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ABSTRACT 

This paper discusses a novel method for improving rotorcraft safety. A new algorithm is proposed for estimating the 
head position of helicopter pilots and copilots using onboard cockpit videos. Cockpit videos offer the ability for crash 
analysts or incident investigation to understand not only the aircraft state but also the pilot and copilot’s actions in a 
potentially unsafe situation. In addition, head pose information can also be used to improve the overall scanning 
techniques used by pilots or to research which technologies can assist the pilots in focusing more attention out of 
cockpit, rather than down at the instrument panel. Two algorithms were created to provide possible solutions to the 
problem of head pose estimation: a hybrid computer vision algorithm that utilizes deep learning based detectors, and 
a purely deep learning algorithm. The purely deep learning algorithm was able to correctly classify 91.49% of copilot 
head positions in a real-world flight video. 

 
INTRODUCTION 1  

The main objective of this work is to create an accurate head 
position estimation algorithm that is able to output the head 
positions of helicopter pilots and copilots from a supplied 
onboard cockpit video. The Federal Aviation Administration 
(FAA) continues to promote and highlight the importance of 
participating in aviation Flight Data Monitoring (FDM) 
programs to improve flight safety and operational efficiency. 
In addition, recorder safety was one of the topics on the 
agency’s Top 10 Most Wanted List of Safety Improvements 
in 2017-2018 (Ref. 1). The FAA, National Transportation 
Safety Board (NTSB), and the United States Helicopter 
Safety Team (USHST) as well as other industry partners are 
working together to implement a helicopter safety 
enhancement that promotes the use of flight data recorders 
(FDR) to reduce the fatal accident rate in rotorcraft 
operations. 

Although there is a need to integrate more FDRs into the 
rotorcraft community, certain obstacles still exist. The initial 
cost of FDRs can range from $9,000-$50,000 which does not 
include the cost to utilize them as part of an overall FDM 
program (Ref. 2). These costs alone play a significant role in 
preventing FDM programs from being adopted by small 
operators. On top of that, these devices can require technical 
expertise and special reading devices or software. Due to 
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those reasons, rotorcraft typically have a lower participation 
rate in FDM programs than other forms of aviation (i.e. 
commercial fixed-wing or Part 121 airline operations) (Ref. 
3). 

On the other hand, even small helicopter operators often have 
the financial means to purchase one or more off-the-shelf 
video cameras which can be mounted inside the cockpit. 
These cameras, when pointed at the instrument panel, offer an 
alternate method of collecting the same data as traditional 
FDRs by utilizing post-processing of cockpit videos. Onboard 
video data also offers several possibilities for improving 
rotorcraft safety such as flight replay and the ability to extract 
information from where the pilot and copilot were focusing 
their attention during critical phases of flight. There is also an 
increase in the crash survivability of the data being collected 
because video information can be stored remotely. 

This area of research also considers the obstacles faced when 
pilots transition from flying in Visual Meteorological 
Conditions (VMC) to Instrument Meteorological Conditions 
(IMC). VMC refers to clear visual scenarios where the pilot 
is able to fly by looking directly out the window and using 
visual references, while IMC refers to cloudy or obscure flight 
conditions where the pilot must fly using only the information 
presented on the instrument panel in front of them. Flying in 
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IMC sometimes results in loss of control due to phenomena 
such as spatial disorientation, and usually result in fatal 
accidents. These events can often be traced back to improper 
instrument flight rule (IFR) scanning techniques or attention 
tunneling where the pilot fixates on a particular instrument at 
the expense of other instruments offering needed information. 
The rate of this happening can be reduced however, with 
better pilot training and with the added use of technologies 
such as enhanced/synthetic vision and heads-up displays. 
Gathering information about where the pilots are looking 
during critical phases of flight can be crucial in improving 
overall rotorcraft safety through better training, and for 
researching which new techniques and technologies allow for 
them to focus more of their attention outside the cockpit, 
rather than down at the instrument panel. 

