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ABSTRACT

We cast the problem of reverse-engineering the connectiv-

ity matrix of genetic regulatory networks from a limited

number of measurements as a regularized multivariate re-

gression problem. The regularization term incorporates the

prior knowledge of sparsity of genetic regulatory networks.

Moreover, the genetic profiles within a measurement are

assumed to be correlated with a full covariance structure.

The proposed algorithm computes a sparse estimate of the

connectivity matrix that accounts for correlated errors using

regularized likelihood. We show that the joint estimation

of the connectivity and covariance matrices improves the

estimation of the network connectivity as compared to the

assumption of uncorrelated measurements. Our algorithm

has ln(ln(N)) sampling complexity. We test and validate our

approach using synthetically generated networks.

Index Terms— Gene regulatory network; multivariate re-

gression; maximum likelihood estimation; convex optimiza-

tion.

1. INTRODUCTION

The regulatory processes at work in the cell echo the elab-

orate network of interactions between the genes, RNAs and

proteins. Identifying and understanding these interactions is

considered as one of the main challenges in systems biology

with potential applications in therapeutic targeting and drug

design. The recent advances in high-throughput genomic

sequencing technology spurred the reverse-engineering of

molecular interactions from collected genomic profiles.

Ordinary differential equations (ODEs) can successfully

model the dynamics of genetic profiles [1], with several ad-

vantages over graphical methods for genetic network infer-

ence. First, ODE approaches yield signed directed graphs,

where the sign of an edge indicates if the interaction is stim-

ulative or inhibitive and the absolute value of the interaction

reveals the strength of the stimulation or inhibition. Second,

ODE inference methods can be applied to both steady-state

and time-varying genetic data. In particular, they can be used

to predict the behavior of the network at any future time point

and under any given condition, such as gene knockout or drug

delivery. Most ODE system identification methods assume

that the behavior of the regulatory network can be modeled by

a system of linear differential equations near a steady-state:

ẋi(tk) =

N
∑

j=1

aijxj(tk) + biu(tk), (1)

where i = 1, · · · , N, k = 1, · · · , M , N is the number of

genes, M is the number of experiments or time points, xi(t)
is the expression of gene i at time t, ẋi(t) is the rate of change

of expression of gene i at time t, aij represents the influence

of gene j on gene i, bi is the effect of the external perturbation

on gene i and u(t) denotes the external perturbation at time t.
The goal is to infer the gene interactions {aij}N

i,j=1, given a

certain number of measurements M .

The attempts to solve the problem in (1) rely mainly on

linear regression to calculate the model coefficients either at

steady-state [2] or assuming a dynamic model [3], [4]. How-

ever, the ODE model in Eq. (1) is deterministic and does

not take into account the biological stochasticity and mea-

surement noise present in the data. De Hoon et al. [5] in-

corporated an error term in order to statistically determine the

sparsity of the connectivity matrix A = {aij}. They use the

Akaike Information Criterion (AIC) to decide which coeffi-

cients should be set to zero.

In this paper, we explicitly add a noise term to the linear

ODE model in Eq. (1) in order to take into account biologi-

cal variability and measurement noise. Unlike previous work,

which assumed an uncorrelated noise model [5], we assume

that the noise has an unknown correlation structure. The as-

sumption of correlated noise emanates from the fact that sep-

arately estimating the interaction coefficients by performing

M separate regressions may be inferior to jointly estimating

all coefficients accounting for the correlated errors. We then

propose a regularized likelihood algorithm, which simultane-

ously estimates the connectivity and the covariance matrices.



2. THE LINEAR ODE MODEL

We consider the model in Eq. (1) with an additive noise term

ǫi(t). Introducing the new variable yi,

yi(t) =
dxi

dt
− biu(t), (2)

we can write the ODE model in vector form for the N genes

as

y = Ax + ǫ, (3)

where y = [y1, y2, · · · , yN ]T , x = [x1, x2, · · · , xN ]T , ǫ =
[ǫ1, · · · , ǫN ]T and A = {aij}N

i,j=1. Performing M different

experiments , we obtain M measurements and can write the

results as

Y = AX + E, (4)

where Y = [y1, · · · , yM ], X = [x1, · · · , xM ] and E =
[ǫ1, · · · , ǫM ]. That is, every column of Y , X , and E rep-

resents a single experiment and there are M columns repre-

senting M experiments. The goal of reverse-engineering the

network is to estimate the connectivity matrix A given a num-

ber of measurements and in the presence of noise.

