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On the Optimality of Motion-Based Particle Filtering
Nidhal Bouaynaya, Member, IEEE, and Dan Schonfeld, Senior Member, IEEE

Abstract— Particle filters have revolutionized object tracking
in video sequences. The conventional particle filter, also called
the CONDENSATION filter, uses the state transition distribu-
tion as the proposal distribution, from which the particles are
drawn at each iteration. However, the transition distribution
does not take into account the current observations, and thus
many particles can be wasted in low likelihood regions. One
of the most popular methods to improve the performance of
particle filters relied on the motion-based proposal density.
Although the motivation for motion-based particle filters could
be explained on an intuitive level, up until now a mathematical
rationale for the improved performance of motion-based particle
filters has not been presented. In this letter, we investigate
the performance of motion-based particle filters and provide
an analytical justification of their superiority over the classical
CONDENSATION filter. We rely on the characterization of
the optimal proposal density, which minimizes the variance of
the particles’weights. However, this density does not admit an
analytical expression, making direct sampling from this optimal
distribution impossible. We use the Kullback–Leibler (KL) di-
vergence as a similarity measure between density functions and
denote a particle filter as superior if the KL divergence between
its proposal and the optimal proposal function is lower. We
subsequently prove that under mild conditions on the estimated
motion vector, the motion-based particle filter outperforms the
CONDENSATION filter, in terms of the KL performance mea-
sure. Simulation results are presented to support the theoretical
analysis.

Index Terms— Adaptive block matching, Kullback–Leibler
(KL) divergence, motion estimation, particle filtering, video
tracking.

I. INTRODUCTION

RECENTLY, sequential Monte Carlo (SMC) filters [1]
have become very popular for object tracking due to

their flexibility and ease of implementation. These filters have
been introduced to the tracking community in a paper by
Isard and Blake [2]. SMC filters, also known as particle
filters, are Bayesian filters, which use the importance sampling
technique to estimate the distribution of nonlinear and non-
Gaussian state-space models [1]. In the Bayesian framework,
the tracking problem is formulated as the estimation of the
posterior density of the target. In practice, the target’s pos-
terior is multimodal due to background clutter (hence non-
Gaussian). Therefore, traditional density estimation techniques
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(e.g., Kalman filter) will not apply. In importance sampling,
a proposal density, also called importance function, is used
to easily generate samples. Each sample is then assigned a
proper weight to make up the difference between the posterior
and proposal density functions [1]. It can be shown that
if the number of samples is sufficiently large, the sample
approximation of the posterior density can be made arbitrarily
accurate [1]. However, in practice, only a finite number of
samples can be used. Moreover, when a good dynamic model
(i.e., a model that accurately predicts the target’s dynamics)
is not available, or the state dimension of the tracked object
is high, the number of required samples becomes even larger
and particle filtering can be computationally prohibitive. The
conventional approach is to sample from image regions having
high probability mass values. In [3], we proposed the use of
a motion estimation algorithm to estimate the target position
at each frame and draw samples from the area around the
estimated position. Several advantages emerge of this choice.
First, the motion is estimated Online and hence no offline
motion learning is needed. Second, the tracker is adaptive
to all kinds of motion. Particulary, it can be viewed as a
general case of the switching state-space model technique [4].
Third, we economize on the processing time by searching
only the state space around the estimated position. Finally,
unlike color- or shape-based proposal densities, a motion-
based proposal is less sensitive to clutter. The incorporation
of motion cues in particle filters have also been investigated
in [5] and [6]. In [5], the authors proposed an adaptive state
transition model by using an adaptive velocity model. In [6],
an audiovisual tracking system is considered, where motion
cues where incorporated in the likelihood model. The target’s
motion was estimated based on the absolute frame difference
computed on successive pairs of images. Observe that in [5],
[6] and [3], motion information was incorporated in the state
dynamics distribution, the likelihood model, and the proposal
distribution, respectively.