Motivation 

The motivation of this research is to create a low-cost method 
using a combination of computer vision and deep learning 
techniques to determine the head position of helicopter pilots 
and copilots given onboard cockpit videos. Even in cases 
where a helicopter is equipped with an FDR, an investigator 
may not know what the pilot was focusing on during the 
moments leading up to or during a crash or incident. Cockpit 
video offers the ability to understand not only the aircraft state 
but also the pilot and copilot’s actions in a potentially unsafe 
situation. The goal is to automate post-flight video processing 
and provide safety analysts or accident investigators with data 
on where a pilot was focused during any particular moment 
for any given flight. Admittedly, without the proper 
governance, this type of information could be used 
inappropriately by rotorcraft operators. However, the policies 
regarding the use of this information, while an important topic 
in its own regard, are outside the scope of this paper.  

Before the initial implementation of the head pose estimation 
algorithm, the problem of gaze estimation for pilots was 
considered. This estimation technique looks at the eyes of the 
test subject in the videos and is able to determine exactly 
where the subject is looking at any given time. Since the 
problem is to determine how often a pilot is looking in a 
certain direction, gaze estimation would provide a very 
accurate prediction of this information. However, it is 
commonly found that pilots wear sunglasses or tinted face 
shields during their flights, and for that reason the eyes of the 
pilots are very frequently occluded from the camera’s point of 
view. In addition, standard eye tracking cameras and 
technologies tend to fail during helicopter flight due to the 
excess vibration caused by the vehicle. As a substitute for 
gaze estimation, head pose estimation was selected as the next 
best choice for solving the problem at hand. While the exact 
location that the pilot is looking will be unknown due to the 
sunglasses, the general direction of gaze can be estimated 
using a head pose estimation technique. 

Head pose estimation is a well-researched computer vision 
topic and is a solved problem when it comes to dealing with 
clean, passport-type photos. However, the challenge of 

identifying the head position at extreme angles with added 
noise and excessive background information is still a topic of 
discussion in the computer vision community. In most test 
videos supplied by the FAA, the pilots were looking at 
extreme angles and wearing helmets, sunglasses, 
microphones and other equipment that obstructed the 
camera’s view of their face. Both a hybrid computer vision 
algorithm and a purely deep learning algorithm were created 
to classify the head positions of the pilots despite these 
additional obstacles. The computer vision algorithm 
presented in this paper classifies the head positions of the 
pilots into four main classes: (0) straight out the window, (1) 
down at the instrument panel, (2) out the window to the side, 
and (3) none of the above. The deep learning algorithm is 
capable of classifying the head positions into one of nine 
classes, allowing for a more fine-tuned head pose estimation: 
(0) Down, (1) Down_Left, (2) Down_Right, (3) Left, (4) 
Right, (5) Straight, (6) Up, (7) Up_Left, and (8) Up_Right. 
This information will be used for incident/crash analysis, 
future vision systems research at the FAA, and for improving 
the overall safety of rotorcraft operations. 

Previous Work 

There are a number of head pose estimation algorithms that 
exist already, and many of them deal specifically with 
passport-type photos, meaning the head in the image is 
frontal-facing and has limited noise or occlusion (see Ref. 4 
for a survey). These methods commonly use a combination of 
2D or 3D image points, facial feature extraction, tracking, or 
geometric approaches to solve the problem of head pose 
estimation.  

In Ref. 5, a fusion method to head pose estimation is 
proposed. This method uses a frame-independent decision 
tree based estimator and a person-specific template tracker. A 
Kalman filter combines the estimations from both the 
estimator and tracker in real time to get accurate results using 
3D depth images as well as 2D RGB information. By utilizing 
the 3D information from the depth camera, as well as the 
camera’s intrinsic parameters, it is possible to recreate the 3D 
scene of the test subject’s head position and train a head pose 
estimator based on point clouds. Also, the Dali3DHP dataset, 
was generated which has both depth and RGB information 
corresponding to each image. This method requires a person-
specific template tracker to be trained beforehand, as well as 
depth camera information which is not available in the cockpit 
videos supplied by the FAA. 

