.) is a continuous bounded strictly
positive function, then it can be easily shown that at is
continuous. If the transition kernel K is Feller, i.e., for φ
a continuous bounded function, Kφ is also a continuous
bounded function, then bt will be continuous [8]. We will make
these assumptions on g and K in the remaining of the paper.
In addition, we will assume that g is bounded from below by a
strictly positive constant, i.e., g ≥ cg > 0 for some real cg > 0.
Subsequently, kt = at ◦ bt is also continuous. Intuitively, the
continuity condition states that a slight perturbation of the
previous posterior distribution of the signal xt−1 will also
result in a small variation in the current posterior distribution
of the signal xt.

In the context of stochastic filtering, the perturbation opera-
tor cN , which maps a distribution to its discrete approximation
in (5), is a random one. Let cN,ω, ω ∈ Ω be the perturbation
given by

cN,ω(µ) =
1

N

N∑
i=1

δ{zj(ω)}, (18)

where {zj} are i.i.d. random variables distributed according
to µ. It can be shown that that if cN,ω is defined as in (18),
then for almost all ω ∈ Ω, cN,ω converges uniformly to the
identity function [8].

The following Lemma states that at and bt are not just
continuous but Lipschitz continuous.

Lemma 2. Consider two measures ν and µ such that
|((ν − µ), φ)| ≤ δ∥φ∥ for any φ ∈ Cb(Rnx), then

|(bt(ν)− bt(µ), φ)| ≤ δ ∥φ∥ C(K), (19)

and
|(at(ν)− at(µ), φ)| ≤ δ ∥φ∥ C(g), (20)

where C(K) and C(g) are constants that depend, respectively,
on the kernel K and likelihood g.

Proof. Consider two measures ν and µ as stated in the Lemma.
By definition of the mapping bt in Eq. (14), we have

|(bt(ν)− bt(µ)), φ)| = |(ν,Kφ)− (µ,Kφ)| (21)
≤ δ∥Kφ∥ ≤ δ∥K∥∥φ∥ (22)

where the first inequality in (22) follows from the fact that
|((ν − µ), φ)| ≤ δ∥φ∥ for any φ ∈ Cb(Rnx). By letting
C(K) = ∥K∥, we obtain the Lipschitz property for bt.

By definition of the mapping at in Eq. (15), we have

|(at(ν)− at(µ)), φ)|

=

∣∣∣∣ (ν, φg)(ν, g)
− (µ, φg)

(µ, g)

∣∣∣∣ (23)

≤
∣∣∣∣ (ν − µ, φg)

(ν, g)

∣∣∣∣+ ∣∣∣∣ (µ, φg)

(ν, g)(µ, g)

∣∣∣∣ |(ν − µ), g)| (24)

We have (ν−µ, φg) ≤ δ∥φg∥. Since g is strictly positive and
bounded from below by some strictly positive constant, g ≥

cg > 0, we have (ν, g) ≥ cg . Hence, the first term in (24) is
bounded by δ∥φ∥∥g∥

cg
. Similarly, we have

∣∣∣ (µ,φg)
(ν,g)(µ,g)

∣∣∣ ≤ ∥φ∥∥g∥
c2g

.
We also have |(ν − µ), g)| ≤ δ∥g∥. Thus,∣∣∣∣ (ν − µ, φg)

(ν, g)

∣∣∣∣+ ∣∣∣∣ (µ, φg)

(ν, g)(µ, g)

∣∣∣∣ |(ν − µ), g)| ≤ δC(g)∥φ∥, (25)

where C(g) = ∥g∥
cg

[
1 + ∥g∥

cg

]
.

Theorem 1. Assuming that the transition kernel K is Feller
and that the likelihood function g is continuous and bounded
from below by a strictly positive constant, and considering a
truncation operator T that truncates any probability distri-
bution to a set I such that µ(I) ≥ 1 − η. Then, for every
φ ∈ Cb(Rnx), we have

lim sup
N→∞

|((ν̂Nt − νt), φ)| ≤ η Ct ∥φ∥, (26)

where Ct is a time-dependent constant.

Proof. The proof proceeds by induction. Assume that at time
t− 1, we have for every φ ∈ Cb(Rnx),

lim sup
N→∞

|((ν̂Nt−1 − νt−1), φ)| ≤ η Ct−1 ∥φ∥. (27)

We notice that

|(ν̂Nt − νt, φ)| ≤
+ |((cN − id) ◦ T ◦ at ◦ cN ◦ T ◦ bt(ν̂Nt−1), φ)| (28)

+ |(id ◦ (T − id) ◦ at ◦ cN ◦ T ◦ bt(ν̂Nt−1), φ)| (29)

+ |(at ◦ cN ◦ T ◦ bt(ν̂Nt−1)− at ◦ id ◦ T ◦ bt(ν̂Nt−1), φ)|
+ |(at ◦ T ◦ bt(ν̂Nt−1)− at ◦ id ◦ bt(ν̂Nt−1), φ)| (30)

+ |(at ◦ bt(ν̂Nt−1)− at ◦ bt(νt−1), φ)| (31)

From the uniform convergence of cN to the identity
id, we have that for any sequence of measures νN ,
limN→∞ |(cN,ω(νN ), φ)−(νN , φ))| = 0 for almost all ω ∈ Ω
[8]. Hence, the first term in (28) goes to 0 as N → ∞. The
third term in (30) also goes to zero by the uniform convergence
of cN and the Lipschitz continuity of at in Lemma 2. From
Lemma 1, |(T − id)(µ)| ≤ 2η for any probability measure µ;
hence, the second term in (29) is bounded by 2η∥φ∥. From
the Lipschitz continuity of at in Lemma 2 and the fact that
|(T − id)(µ)| ≤ 2η, the fourth term in (30) is bounded by
2ηC(g)∥φ∥. From the induction assumption and Lemma 2,
the fifth term (31) is bounded by ηC(g)C(K)Ct−1∥φ∥. Thus,
we obtain that

lim sup
N→∞

|((ν̂Nt − νt), φ)| ≤ η Ct ∥φ∥, (32)

where Ct = [2 + 2C(g) + Ct−1C(g)C(K)] η.