Many proposal distributions have been proposed in the lit-
erature so far [7], where each distribution has been experimen-
tally shown to outperform the conventional particle filter (or
CONDENSATION). However, no one up until now has tried to
analyze analytically the performance of certain proposals over
others. Zaritskii et al. [8] derived the optimal proposal density
qopt, which minimizes the variance of the particles’ weights.
However, this density does not admit an analytical expression
in the general case, making direct sampling from it impossible.
The challenge in particle filtering applications is, therefore,
to design efficient proposal distributions that approximate the
optimal density as closely as possible. Although we cannot
practically sample from the optimal proposal, we propose
to assess the performance of a given proposal density q by
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computing the Kullback–Leibler (KL) “distance” or similarity
measure between qopt and q.

The remainder of this letter is organized as follows. In
Section II, we review the motion-based particle filter (MBPF)
introduced in [3], [9]. In Section III, we formulate a general
optimization problem, based on the KL divergence, to assess
the performance of different proposal densities compared
to the optimal proposal that minimizes the variance of the
weights. We subsequently prove that under mild conditions
on the estimated motion vector (namely that it should not be
the output of a random process but the output of a “decent”
motion estimation algorithm) the motion-based particle filter is
superior to the CONDENSATION filter, in the KL divergence
sense. In Section IV, we present some simulation results.
Finally, concluding remarks are discussed in Section V.

II. MOTION-BASED PARTICLE FILTER

A. Bayesian Sequential Importance Sampling

In Bayesian sequential estimation, a Markovian discrete-
time state-space model is assumed. Let Xk represent the target
characteristics at discrete time k (position, velocity, shape,
etc.). The state-space model is described by state transition
and measurement equations

Xk = fk(Xk−1, vk)
Zk = hk(Xk, wk)

(1)

where fk : Rnx → Rnx and hk : Rnx → Rnz are possible
nonlinear functions. The stochastic processes vk and wk rep-
resent the state and measurement noise processes. Denote all
past observations up to time k by Z1:k = {z1, . . . , zk}. When
the functions fk and hk are linear and the noise is Gaussian,
Kalman filter [10] provides an analytical closed-form solution
to the posterior density p(Xk |Z1:k). However, for real-world
applications, the clutter introduces multiple observations and
a multimodel density is then necessary to fairly model the
posterior density.

In particle filtering, the posterior distribution is approxi-
mated by a set of weighted samples (also called particles)
denoted by X (i)

p(Xk |Z1:k) ≈
N∑

i=1

π i
kδ

(
Xk − X (i)

k

)
(2)

where π
(i)
k = ω

(i)
k /

∑N
j=1 ω

( j)
k is the normalized weight, and

ω
(i)
k is given by

ω
(n)
k = ω

(n)
k−1

p
(

X (n)
k

∣∣∣X (n)
k−1

)

q
(

X (n)
k

∣∣∣X (n)
k−1, Zk

) p
(

Zk

∣∣∣X (n)
k

)
. (3)

Given a discrete approximation to the posterior distribution,
one can then proceed to a filtered point estimate such as the
mean of the state at time k

X̂k =
N∑

i=1

π
(i)
k X (i)

k . (4)

B. Motion-Based Importance Function

Unlike shape- and/or color-based importance functions [11],
[12] we proposed in [3] a motion-based importance density.
Any motion estimation technique can actually be used in
our algorithm. In case of compressed videos, using standards
like MPEG, motion vectors are readily available. In our
simulations, we choose the adaptive block matching method
(ABM) [13] because of its simplicity in implementation. For
head tracking applications, we use a 4-D parametric ellipse to
represent the state vector of the object

X = [xc, yc, b, φ]T (5)

where (xc, yc) is the center of the ellipse, b is the minor
axis of the ellipse, and φ is the orientation of the ellipse in
radians. The ratio of the major to minor axis of the ellipse is
kept constant, equal to its value computed in the first frame.
For the experiments we conduct on head tracking, we found
this assumption very reasonable and allows us to reduce the
dimensionality of the state vector by 1. We use the least mean
square (LMS) criterion to fit the ellipse to the mask output
of the ABM. The motion vector �̂Xk that interests us is then
given by the difference between the position of the center of
the newly fitted ellipse (xc(k), yc(k)) and the position of the
center of the previous mean estimate (xc(k − 1), yc(k − 1)),
i.e.,

�̂Xk = [xc(k) − xc(k − 1), yc(k) − yc(k − 1), 0, 0]. (6)

The scaling and rotation parameters of each sample X (n)
k (given

by the 3rd and 4th coordinates) are randomly selected from
a normal distribution with the mean scaling and rotation
parameters of the previous sample X (n)

k−1 and fixed variances,
σ 2

s and σ 2
r , respectively.