A semi-automatic method for facial landmark annotation is 
discussed in Ref. 6. Multiple, well-known facial databases 
including MutiPIE, XM2VTS, AR, and FRGC v.2 are used to 
train Active Orientation Models (AOMs) which are a type of 
deformable model used for model-based face analysis. The 
semi-automation comes from automatically applying facial 
landmarks from a known subset to an unknown subset and 
then manually classifying the fittings as “good” or “bad”. The 
results in the paper are said to be so accurate that they can be 
used as ground truth. It is important to note that 87% of the 
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600 test images discussed in this paper have subjects with a 
horizontal pose variation angle between ±15° and the most 
‘extreme’ angle considered is ±30°. Also, 70% of the test 
images are non-occluded images. There are very few, if any, 
annotated databases that consider truly extreme angles greater 
than ±30°. While this method is a feasible solution to 
annotating large datasets of frontal faces, the case of head 
poses at extreme angles is not considered. 

An elegant a robust way to determine head pose by training a 
multi-loss convolutional neural network to predict Euler 
angles directly from image intensities is discussed in Ref. 7. 
This method emphasizes the fact that it does not require facial 
landmarks in order to accurately predict head pose. The model 
presented uses a prebuilt network architecture as a base but 
includes a multi-loss output approach which calculates a 
separate loss for each Euler angle (pitch, yaw, and roll). This 
allows for more fine-grained tuning of head poses to be 
obtained. While, this method does predict head pose angles in 
the presence of noise, a notable decrease in performance 
occurs in the presence of excessive background noise in the 
image. Without an efficient way to perform face detection or 
to crop most background information out of the FAA video 
data, this specific deep learning approach for predicting head 
pose is not feasible for the problem space discussed in this 
paper.  

DATASETS  
Four datasets were used throughout the course of this 
research. These datasets were used both for evaluation and 
validation of certain aspects of the hybrid algorithm, and for 
training and evaluating the deep learning models. 

Head Pose Image Database 

The first dataset is a publicly available benchmark dataset that 
was used to validate the accuracy of the hybrid algorithm. 
This dataset consists of fifteen subjects with ninety-three 
images corresponding to each subject for a total of 2790 
monocular face images (Ref 8).  

 

Figure 1. Sample images from the Head Pose Image 
Database. 

Each image in the dataset has a corresponding pitch and yaw 
angle in degrees that serves as the ground truth for the image. 
The (vertical) pitch angles range from ±60° and the 
(horizontal) yaw angles range from ±90°. 

Synthetic Dataset 

The second dataset was created manually and consists of a 
series of synthetic test videos which display a subject wearing 
sunglasses and another with the subject not wearing 
sunglasses. This was done in order to simulate the conditions 
of the helicopter pilot test videos. This dataset was used 
heavily for the validation and experimentation of different 
aspects of the hybrid algorithm including face detection and 
facial landmark annotation. 

  

Figure 2. Sample images from the Synthetic Dataset. 

FAA Flight Dataset 

The third dataset was created using one of the real world flight 
videos provided by the FAA. This video consisted of 30976 
copilot images and the first 10,000 images were manually 
labeled so a quantifiable accuracy could be calculated on both 
the hybrid and deep learning algorithms. Each image was 
given a class label between zero and eight: (0) Down, (1) 
Down_Left, (2) Down_Right, (3) Left, (4) Right, (5) Straight, 
(6) Up, (7) Up_Left, and (8) Up_Right. The naming 
convention was kept alphabetical and these labels are from 
the point of view of the camera, not the point of view of the 
copilot.  

 

Figure 3. Sample images from the FAA Flight Dataset. 

It is important to note that because the data was labeled 
manually, the ground truth is somewhat subjective. This 
stems from the fact that there is no way to set explicit 
boundaries to determine the exact time when a subject’s head 
belongs to each class. Therefore, this dataset was created 
more to establish proof-of-concepts of the configured 
algorithms and to compare the results of both methods, rather 
than to quantify the true overall accuracy of the algorithm.  
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FAA Simulator Dataset 

The final dataset was created after the completion of the 
hybrid head pose algorithm, and was used to train the deep 
learning models. The creation of this data was an extremely 
important step in this research and required a lot of fine tuning 
to ensure that a large amount of data could be collected 
quickly, while also making sure that the data simulated the 
real head positions of helicopter pilots during an actual flight. 
This data was created with the same nine classes from the 
FAA Flight Dataset. 

Table 1. Class labels for the FAA Simulator Dataset. 

