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A New Method for Multidimensional Optimization
and Its Application in Image and Video Processing
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Abstract—We derive a new method for multidimensional dy-
namic programming using the inclusion–exclusion principle. We
subsequently propose an extension of the Viterbi algorithm to
semi-causal, multidimensional functions. This approach is based
on extension of the 1-D trellis structure of the Viterbi algorithm
to a tree structure in higher dimensions. We apply the dynamic
tree programming algorithm to active surface extraction in video
sequences. Simulation results show the efficiency and robustness
of the proposed approach.

Index Terms—Active contours, dynamic programming (DP),
Viterbi algorithm.

I. INTRODUCTION

BELLMAN’s dynamic programming (DP) algorithm is a
fundamental technique for solving optimization problems

[1]. The dynamic programming solution is obtained by using an
iterative procedure that determines the optimal control vector
for any admissible state at any stage. This optimization proce-
dure follows from Bellman’s principle of optimality: the “tail”
of the optimal space is optimal for the corresponding “tail” sub-
problem [1]. The computational requirements of this technique
become excessive when it is applied to high-dimensional prob-
lems. This is called the “curse of dimensionality” by Bellman.
A much more efficient solution to DP is provided by the Viterbi
algorithm, sometimes referred to as the forward algorithm [2].
The Viterbi algorithm can be used to optimize nearest-neighbor,
causal 1-D systems by using a forward process. In this process,
intermediary costs and optimal state mappings are computed at
each node in the forward path. This approach, however, does not
scale to multidimensional systems since causality breaks down
in higher dimensions. In this letter, we will extend the Viterbi al-
gorithm to provide a forward process to optimize semi-causal,
multidimensional functions. We will then apply the proposed
solution for computation of active surfaces in video sequences.

II. -D DYNAMIC PROGRAMMING

Based on the principle of optimality, we derive a new repre-
sentation of the -D DP algorithm using the inclusion–exclu-
sion principle for multidimensional systems and prove, by in-
duction, that it converges to the optimal solution.
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Fig. 1. 2-D systems. (a) Semi-causal. (b) Nearest-neighbor semi-causal. (c)
Nearest-neighbor strictly semi-causal.

Definition 1: A discrete -D system is semi-causal if

where ,
, for all . is the -D

state at point , and is the control or
decision to be selected from a given set. Fig. 1(a) illustrates the
semi-causality condition in a 2-D space. The control
is related to the state by the policy , i.e.,

. Let be the policy
vector . The cost
function starting at is assumed to be additive, i.e.,

The optimization problem is performed over the policy vector
, i.e., . The optimal policy

satisfies , and is independent
of .

Theorem 1 ( -D Dynamic Programming): Start with
. Then, go back-

ward using
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Moreover, using the inclusion–exclusion principle, we obtain

(1)

where denotes a permutation of
. The energy is computed, for the

different states, following this non-unique order:
compute the optimal energy in (1) for the states

, for
all values of . Then, increment ,
where for until the optimal
energy is computed for all the states. , generated at
the last step, is equal to the optimal cost . Also,
the policy is optimal.

Corollary 1 (2-D Dynamic Programming): Start with
. Then, go backward using

computed in the following non-unique order: and
, where and

for and .
Proof: The proof of the -D case follows by induc-

tion from the 2-D case. Let denote a tail policy
from point onward, excluding the point , i.e.,

. Let
. Initially,

is known. Let us assume that
is optimal for the tail problem from point

onward, excluding the point . Therefore, is
optimal. We have

This completes the proof by induction.

We will employ this method for computation of the cost func-
tion in the dynamic tree programming (DTP) algorithm pro-
posed in the next section.

III. 2-D DYNAMIC TREE PROGRAMMING

We now present an extension of the classical Viterbi al-
gorithm to multidimensional systems by providing a forward
process DP algorithm for multidimensional cost functions.

For clarity, we will focus our presentation on nearest-
neighbor, strictly semi-causal 2-D functions. However, varia-
tions of the proposed algorithm can be used for other forms of
semi-causality and higher dimensional spaces.

The cost function is given by

Definition 2: A discrete 2-D system is nearest-neighbor
semi-causal if

Definition 3: A discrete 2-D system is nearest-neighbor
strictly semi-causal if

Both concepts are illustrated in Fig. 1.
We now present the DTP algorithm for nearest-neighbor,

strictly semi-causal 2-D functions.
a) Forward Process: We assume that

is one of a finite number of values,
and . Let

and .
Initialization: Set to a known initial value.
Recursion: For iteration , determine the optimal con-

trol such that is minimized for
a given pair . Record the value of for the cor-
responding pair. Compute and

. Repeat the process for all pairs
.

For iterations , do the following.
1) Fix a future -tuple

, where

.
The -tuple lies along a diagonal layer of the 2-D
structure [see Fig. 2(a)].