We then have the following sampling scheme:

X (n)
k = X (n)

k−1 + �̂Xk + v
′(n)
k , n = 1, . . . , N (7)

where v
′(n)
k is the diffusion noise of sample n at time k.

Let �Xk denote the true motion vector at time k. Then, we
can write

�Xk = �̂Xk − v
′′
k (8)

where v
′′
k is the motion estimation error vector at time k. It

is reasonable to assume that the motion error vector v
′′
k and

the sampling noise v
′(n)
k are uncorrelated for each sample n

and at each time index k. Let v
(n)
k be the cumulative noise

of the diffusion and the error in the motion estimation, i.e.,
v

(n)
k = v

′(n)
k + v

′′
k . Therefore, (7) becomes

X (n)
k = X (n)

k−1 + �Xk + v
(n)
k , n = 1, . . . , N . (9)

The reason behind expressing the sampling scheme in terms
of the true motion vector �Xk instead of the estimated
motion vector �̂Xk will become evident in Section III
when we compare the performance of the MBPF with the
CONDENSATION filter. We assume that the vectors v

′′
k

and v
′
k are normally distributed with zero mean and fixed

covariance matrices. Thus, the cumulative noise vector vk

is also normally distributed with zero mean and covariance
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matrix �G

vk ∼ N(0, �G) (10)

and

�G =

⎛
⎜⎜⎝

σ 2
x 0 0 0

0 σ 2
y 0 0

0 0 σ 2
s 0

0 0 0 σ 2
r

⎞
⎟⎟⎠ (11)

where σ 2
x and σ 2

y are the variances of the motion in the (x–y)
direction. The motion-based importance density qm is then
the mixture of the translated and diffused samples around the
target’s estimated position, i.e.,

qm(Xk |Xk−1, Zk) ≡ 1

N

N∑
n=1

N
X (n)

k

(
X (n)

k−1 + �Xk, �G

)
(12)

where we make use of the following notation that will be used
for the rest of this letter

NX (μ,�) ≡ 1

2π |�| exp

(
−1

2
(X − μ)T �−1(X − μ)

)
.

(13)
In addition to the assessment of the importance function,

we need to evaluate the likelihood p(Zk |Xk) and the state
dynamics p(Xk |Xk−1) distributions [see (3)]. We calculate the
particle likelihood based on color [12] and edge [2] cues. We
choose a random walk model for the system dynamics, which
reflects a poor prior knowledge of the target’s dynamics in the
video [5], [6].

III. OPTIMAL REALIZABLE PROPOSAL DENSITY

After synthesizing the proposed MBPF, we need to an-
alyze its performance. The following basic question arises:
What variables should we consider and what performance
measure should we use? To study these questions, we con-
sider the degeneracy problem of the importance sampling
technique, where the variance of the particle’s weights can
only increase (stochastically) over time. That is, most of
the weight will be concentrated on a single particle af-
ter a few iterations [1]. In practice, it is necessary to re-
sample the particles to avoid degeneracy of the weights.
Zaritskii et al. [8] introduced the optimal importance func-
tion, which minimizes the variance of the weights. It is
given by

qopt = p
(

Xk |X (i)
k−1, Zk

)
. (14)

However, this optimal density does not admit an analytical
expression in the general case, making direct sampling from
it impossible. Though we cannot practically sample from qopt,
we can assess the performance of a proposal density q by
computing some kind of “distance” or similarity measure
between qopt and q. The KL divergence I (qopt, q) captures the
“information” lost when a given proposal density q is used to
approximate the optimal proposal density qopt. It is defined as
the multiple integral

