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ABSTRACT
Rotorcrafts are generally subject to a higher fatal accident rate than other segments of aviation, including commer-
cial and general aviation. The safety improvement for rotorcrafts would directly improve the efficiency of air traffic
control, since rotorcrafts operate primarily within low-level airspace; an area that is becoming increasingly complex
with new entrants, such as unmanned aircraft systems and urban air mobility. The recent impact of artificial intelli-
gence and deep learning algorithms on various aspects of our lives has led to the investigation of the application of
these algorithms in the aviation domain; as it may offer a prime opportunity to enhance safety within the aviation
community. In this research, we explore the efficacy, reliability, and, more importantly, the explainability of modern
deep learning algorithms. We use machine learning models to predict the attitude (pitch and yaw) of rotorcrafts using
video data recorded with ordinary cameras. The cameras were mounted inside the helicopter cockpit and recorded
outside view through windshield continually during the flight. We train four different architectures of convolutional
neural networks (CNNs), i.e., VGG16, VGG19, ResNet50, and Xception. The models achieved 90%, 91%, 88%, and
88%, respectively, average attitude prediction accuracy on the test video dataset. Furthermore, we use gradient class
activation maps (grad-CAM) to ascertain the features and regions of the image that influenced the model to make a
specific prediction. We show that CNNs learn to focus on similar features as human operators (pilots), i.e., the natural
horizon curve. Our findings demonstrate the feasibility of using deep learning models for attitude prediction from
flight videos recorded using ordinary inexpensive cameras. The proposed video analytics framework provides a cost-
effective means to supplement traditional Flight Data Recorders (FDR); a technology that is often beyond the financial
reach of most general aviation rotorcraft operators.

INTRODUCTION

As the premier agency for promoting and ensuring aviation
safety, the Federal Aviation Administration (FAA) contin-
ues to highlight the importance of participating in Helicopter
Flight Data Monitoring (HFDM) programs to improve flight
safety and operational efficiency. Indeed, rotorcraft safety was
one of the agency’s top ten most wanted list of safety improve-
ments in 2017-2018 and continues to be a high priority in
2020. Organizations including FAA, National Transportation
Safety Board (NTSB), and the United States Helicopter Safety
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Team (USHST) are strong proponents of flight data recorders
(FDRs). These organizations and other industry partners are
working together to promotes the use of FDRs as a possible
mechanism for reducing the fatal accident rate. However, de-
spite their best efforts, barriers to implementation exist. These
include, but are not limited to, technical skills required to op-
erate an FDR and costs associated with the acquisition and
installation of the FDR. The traditional FDRs require a Sup-
plemental Type Certificate (STC) or Field Approval (FA) to
install and operate the device following the Rotorcraft Flight
Manual (RFM). The initial acquisition cost of an FDR can
range from $9,000 - $50,000, on average. Given a range of
factors, rotorcrafts, in general, have a lower participation rate
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in the FDM programs than other forms of aviation, including
commercial fixed-wing or part 121 air carriers.

Inexpensive and off-the-shelf video cameras mounted inside
the cockpit may offer a potential alternative to traditional
FDRs. Even small helicopter operators often have access to,
or have the financial means to purchase, one or more off-the-
shelf video cameras. These cameras can potentially record all
the data that traditional FDRs provide. Moreover, on-board
cameras may provide supplementary data that, depending on
the type of the FDR, may not be available. Video data from
on-board cameras can be used for a variety of tasks, including
the flight parameter estimation from instrument panel gauges,
flight replay during post-accident investigations, rotorcraft at-
titude estimation, and any other visual information analysis
that can be extracted from video data. In this research project,
we focused on the problem of estimation of the rotorcraft atti-
tude, i.e., pitch and roll using video data from on-board cam-
eras. Furthermore, we attempt to explain the model’s predic-
tions to establish the reliability and increase the trustworthi-
ness of the AI model.