2) Determine the optimal -tuple from the fixed future
-tuple as follows:
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Fig. 2. Layers of the DTP algorithm. (a) Diagonal lines for nearest-neighbor,
strictly semi-causal functions. (b) Quadrant walls for nearest-neighbor, semi-
causal functions.

where

.
3) Record the optimal -tuple,

, for the fixed -tuple.
4) Compute the cumulative cost at each control state in the

-tuple from the cumulative costs of the optimal
-tuple as follows:

5) Repeat steps 1)–4) for all -tuples.
6) Let , and go back to step 1).

b) Backtracking: The optimal control at the last
node corresponds to the minimal cumulative cost

. The optimal controls in the previous diag-
onal layer are uniquely determined by following the optimal
mapping from the node (see Fig. 3). This process is
repeated by following the optimal mappings from the optimal

-tuple to the -tuple, ,
for iterations . Observe that
the optimal controls on each diagonal layer are determined
simultaneously.

The main obstacle in the design of the DTP algorithm is the
cost propagation in the forward process. The cost propagated
to its neighboring nodes depends on the selection at multiple
nodes. We therefore determine the optimal mapping among all
permutations of nodes between adjacent dependent node classes
in successive iterations, which form the layered structure. The
DTP algorithm for a 2-D nearest-neighbor strictly semi-causal
system with , , and is illustrated in Fig. 3.

The 2-D DTP algorithm for nearest-neighbor, semi-causal
functions follows the same forward process by considering
states along the quadrant walls shown in Fig. 2(b). We can ex-
tend the DTP algorithm to higher dimensions ( -D with )
by considering states along hyperplanes for nearest-neighbor,
strict semi-causality and hyperquadrants for nearest-neighbor,
semi-causality. It is possible to relax the nearest-neighbor
assumption, which results in more complex and less efficient
algorithms.

Fig. 3. Illustration of the 2-D DTP algorithm for a nearest-neighbor strictly
semi-causal system, where N = 4,N = 3, and s = 2. The vertical segments
are the states. The two distinct control values for each state appear as diamonds
on each segment. The arrows point to the optimal g-tuple from a given future
(g+ �)-tuple. At the last state, the control value corresponding to the minimum
cumulative energy is selected, and the minimum cost path is traced back.

TABLE I
COMPUTATIONAL COMPLEXITY

Complexity of the 2-D DTP: Consider a 2-D nearest-neighbor,
strictly semi-causal system with states

and controls to be se-
lected from a set of distinct values. For simplicity, we assume
that . Consider now a 1-D system with
states and controls. Table I shows the number of operations
required to compute the 2-D DTP, exhaustive search in 2-D,
the 1-D Viterbi, and an exhaustive search in 1-D. The saving
ratio of an algorithm is defined as the ratio of the computational
complexity of exhaustive search compared to the algorithm.
For instance, if , the saving ratio of the 2-D DTP
is equal to , while the saving ratio of the 1-D Viterbi
is equal to .

IV. ACTIVE SURFACES

Active contours (snakes) are often used to extract an object’s
boundary. This method, however, produces a jittery and unstable
boundary in video sequences. We propose a framework for ac-
tive surface extraction from video sequences. An active surface
is a generalization of the notion of an active contour to higher
dimensions. It can be viewed as a collection of active contours in
successive frames such that the active contours are constrained
by spatial and temporal energy terms.

A. 2-D Active Surface Model

In order to reduce the computational complexity, we con-
sider a 1-D active contour model in each frame [3]. At frame
, only observations along the normal lines of the contour are

detected. Let be the index of normal lines and
be the index of pixels along the normal line

at time . Let denote the image intensity value at the
pixel . The 2-D contour is then represented by the set of its
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normal lines. We consider a sequence of video frames,
each containing normal lines. Hence, we have reduced the
3-D model of the active surface to a 2-D model.

B. Spatio–Temporal Energy Function

The spatial external energy pushes the contour toward image
features such as edges

The spatial internal energy imposes smoothness of the contour
by penalizing rough contour points

The temporal external energy attracts the contour to features in
neighboring frames, which provides stability when the current
frame has weak features due to noise or blurring

The temporal internal energy imposes smoothness constraints
on the active surface

We define the spatio–temporal energy function
, given by

where , , , and are weight parameters intro-
duced to balance the different energy terms.

The objective function of the active surface is given by

The optimal active surface minimizes the total energy .

C. Dynamic Tree Programming

The cumulative energy is given by

We provide simulation results for the active surface model
using the proposed DTP algorithm. Fig. 4 shows that our ap-

Fig. 4. Boundary extraction. (a) Active contours without temporal constraints.
(b) Active surfaces (video is courtesy of S. Birchfield of Stanford University).

proach to active surface extraction yields a much more stable
and less jittery target boundary in video sequences.

V. CONCLUSIONS

In this letter, we extended the well-known Viterbi algorithm
to multidimensional systems. We first presented a new method
for the representation of DP for multidimensional systems using
the inclusion–exclusion principle. We then proposed a forward
process to optimize semi-causal, multidimensional functions.
This approach is based on extension of the 1-D trellis structure
of the Viterbi algorithm to a tree structure in higher dimensions.
We extended the notion of active contours to active surfaces in
video sequences. We then applied the DTP algorithm to obtain
the minimal energy active surface in video sequences. The pro-
posed DTP algorithm can be used in many different applica-
tions, including multidimensional image segmentation, multi-
cast network routing, multidimensional convolutional decoding,
etc. The approach presented in this letter can be used to extend
the 1-D variable-state Viterbi algorithm presented in [4] to arbi-
trary semi-casual, neighborhood dependence multidimensional
Markov models.
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