I (qopt, q) =
∫
S

qopt(x) log

(
qopt(x)

q(x)

)
dx (15)

θ
ΔXk

vk
(n)

Fig. 1. Sufficient condition for the superiority of the motion-based proposal
to the prior proposal, in terms of the KL divergence. The angle between the
noise vector and the true motion vector does not exceed π/2 in absolute
value.

where log denotes the natural logarithm and S is the region
of integration. We want to minimize I (qopt, q) over a space
of realizable densities indexed by Q. The general optimization
problem can be formulated as follows:

q∗ = min
q∈Q

I (qopt, q) (16)

where the space Q does not contain the optimal proposal
density qopt; i.e., the trivial solution q∗ = qopt is precluded.
In order to reduce the state space, we consider Q to be the
set containing only two densities {q, qc}, where q is any
realizable density function and qc is the proposal density in
the CONDENSATION filter; i.e.,

qc

(
Xk

∣∣∣X (i)
k−1

)
= p

(
Xk

∣∣∣X (i)
k−1

)
.

In this letter, we will illustrate the approach proposed for
characterization of the optimal realizable proposal density by
focusing on MBPF. However, it is important to note that
this approach could be extended easily to the comparison of
the performance (in the KL divergence sense) of any pair of
proposal density functions in particle filtering.

Assume the set S contains the region of support of the
optimal density qopt. Let 	 be the set of densities q satisfying
the inequality

∫
S

qoptqc
q d Xk ≤ 1. The following proposition

shows that the space 	 contains proposal densities, which are
closer to the optimal density than the prior qc.

Proposition 1: If q ∈ 	, then I (qopt, q) ≤ I (qopt, qc).
Proof: Let q be a realizable density such that q ∈ 	.

Then we have

I (qopt, q) − I (qopt, qc)

=
∫
S

qopt log

(
qopt

q

)
d Xk −

∫
S

qoptlog

(
qopt

qc

)
d Xk

=
∫
S

qoptlog

(
qc

q

)
d Xk

≤ log

(∫
S

qoptqc

q
d Xk

)
(17)

≤
∫
S

qoptqc

q
d Xk − 1 ≤ 0 (18)

where (17) uses Jensen’s inequality and (18) uses the inequal-
ity log(x) ≤ x − 1.

Observe that every density q satisfying q ≥ qc belongs to
the set 	 and therefore is closer to the optimal distribution than
qc. In the remainder of this section, we consider the former
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(a) Motion-based particle filter

(b) The CONDENSATION filter

Fig. 2. Tracking a jumping person.

to be a random walk with covariance matrix �P , i.e.,

qc = p(Xk |Xk−1) = 1

N

N∑
n=1

p
(

X (n)
k

∣∣∣X (n)
k−1

)

= 1

N

N∑
n=1

N
X (n)

k

(
X (n)

k−1, �P

)
. (19)

In the following proposition, we show that, under mild
conditions on the target’s motions, I (qopt, qm) ≤ I (qopt, qc).

Proposition 2: If �G = �P = � and
[
(1/2)�Xk +

v
(n)
k

]T
�−1�Xk ≥ 0, for all 1 ≤ n ≤ N , then I (qopt, qm) ≤

I (qopt, qc).
Proof: We show that qm ≥ qc. From (12), we have

qm(Xk |Xk−1, Zk)
1

N

N∑
n=1

1

2π |�|

× exp

(
− 1

2

(
X (n)

k −X (n)
k−1−�Xk

)T
�−1

(
X (n)

k −X (n)
k−1−�Xk

))

= 1

N

N∑
n=1

p
(

X (n)
k

∣∣∣X (n)
k−1

)
exp

([
1
2 �Xk+v

(n)
k

]T
�−1�Xk

)

(20)

≥ 1

N

N∑
n=1

p
(

X (n)
k

∣∣∣X (n)
k−1

)
= p(Xk |Xk−1) = qc (21)

where the equality in (20) follows from (19) and the inequal-
ity in (21) follows from the assumption that [(1/2)�Xk +
v

(n)
k ]T �−1�Xk ≥ 0, for all 1 ≤ n ≤ N .