3. REGULARIZED LIKELIHOOD WITH

COVARIANCE ESTIMATION

We assume that ǫ1, · · · , ǫM are i.i.d N (0, Σ). Thus, for any

experiment, the covariance matrix of the gene expressions is

Σ.

Lemma 1 The negative log-likelihood function of (A, Σ) can

be expressed up to a constant as

−l(A, Σ) = Tr[
1

M
(Y −AX)(Y −AX)T Σ−1]+ln |Σ|, (5)

where Tr denotes the trace function and |Σ| is the determinant

of the matrix Σ.

Proof 1 We have

p(yj) =
1

(2π)
N

2 |Σ|
1

2

exp−
1

2

[

(yj − Axj)
T Σ−1(yj − Axj)

]

.

(6)

Therefore, the likelihood function of the data is

p(y1, y2, . . . , yM ) =

M
∏

j=1

p(yj)

=
1

(2π)
MN

2 |Σ|
M

2

exp−
1

2

M
∑

j=1

[

(yj − Axj)
T Σ−1(yj − Axj)

]

=
1

(2π)
NM

2 |Σ|
M

2

exp−
1

2
Tr

[

(Y − AX)(Y − AX)T Σ−1
]

(7)

Taking the logarithm to compute the log-likelihood function,

we obtain

l(A, Σ) = −
MN

2
ln(2π) −

M

2
ln |Σ|

−
1

2
Tr

[

(Y − AX)(Y − AX)T Σ−1
]

(8)

Ignoring the constant term
(

−MN
2 ln(2π)

)

, which will have

no effect in the optimization over A and Σ, and multiplying

by 2/M , we obtain the negative log-likelihood function up to

a constant term

−l(A, Σ) =
1

M
Tr

[

(Y − AX)(Y − AX)T Σ−1
]

+ ln |Σ|

(9)

Assuming that M ≥ N , it is easy to derive that the maximum

likelihood estimator for A is simply given by Â = ÂOLS =
Y XT (XXT )−1, which ammounts to performing separate or-

dinary least-squares estimates for each of the measurements,

and is independent of the covariance structure. In order to ex-

ploit the correlation structure to improve the prediction per-

formance, we impose a constraint on the connectivity matrix

A. It is known that genetic regulatory networks are sparse,

where each gene is regulated by only few other genes [1].

This prior knowledge, along with the estimation of the cor-

relation structure, will improve the estimation of the network

connectivity. To this aim, we consider the regularized nega-

tive likelihood function

f(A, Ω) =Tr

[

1

M
(Y − AX)(Y − AX)T Ω

]

− ln |Ω|

+ α

N
∑

i=1

N
∑

j=1

|ai,j |,

(10)

where Ω = Σ−1 and α ≥ 0 is a tuning parameter. The added

penalty term is reminiscent of the L1 norm constraint, which

tends to force many entries of the matrix A to be zero; thus

achieving a sparse solution. The regularized maximum likeli-

hood estimates of A and Ω are, therefore, given by

(Â, Ω̂) = argmin
A,Ω

f(A, Ω) (11)

The optimization problem in (11) is not convex; however,

solving for either A or Ω with the other fixed is convex. In

particular, the convexity of f(A) for constant Ω follows from

the fact that Ω is positive semi-definite. We propose an it-

erative minimization procedure with respect to A and Ω as

outlined below. In our simulations, we use the cvx environ-

ment [6] to solve the convex optimization problems involved

in the steps of the algorithm.

4. SIMULATION RESULTS

We compare the proposed reguralized likelihood with covari-

ance estimation algorithm to the case where the correlation



For a fixed value of α, set A(0) = 0 and Ω(0) = I (the identity

matrix). Set m = 1.

Step 1 Compute Â(m) as the unique solution of the convex

optimization problem in (10) for the given Ω̂(m−1).

Step 2 Compute Ω̂(m) as the unique positive semi-definite

solution of the convex optimization problem in (10) for

the Â(m) computed in step 1.

Step 3 If
∑

ij |â
(m)
ij − â

(m−1)
ij | < η, then stop, otherwise,

increment m and go to step 1.

structure between the genes is ignored, i.e., Σ = σ2I . We

use Eq. (4) to generate synthetic networks with varying size,

number of measurements and correlation structure. We in-

troduce sparsity in the network by setting Aij 6= 0 for

N2 × d elements, where N represents the number of genes

in the network and d is a percentage number. In our simula-

tions, we use d = 5%. The non-zero elements of the matrix

A are drawn from a standard normal distribution with zero

mean and unit variance, i.e., aij ∈ N (0, 1), for all aij 6= 0.