In this paper, we trained, validated, and tested various ma-
chine learning models using a large dataset of videos (broken
down into frames) and the ground truth attitude measurements
recorded using an on-board Attitude Heading and Reference
System (AHRS). We were able to achieve an attitude estima-
tion accuracy of 92% on the test data (i.e., a part of the dataset
that was never used for training or validation purposes). We
were also interested in elucidating the discriminative features
or regions in the image that trigger the deep learning algorithm
to make a specific decision. For human experts, the ‘horizon
curve’ generally serves as the discriminative feature for esti-
mating the rotorcraft attitude. We were able to confirm that
the discriminative features for the deep learning algorithms
matched that of human experts.

Our results demonstrate the feasibility of an inexpensive al-
ternative in the cockpit, i.e., a camera that would facilitate the
participation of the aviation community in the FDM programs
even for legacy helicopters. Our research efforts provide use-
ful data collection and analysis tools that could significantly
improve the safety and operational efficiency of rotorcrafts as
well as general aviation.

In this paper, section “related work“ starts with a brief
overview of existing methods used to enhance rotorcraft
safety. In section “methodology”, we present the experi-
mental setup and elaborate on the proposed machine learning
methods. Section “results and discussion” presents the results
and provides a discussion related to the obtained results. Fi-
nally, we provide concluding remarks in Section “conclusion
and future work” and also present possible directions for fu-
ture research work.

RELATED WORK

Recently, machine and deep learning algorithms have been
successfully used to solve a variety of computer vision
problems, including object identification, localization, and

pixel-level segmentation in natural images, medical diagnos-
tics, and security applications. (Refs. 1–3). A variety of
deep neural networks, especially convolutional neural net-
works (CNNs) have been proposed and implemented that can
achieve above-human accuracy on multiple computer vision
tasks, e.g., VGG-16, VGG-19, ResNet, Inception, and Xcep-
tion, to name a few (Refs. 4–6). Deep learning techniques
have shown the ability to learn highly discriminative features
in increasingly complex hierarchy directly from the data.

The aviation research community has also investigated ma-
chine learning and deep learning techniques for various ap-
plications (Refs. 7–9). Khan et al. demonstrated that deep
learning methods could process videos recorded using off-
the-shelf cameras in the helicopter cockpit to infer flight state
information (Ref. 9). The authors reported promising predic-
tive accuracy results for multiple flight parameters estimated
from video streams of instrument panel gauges (Ref. 9). Al-
ligier et al. used machine learning to improve airspeed pre-
diction during the aircraft climb (Ref. 7). In another work,
the same authors used machine learning for mass estimation
of ground-based aircraft climb prediction (Ref. 8). Kenneth
applied structural topic modeling to the Aviation Safety Re-
porting System (ASRS) corpus to identify topics, trends, and
areas that required further investigation (Ref. 10).

Gianazza et al. trained a variety of machine learning al-
gorithms to predict the workload of air traffic controllers
(Ref. 11). Shin and Hwang used classical computer used
hand-engineered features to predict rotorcraft attitude from
on-board cameras (Ref. 12). The authors extracted the nat-
ural horizon line and used the line as a feature to estimate the
roll and bank angles (Ref. 12).

Explainability, trustworthiness, and reliability of modern AI
and deep learning algorithms are active areas of research. Sev-
eral methodologies and approaches have been proposed in the
literature, including class activation maps (CAM) and gra-
dient class activation maps (g-CAM) (Refs. 13–17). These
methodologies help investigators visualize the features of the
input data that influenced the AI/machine learning algorithm
to make a specific classification decision. Apart from helping
in interpretation, CAM/grad-CAM techniques also explain
model behavior and assist in developing trust in AI/machine
learning algorithms.