Corollary 1: If �G = �P = � and (v
(n)
k )T �−1�Xk ≥ 0,

for all 1 ≤ n ≤ N , then I (qopt, qm) ≤ I (qopt, qc).
Proof: The proof follows immediately from Proposition 2

and since �−1 is a positive semidefinite matrix.
The condition in the corollary is equivalent to

(1/σ 2
x )v

(n)
kx

δxk + (1/σ 2
y )v

(n)
ky

δyk ≥ 0, where (v
(n)
kx

, v
(n)
ky

)

and (δxk, δyk) are the projections of the noise and the
motion vectors along the first two coordinates, respectively.
If σx = σy , we observe that a sufficient condition for the
superiority of the motion-based proposal to the prior proposal,
in terms of the KL divergence, is that the angle between the
noise vector and the true motion vector does not exceed π/2

in absolute value. This sufficient condition is illustrated in
Fig. 1.

Let us use |x | and sign(x) to denote the absolute value
and sign of the scalar x , respectively. Moreover, we will use
[x]i to denote the ith component of the vector x and [A]i, j to
represent the i, jth element of the matrix A.

Corollary 2: If �G = �P = � and |[�Xk]i | ≥ 2|[v(n)
k ]i |,

for i = 1, 2, and for every 1 ≤ n ≤ N , then I (qopt, qm) ≤
I (qopt, qc).

Proof: The proof follows immediately from Proposition 2
and since sign([1/2�Xk + v

(n)
k ]i ) = sign([�Xk]i ), for i =

1, 2, and for every 1 ≤ n ≤ N , and the fact that the elements
of �−1

G are non-negative (i.e., [�−1
G ]i, j ≥ 0, for every i, j).

In this case, we observe that a sufficient condition for
the superiority of the motion proposal to the prior proposal,
in the KL divergence sense, is that the noise is small in
comparison to the true motion of the tracked object. From
Section II-B, recall that the sampling noise vk is the sum of the
motion estimation error and the diffusion noise. In particular,
Corollary 2 states that if the motion estimation error is “small
enough,” then MBPF is superior to the CONDENSATION
filter in the KL divergence sense. This result is somehow
intuitive.

IV. EXPERIMENTAL RESULTS

We address real-life tracking scenarios where the target
undergoes fast motion in one video (Fig. 2) and erratic
sudden motion in another (Fig. 3). We compare the tracking
results of the MBPF with the CONDENSATION filter. In
Fig. 2, the target is jumping. At least two equations are
needed to describe its dynamics: the negative acceleration
phase during the takeoff, and the positive acceleration phase
during the landing. The model gets more complicated if we
take into account the fact that the initial velocity varies from
one jump to another. Fig. 2(a) displays the tracking output
of the MBPF, which accurately captures the target’s position.
The prior density of the MBPF is a random walk process. The
CONDENSATION filter’s tracking result, with a random walk
proposal density, was so poor and completely lost the target
after few frames, that we chose not to display it here. Instead,
we display the output of the CONDENSATION filter using
a more sophisticated dynamic model given by the Langevin
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(a) Motion-based particle filter

(b) The CONDENSATION filter

Fig. 3. Tracking sudden and erratic movements

process [14]. Moreover, the parameters of the Langevin
process were tuned offline to lead to the tracking results shown
in Fig. 2(b). For real-time experiments, one cannot afford
different offline procedures to properly adjust the parameters
of the dynamic model. Despite a more sophisticated dynamic
model, the CONDENSATION filter loses the target in most of
the frames. On the other hand, despite a poor prior knowledge
of the target dynamics (expressed by a random walk dynamic
model), the MBPF accurately tracks the jumping target. The
reason behind this is that the prior plays no role in locating the
sample set since the particles are sampled from the motion-
based proposal density and not from the prior density.

Fig. 3 shows a tracking scenario where the target undergoes
erratic and sudden movements. The person in the video walks
routinely, then suddenly bends down, and then stands up again
as if he wanted to avoid someone’s (or something’s) sight.
The CONDENSATION filter loses the target during the fast
phase of bending and standing up again, whereas the MBPF
accurately tracks the target during all phases.