The covariance matrix is generated using the following model

Σij = ρ|i−j|, where ρ = 0.9 is a fixed correlation coefficient.

To assess the efficiency of the algorithm, we use the following

performance measure proposed in [3]

E =

n
∑

i=1

n
∑

j=1

eij , with

eij =

{

1, if |AR,ij − AT,ij | > δ,
0, otherwise,

(12)

where AR and AT denote, respectively, the estimated and true

connectivity matrices, and δ is a fixed threshold. In our simu-

lations, we set δ = 1
2 mini,j{|aij | 6= 0}.

In the current application, the number of measurements is

smaller than the number of genes, i.e., N > M . Nonetheless,

we rely on the proposed approach for the experimental study.

We first investigate the influence of the sparsity coefficient α
on the estimation error. Figure 2 shows the number of errors,

E, as a function of α for N = 20, 30, 40-gene networks. Ob-

serve that the estimation error decays rapidly from α = 0 to

α 6= 0. In fact, when α = 0, there are no constraints on the

network connectivity, and the ML estimate of A is indepen-

dent of the correlation structure. When α is very large, the

estimate of the connectivity matrix is basically the L1 norm

estimator, i.e., the zero matrix. We found that values of α
in the range 0.1 to 1 provide a good balance between likeli-

hood and sparsity considerations. In our simulations, we set

α = 0.5. Figure 2 also shows that, for a given value of α and

fixed number of measured, the error increases as the number

of genes increases. This result is further illustrated in Fig. 3,

where it is seen that the estimation error decreases rapidly as

the number of emasurements increases.

Fig. 2. The effect of the regularization parameter α on the

estimation accuracy of the connectivty matrix A.

Fig. 3. Percentage error versus number of measurements for

different network sizes.

We further evaluate the number of measurements neces-

sary to identify the network connectivity with 99% confidence

as a function of the network size N . For a given network

size, the smallest number of measurements required to re-

cover the connectivity of the network with an error below 1%

is called the critical number of measurements, Mc. To obtain

statistically meanigful claims, we perform Monte Carloe sim-

ulations for 100 realizations of the network. We found that

the number of critical measurements increases linearly with

ln(ln(N)). The least-squares fit curve, of the form Mc =
a + b ln(ln(N)), is displayed in Fig. 4. In particular, for

a 1000-gene network, the proposed algorithm requires about

56 measurements to correctly identify the network topology.

This critical number is significantly smaller than requiring

1000 measurements in the “brute-force approach”, or the 90

measurements required when using the singular value decom-

position method [3].

In order to outline the importance of taking into account

the correlation structure of the measurements, we compare the

performance of the joint covariance estimation with the case

where the gene expressions are assumed to be uncorrelated,

namely Σ = I and Σ = σ2I , where σ2 is estimated using the

ML approach. Figure 1 shows the percentage error versus the

number of measurements for the three cases for four different

network sizes N = 10, 20, 30 and 40. It is interesting to ob-
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Fig. 1. Performance comparison of the regularized ML estimation with and without estimation of the covariance structure for

different network sizes: black: covariance structure estimation; blue: Σ = I; red: Σ = σ2I .

Fig. 4. Critical number of measurements required to re-

cover the network connectivity with 99% confidence. Cir-

cles: numerical data; Line: least-squares fit of the form

Mc = a + b ln(ln(N)).

serve that for small networks, the ML estimation of the power

of the uncorrelated noise performs as good as estimating the

full correlation structure. This is partly due to the fact that,

in small networks, the number of measurements is also small,

and hence the estimation of the full correlation structure may

not be statistically meaningfull. However, for larger networks

(N ≥ 30), joint estimation of the connectivity and covariance

matrices yields significantly smaller errors than the connec-

tivity estimation considering uncorrelated measurements.

5. CONCLUSION

We casted the reverse-engineering problem of the network

connectivity as a regularized multivariate regression problem

with a full covariance structure. Our simulations show that

the regularized likelihood with covariance estimation method

outperforms both (non regularized) likelihood estimation and

uncorrelated regression. We also explored the effect of the

number of measurements on the estimation error and eval-

uated that the critical number of measurements required to

recover the entire connectivity matrix within 99% confi-

dence scales as ln(ln(N)), where N is the number of genes.

We, therefore, expect that the proposed reverse-engineering

method will be useful in reconstructing gene networks when

more experimental data becomes available.
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