METHODOLOGY

We developed (trained, validated, and tested) deep learning
algorithms for the prediction of rotorcraft attitude (i.e., pitch
and yaw) using on-board video data. Our deep learning mod-
els were able to achieve test predictive accuracy of more than
92%. Furthermore, we used a grad-CAM algorithm to visual-
ize features of the input that influenced trained deep learning
algorithms to make specific decisions, i.e., explaining predic-
tions performed by the deep learning algorithm at test time
(Refs. 13–17). We found that our trained deep learning mod-
els based their predictions on the ‘natural horizon curve’ just
like a human expert.
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Figure 1. Dataset: Sample images for nine different classes. Class labels, defined in Table 1, are indicated under each
image.

Data Acquisition and Annotation

We used video data recorded using cameras mounted inside
the cockpit of S-76 helicopters. The cameras continuously
recorded the outside view as seen through the windshield.
The cameras used a fisheye lens, and the field of view of
the lens was adjusted to capture the broadest possible view
of the natural horizon and external scene. We used video data
recorded through ten different flights (10 videos), totaling ap-
proximately 12 hours of video data. The time and data infor-
mation (timestamp) provided by the FDR was embedded in
the video stream to help in synchronization of the FDR data
with the video data during data analysis.

The FDR data (pitch and roll real values) served as the ground
truth (annotations) for our training, and validation datasets.
The sensors’ data from the FDR and cameras were recorded
at different sampling rates. The pitch and roll values from
the sensors were recorded and stored by the FDR at 10Hz;
whereas, the videos were recorded with different frame rates
ranging from 15 frames to 45 frames per second depending
upon the camera type and settings.

In order to eliminate the possibility of introducing noisy sam-
ples in data (i.e., annotating frame with wrong FDR record),
we used a comprehensive strategy to synchronize individual
frames (extracted from videos) with the FDR data (pitch and
roll). First, we extracted all individual frames (images) from
a given flight video and then extracted the timestamp (em-
bedded in the video from the FDR) from each frame using
the algorithm proposed in (Ref. 20). Later, we matched the
extracted timestamps with the corresponding sensor readings
from the FDR. Then, we annotated individual frames with
their corresponding attitude values (pitch and roll). Finally,
we compiled the annotated frames in the form of videos that

can be quickly viewed by a human expert to double-check
the correctness of the annotation process. In total, the la-
beled flight videos resulted in approximately 120,000 anno-
tated frames, which defined our dataset for attitude prediction.
We divided the dataset into three bins, i.e., training, validation,
and test using a 70 : 20 : 10 split ratio.

The attitude data recorded by the FDR consists of two real
numbers representing continuous measurements from pitch
and roll sensors. For our deep learning predictive framework,
we introduced a threshold (α) on the pitch and roll values and
defined nine different bins that represent mutually exclusive
nine discrete classes. The nine classes are: class 0 - nose
down (ND), class 1 - nose up (NU), class 2 - roll positive
(RP), class 3 - roll negative (RN), class 4 - ND and RP, class
5 - NU and RP, class 6 - ND and RN, class 7 - NU and RN,
and class 8 - level and steady-state (L). We used a threshold
value of α =±3 for all of our experiments reported in this pa-
per. For example, in case when both the roll and pitch values
are within an interval of −3 to +3, the state of the rotorcraft
was annotated to class 8, i.e., level or steady-state. Detailed
description of our class annotation scheme and data distribu-
tion is provided in Table 1 and Figure 1 presents representa-
tive sample images. Figure 3 presents the dataset distribution
(which includes training, validation and test sets) and it can
easily be seen that all nine classes are not equally represented;
such phenomenon is called class-imbalance. We addressed
the class-imbalance challenge by assigning higher weighs to
minority classes in the final optimization function of our algo-
rithms (Ref. 18). Figure 4 presents the class-wise weighs that
were calculated using the sklearn built-in function (Ref. 18)
(inspired by (Ref. 19)). To better demonstrate the explain-
ability of deep learning models, we generated two versions of
the dataset based on cockpit information in the frame. Fig-
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Figure 2. Cockpit subtraction: Sample images for nine different classes. Class labels, defined in Table 1, are indicated
under each image.

ure 1 presents sample images of the dataset, which contains
cockpit information, while Figure 2 presents samples images
of the dataset that do not contain cockpit information. In the
latter case, we masked out the cockpit to better understand
the inner-workings of the deep learning models and to explain
their decisions (more on this will be discussed in the sequel).