V. CONCLUSION

Up until now, different choices of proposal densities, in-
cluding motion-based proposal functions, were only shown to
outperform the conventional CONDENSATION filter experi-
mentally. In this letter, we provided an analytical justification
of the superiority of MBPFs over the classical CONDENSA-
TION filter. We used the KL measure to compare the similarity
of different proposal functions to an optimal unrealizable pro-
posal density, which minimizes the variance of the particle’s
weights. We proved that, if the motion estimation error is
“small enough” compared to the true motion, then the motion-
based particle filter outperforms the CONDENSATION filter,
in the KL divergence sense. We then presented simulation
results to support our analysis. The proposed framework could

be used for the analytical comparison of the various proposal
functions used in particle filtering.

REFERENCES

[1] A. Doucet, N. de Freitas, and N. Gordon, Sequential Monte Carlo
Methods in Practice. New York: Springer-Verlag, 2001.

[2] M. Isard and A. Blake, “Condensation: Conditional density propagation
for visual tracking,” Int. J. Comput. Vision, vol. 29, no. 1, pp. 5–28, 1998.

[3] N. Bouaynaya, W. Qu, and D. Schonfeld, “An Online motion-based
particle filter for head tracking applications,” in Proc. IEEE Int. Conf.
Acoustics, Speech, Signal Process., Mar. 2005, pp. 225–228.

[4] W. Zajdel, A. Cemgil, and B. Krose, “Online multicamera tracking
with a switching state-space model,” in Proc. IEEE Int. Conf. Pattern
Recognition (ICPR), 2004, pp. 23–26.

[5] S. Zhou, R. Chellappa, and B. Moghaddam, “Visual tracking and
recognition using appearance-adaptive models in particle filters,” IEEE
Trans. Image Process., vol. 13, no. 11, pp. 1491–1506, Nov. 2004.

[6] P. Perez, J. Vermaak, and A. Blake, “Data fusion for visual tracking
with particles,” Proc. IEEE, vol. 92, no. 3, pp. 495–513, Mar. 2004.

[7] S. Maskell, M. Briers, R. Wright, and P. Horridge, “Tracking using a
radar and a problem specific proposal distribution in a particle filter,” in
Proc. IEE Sonar Navigation, vol. 152, no. 5, pp. 315–322, Oct. 2005.

[8] V. S. Zaritskii, V. B. Svetnik, and L. I. Shimelevich, “Monte carlo
technique in problems of optimal data processing,” Autom. Remote
Control, vol. 12, pp. 95–103, 1975.

[9] N. Bouaynaya and D. Schonfeld, “Complete system for head tracking
using motion-based particle filter and randomly perturbed active
contour,” in Proc. SPIE Image Video Commun. Process., vol. 5685. San
Jose, CA, 2005, pp. 864–873.

[10] R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Transactions of the ASME. Ser. D: J. Basic Engineering,
vol. 82, pp. 35–45, 1960.

[11] M. Isard and A. Blake, “Icondensation: Unifying low-level and high-
level tracking in a stochastic framework,” in Proc. Eur. Conf. Comput.
Vision (ECCV), 1998, pp. 767–781.

[12] Y. Wu and T. Huang, “Robust visual tracking by integrating multiple
cues based on co-inference learning,” Int. J. Comput. Vision, vol. 58,
no. 1, pp. 55–71, Jun. 2004.

[13] K. Hariharakrishnan and D. Schonfeld, “Fast object tracking using
adaptive block matching,” IEEE Trans. Multimedia, vol. 7, no. 5,
pp. 853–859, Oct. 2005.

[14] J. Vermaak and A. Blake, “Non linear filtering for speaker tracking
in noisy and reverberant environments,” in Proc. IEEE Int. Conf.
Acoustics, Speech, Signal Process., vol. 5. 2001, pp. 3021–3024.

Authorized licensed use limited to: University of Arkansas Litte Rock. Downloaded on July 12,2010 at 21:07:46 UTC from IEEE Xplore.  Restrictions apply. 