In Theorem (1), observe that η denotes the area of the
state posterior density that does not include the constraining
interval. Put simply, the PoDeT approach results in a bounded
estimation error to the posterior density of the state if the
target density is well-localized in the constraining interval
I = [a, b]. In the one-dimensional case, a characterization of
the localization of a distribution with respect to an interval I
can be given in terms of the probability of the interval I: if
Pr{[a, b]} ≥ 1 − η, where 0 ≤ η ≪ 1 is a small number,
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(a) (b) (c)

Figure 1. (a): The unconstrained density of the system in (36) at time n = 8; the mean is −0.094; (b) First test case: the PoDeT posterior density, where
the constraint interval is [−2.8, 2.8]; the mean is −0.0838. (c) Second test case: the PoDeT posterior density, where the constraint interval is [−0.2, 2]; the
mean is 0.5124. Notice that, in the two test cases, the unconstrained mean naturally satisfies the constraints.

then the density is said to be well-localized. In particular,
an important parameter that controls the estimation error of
PoDeT is the area under the pdf delimited by the interval
[a, b]. Intuitively, if high probability regions of the density
are within the constraining interval, then the conditional mean
estimate will be close to the truncated density at the support.
In this case, the error in estimating the posterior distribution
is small and can be quantified using the area under the
tails of the well-localized density, i.e., the pdf area in the
interval ] − ∞, a[∪]b,∞[ . Gaussian densities are obviously
well-localized for properly chosen intervals; thus PoDeT may
work well on truncation of Gaussian densities [1], [22], [23]
provided the constraining interval occupies most of the density.

In the following Theorem, we establish the error estimate
from below. We show that if the constraining interval is not
mostly contained within the true density, then the PoDeT error
will be bounded from below. Let k1:t = kt ◦ kt−1 ◦ · · · ◦ k1
and k̂N1:t = k̂Nt ◦ k̂Nt−1 ◦ · · · ◦ k̂N1 . Denote by µt = k1:t(µ).

Theorem 2. Consider a set I and let µt(I) ≤ η, then there
exists a function φ ∈ Cb(Rnx) such that

|((k̂N1:t − k1:t)(µ), φ)| ≥
1− η

2
∥φ∥. (33)

Proof. Notice that k̂N1:t(µ) is a probability measure supported
on I . Thus, for every bounded continuous function φ with
support outside of I , we have

|((k̂N1:t − k1:t)(µ), φ)| = |(k1:t(µ), φ)| = |(µt, φ)|. (34)

Since by assumption µt(I) ≤ η, we have

sup
φ∈Cb(Rnx ) supported outside of I

|(µt, φ)|
∥φ∥

≥ 1− η. (35)

Hence, there exists a bounded continuous function φ sup-
ported outside of I such that |(µt,φ)|

∥φ∥ ≥ 1−η
2 or equivalently

|(µt, φ)| ≥ 1−η
2 ∥φ∥.

Theorem (2) states that for non well-localized densities, the
error of the PoDeT estimated density will be bounded from
below. In particular, if the constraining interval covers a small
area η < 1/2, then the density estimation error will be large,
i.e., 1−η

2 > 1/4.

IV. SIMULATION RESULTS

We consider the following non linear dynamical system:{
xt+1 = xt

2 + 25 xt

1+x2
t
+ 8 cos(1.2t) + ut,

yt =
x2
t

20 + vt, at ≺ xt ≺ bt.
(36)

This example is severely nonlinear [24], [25]. It was shown
that the Extended Kalman Filter (EKF) fails in estimating the
true state value of the unconstrained system [20], [26].

To assess the performance of PoDeT, we choose the con-
straint interval [an, bn], where the mean of the unconstrained
posterior density naturally satisfies the constraint. We consider
two cases: (i) most of the unconstrained posterior density lies
within the constraint interval, thus well-localized; (ii) a high
probability mass of the unconstrained posterior distribution
lies outside of the constraint interval, thus not well-localized.
We consider the posterior density at time n = 8. Test case
(i): we choose the constraining interval [a8, b8] = [−2.8, 2.8]
(see Fig 1(b)). The unconstrained posterior density has mean
xtrue ≈ xunconstrained = −0.094 and the PoDeT mean
estimate is xPoDeT = −0.0838. Test case (ii): the constraining
interval is chosen as [a8, b8] = [−0.2, 2] (see Fig. 1(c)).
PoDeT results in a truncated density with mean = 0.5124,
which is further from the true mean (−0.094). PoDeT was
able to estimate the mean of the well-localized case with a
smaller error compared to the non-localized case. A real-world
application on brain source localization from EEG data with
additional constraints on the expected value of the state is
presented in [16].

V. CONCLUSION

This paper addressed the optimality properties of PoDeT
for constrained particle filtering. We discussed the error in-
troduced when the particles are constrained to satisfy the
boundary constraints, whereas the true density is not neces-
sarily supported by the constraining interval. We showed that
the PoDeT approach results in a bounded estimation error
when the target density is “well localized” in the constraining
interval (Theorem 1). On the other hand, PoDeT may lead to
a large estimation error if the posterior density of the target
is not well-localized (Theorem 2). In particular, unlike the
unconstrained system, there are no convergence results of the
PoDeT method. We hope that this paper incites more research
into the performance limits of constrained particle filtering as
well as the development of more algorithms that constrain the
state estimate rather than the density itself.
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