Figure 3. Data distribution of the 9 different classes. Class
labels are defined in Table 1

Experimental Setup

We used four different CNNs; VGG16, VGG19, ResNet50,
and Xception (Refs. 4–6, 21, 22) for both datasets (i.e., with
and without cockpit information in input image). During
training, all models were initialized with publicly available
ImageNet weights (Ref. 23). We trained VGG16 (Ref. 4) and
VGG19 (Ref. 4) using the transfer learning regime (Ref. 23).
The first 70% layers of both VGG16 and VGG19 were frozen
to the ImageNet weights, while the remaining 30% were up-

Figure 4. Weights of nine different classes. Class labels are
defined in Table 1

dated using our dataset. However, for the other two CNNs
models, i.e., ResNet50 and Xception, we did not use trans-
fer learning, i.e., all weights were initialized to ImageNet
weights (Refs. 5, 6) and updated during training phase. We
used early stopping criteria during our training, which uses the
Adam optimizer (Ref. 24), to prevent overfitting. All exper-
iments were performed using the Adam optimizer (Ref. 24)
with learning rate of 0.001. All other parameters related to
initialization, training, and optimization were kept to default
values, as discussed in (Ref. 24).

RESULTS AND DISCUSSION

To better investigate the applicability/feasibility of deep learn-
ing models for attitude prediction, we trained, validated, and
tested four different CNN architectures (VGG16, VGG19,
ResNet50, and Xception) on our rotorcraft dataset, under two

4



Figure 5. Normalized confusion matrices for 2 CNN architectures with cockpit information dataset, i.e., VGG16, VGG19.

Figure 6. Normalized confusion matrices for 2 CNN architectures with cockpit information dataset, i.e., ResNet50, and
Xception.

Figure 7. Normalized confusion matrices for 2 CNN architectures without (i.e. masked out) cockpit information dataset,
i.e., VGG16, VGG19.
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Figure 8. Normalized confusion matrices for 2 CNN architectures without (i.e. masked out) cockpit information dataset,
i.e., ResNet50, and Xception.

Table 1. Definition of attitude classes. We used a threshold
α = 3 and defined 9 discrete classes. Abbreviations used:
NU - nose up, ND - nose down, RP - roll positive; RN - roll
negative, and L - level or steady-state.

Class Description Pitch(P) Roll(R)
0 NU P > α −α ≤ R ≤+α

1 ND P <−α −α ≤ R ≤+α

2 RR −α ≤ P ≤+α R > α

3 RL −α ≤ P ≤+α R <−α

4 NU & RP P > α R > α

5 NU & RN P > α R <−α

6 ND & RP P <−α R > α

7 ND & RN P <−α R <−α

8 L −α ≤ P ≤+α −α ≤ R ≤+α

different versions of dataset i.e., with and without cockpit in-
formation. In the former case, we fed the complete frame,
including the whole cockpit image while in the latter case, we
masked out the cockpit region from the frame and left only the
outside view as input to the deep learning models. The core
purpose behind creating two versions of dataset and designing
separate experiments was to; First, understand discriminative
features in view (i.e., input frame) that the deep learning meth-
ods have based their decisions on. Second, it is important to
validate the reliability of such features from a human expert
point of view. In Tables 2 and 3, we provide a summary of
validation and test accuracies for all four models for datasets
with and without cockpit information, respectively.

We noted that VGG19 achieved the highest test accuracy, on
both with and without cockpit datasets, leading other models
by more than 1%. The test accuracy values of ResNet50 and
Xception architecture on bath datasets (i.e., with and without
cockpit) were below 90%. We also noted that both Xception
and ResNet50 architectures performed exceptionally well on
the validation datasets; however, these models could not gen-
eralize well to test datasets. We further noted models trained
on the dataset with cockpit information perform well as com-

pared to their counterparts (without cockpit). From human
expert point of view, i.e., helicopter pilots, the cockpit infor-
mation provides useful information that further aids the ma-
chine learning model to better distinguish/detect the horizon
curve.