Class Name  Label Number 
Down  0 
Down_Left  1 
Down_Right  2 
Left  3 
Right  4 
Straight  5 
Up  6 
Up_Left  7 
Up_Right  8 

Once the number of classes were defined, four test subjects of 
various heights, genders, and ethnicities were asked to sit in 
the pilot and copilot seats of the FAA’s Sikorsky S76-D 
simulator located at the William J. Hughes Technical Center 
in Egg Harbor Township, NJ. 

 

Figure 4. Sikorsky S76D simulator used for collecting 
training data. 

An Axis S2016 NVR was used to record constant video of the 
subjects during each of the test runs. Each run consisted of the 
subject holding their head in the position of one of the nine 
classes for a total of one minute each. Each subject did not 
need to sit in both the pilot seat and copilot seat because the 
onboard cameras were positioned in such a way that the pilot 
video was almost an exact mirror of the copilot video when 
flipped on the y-axis. 

 

Figure 5a. Camera mounting positions for collecting data 
for the FAA Simulator Dataset. The box on the left was 
used to collect copilot data and the box on the right was 

used to collect pilot data. 

 

Figure 5b. The views from both cameras on the pilot side 
of the cockpit (left) and the copilot side (right).  

In Figure 5a, the red box (left) shows the camera’s mounting 
position for the copilot and the yellow box (right) shows the 
camera’s mounting position for the pilot. Figure 5b shows the 
view from each of the cameras, separated by the bold red line 
in the middle. This configuration was done so that data 
augmentation could be used to create more training images 
without each subject having to actually switch sets. The pilot 
images were flipped over the y-axis and then used as copilot 
images, and vice versa. This allowed for double the amount 
of data to be collected in a shorter amount of time.  

A total of six test runs were conducted for each subject to 
better simulate the various equipment that pilot’s often wear 
during flights. The equipment that was worn during each of 
the test runs are shown in Table 2. 

Table 2. Equipment worn during each test run while 
collecting data for the FAA Simulator Dataset. 

Test Run  Equipment 
1  Headset Only 
2  Headset and Sunglasses 
3  Helmet Only 
4  Helmet and Sunglasses 
5  Helmet with Clear Visor 
6  Helmet with Dark Visor 
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An image from each of these test runs is displayed in Figure 
6. 

  

  

  

Figure 6. Sample images demonstrating the equipment 
worn by the test subjects for each test run when 
collecting data for the FAA Simulator Dataset.  

A set of constraints were defined to limit the valid regions that 
a test subject could hold their head for each head pose class. 
Two diagrams (Figures 7a and 7b) show the valid regions for 
each vertical and horizontal movement of the test subjects.  

In each view, the filled arrow shows the direction that the 
subjects head is facing and the curved line is the windshield 
of the helicopter. The horizontal movements of the head can 
be observed by looking at the top down view in Figure 7a. 
The dashed lines show the valid area that a test subject was 
allowed to look in each of the horizontal directions. The idea 
was to leave a buffer around the boundary between classes as 
much as possible, so that there would be a noticeable 
difference between the data that belonged to each of the nine 
classes. 

The side view displayed in Figure 7b shows the vertical 
movements of the test subjects. After watching some real 
flight videos, it was observed that the difference between a 
pilot looking up, down, and straight is actually quite subtle, 
meaning they don’t often look straight up or straight down at 
any point during the flight. For that reason, the test subjects 
were given specific points to look at to simulate real world 
flight data. When the subjects were looking down they were 
asked to look just at the bottom of the instrument panel and 
when they were looking up, they were asked to look directly 
at the intersection of the top of the windshield and the cockpit 
interior. These added constraints were vital to include when 
collecting the data because the deep learning networks needed 
to be trained on data that would simulate the real world test 
videos. 

 

 

     

Figure 7a. Test subject constraints for horizontal head 
positions during data collection process. The filled in 

arrow shows the direction the subject is facing and the 
curved line is the helicopter windshield. The striped 

regions are the valid head position for a subject looking 
left, straight, and right. 

 

Figure 7b. Test subject constraints for vertical head 
positions during data collection process. The filled in 

arrow shows the direction the subject is facing and the 
curved line is the helicopter windshield. The striped 

regions are the valid head position for a subject looking 
up, straight, and down. 