In Figures 5 and 6, we present normalized confusion matrices
that present the class-wise accuracies for all four architectures
trained on the dataset with cockpit information. In Figures 7
and 8, we present normalized confusion matrices that present
the class-wise accuracies for all four architectures trained on
the dataset without cockpit information. A confusion matrix
expounds the accuracy metric and provides classification er-
rors for all classes separately and can identify class imbalance
issues. We noted that, in general, all architectures (VGG19,
VGG16, ResNet50, and Xception) had difficulty learning to
correctly discriminate ‘class 0 - nose down’ from ‘class 8 -
level and steady-state’. We used confusion matrices to study
the behavior of our CNN architectures as well as improve their
performance by collecting more data for the relevant minority
classes. Keeping in view the test accuracy and confusion ma-
trices, we recommend using the VGG19 architecture for the
attitude estimation task.

In Figures 9 and 10, we present explainability results using the
grad-CAM (Ref. 13) technique for several test images in day-
light as well as night settings, for cockpit and without cockpit
inputs, respectively. The first and third rows in both Figures 9
and 10 present grad-CAM overlays, respectively. The second
and fourth rows in Figures 9 and 10 present corresponding
input images, respectively. The red color in overlay images
represents a large contribution from these pixels to the predic-
tion, while the blue color represents a small contribution. In
our discussions with human experts, i.e., helicopter pilots, we
found that the only discriminative and reliable source of infor-
mation for predicting the attitude is the “natural horizon“. In
our experiments, we also observed that deep learning models,
in both with and without cockpit scenarios, also focus on the
horizon while predicting the attitude (note red areas in over-
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lay images). We believe that such visualizations could help in
establishing the reliability and trustworthiness in predictions
and also provide explainability of the trained neural network
models.

Table 2. Validation and test accuracy on the dataset with
cockpit information.

Model Validation Accuracy Test Accuracy
VGG19 94.2% 91.5%
VGG16 92.9% 90.4%
ResNet50 94.7% 88.1%
Xception 95.0% 88.0%

Table 3. Validation and test accuracy on the dataset with-
out cockpit information.

Model Validation Accuracy Test Accuracy
VGG19 94.3% 92.0%
VGG16 94.6% 90.3%
ResNet50 94.6% 86.6%
Xception 94.1% 86.4%

CONCLUSION AND FUTURE WORK

In this paper, we focused on developing deep learning al-
gorithms to estimate the attitude of a rotorcraft using flight
video data recorded with inexpensive cameras mounted in-
side the cockpit, continuously recording outside view through
the windshield. We used sensor data from the FDR to anno-
tate/label video datasets and later split it into training, valida-
tion, and testing sets for four different state-of-the-art CNN
architectures, i.e., VGG16, VGG19, ResNet50, and Xception.
We used class activation maps to visualize the discriminative
regions of the image that the model relied on to make its
prediction. We found that our trained deep learning models
also used the horizon curve as the most discriminative region
in the input image, just like a human expert, i.e., human pi-
lot. Our results demonstrate the applicability of reliable and
trustworthy deep learning models for aviation safety applica-
tions. In future research work, we will focus on proposing
deep learning algorithms for attitude prediction using the atti-
tude indicate gauges inside the cockpit of the S-76 helicopter.
The availability of such auxiliary prediction, which is based
on the cockpit gauge, would be important to consider, partic-
ularly in bad weather conditioning or bad outside visibility.
Further, we will cross-evaluate the predictive performance of
the models trained on an outside view (i.e., windshield) and
attitude indicator gauge (i.e., cockpit) for the attitude predic-
tion task. Such comparison will further develop reliability and
trustworthiness in deep learning predictions and will serve in
enhancing the deployment of AI systems in aviation safety.
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and P - predicted class.
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