Once the test videos were created, the AxisFilePlayer 
software was used to crop the videos, convert them to images, 
and organize them into the proper directories. After the videos 
were organized accordingly, the data distribution was 
observed. The distribution for the pilot and copilot were 
exactly the same because the videos were cropped at exactly 
the same times. Table 3 displays the data distribution for both 
the pilot and copilot. 

 

 

 



 6 

Table 3. Data distribution from collected simulator 
images. 

Class Label  Total Number of Images 
0  21853 
1  22091 
2  21990 
3  22260 
4  22181 
5  21507 
6  22079 
7  21961 
8  22028 

This dataset is sufficiently large with approximately 21,000 
images per class, and it is very evenly distributed. This data 
was used for the training and testing of each of the deep 
learning models presented in this paper. 

HYBRID HEAD POSE ESTIMATION 
ALGORITHM  

At the start of this research, a deep learning approach for 
making accurate predictions of the pilot’s head position was 
considered. However, there were no labeled images of pilot’s 
head positions available, and therefore a deep learning 
network could not be trained. Due to the lack of labeled 
ground truth data, a combination of classical computer vision 
techniques and deep learning based detectors, were originally 
selected as the best option to solve the problem of head pose 
estimation. The hybrid algorithm works with three main steps: 
(1) face detection, (2) facial landmark annotation, and (3) 
angle calculation for classification. The algorithm is 
performed on each frame of the supplied videos 
independently of one another and serves to classify images 
into one of four  classes: (0) straight out the window, (1) down 
at the instrument panel, (2) out the window to the side, and 
(3) none of the above.  

Face Detection 

The first step of the algorithm is to locate the pilot’s face in 
the image and draw a bounding box around it. To accomplish 
this, two face detectors were considered. The first detector 
uses a Histogram of Oriented Gradients (HoG) method to 
perform face detection and the second detector was trained 
using deep learning methods. The synthetic test videos were 
used to see which detector performed best on clean face 
images, and on noisier face images where the subject is 
wearing sunglasses. It was found that the deep learning 
detector accurately detected a face in all of the images from 
the clean synthetic video, and 98% of the images from the 
synthetic video with sunglasses. The HoG detector labelled 
much fewer frames than the deep learning based detector with 
an accuracy of 94% on the clean video and 70% on the video 
with sunglasses. Faces that were correctly detected by the 
deep learning based detector are displayed in Figure 8 below. 

 

Figure 8. Correctly detected faces from the Synthetic 
Dataset using the deep learning face detector. 

To further confirm that the deep learning detector was the best 
choice moving forward, the FAA Flight Dataset was 
considered. After providing each face detector with all images 
from the real world dataset, it was recorded that the HoG 
detector was able to detect 26.02% of the total faces whereas 
the deep learning detector detected 51.13% of the total faces. 
These accuracies are much lower than what was observed on 
the synthetic database due to the increase in background 
information, as well as the added noise of the pilot’s helmet, 
microphone, and other equipment.  

In an effort to increase the total number of faces detected, the 
frames were manually cropped to remove part of the excess 
background in the images. Due to the small cockpit space and 
limited mobility of pilots, the cropped area could be 
determined manually so that some background could be 
removed but the copilot never left the cropped region. After 
all frames were cropped, they were again supplied to the two 
face detectors. The HoG detector performed about the same, 
detecting 25.54% of the total faces and the deep learning 
detector was able to detect more faces at 75.20%. From these 
results, it is clear that the deep learning based detector is much 
more accurate and robust to noise than the HoG detector. 
From this point forward, only the deep learning based face 
detector was used. 

A closer examination of the missed frames was conducted to 
better understand why faces were being missed by the 
detector. The most common case is when the copilot has 
turned their head so far to the side that their helmet is blocking 
their face from view. The second case occurs when occlusion 
causes the face to no longer resemble a face due to the added 
noise from the helmet, microphone, or other equipment. This 
can happen when the copilot is at an awkward angle or if their 
hands are blocking a portion of their face. To a human, it may 
be easy to identify a face in the presence of noise but to a 
computer that only sees an image as pixel values, it is much 
more difficult. 
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Figure 9. Faces that were not detected by the deep 
learning based face detector due to occlusion. 

Partially occluded images, such as the image on the right side 
of Figure 9, are the most common cause for missed 
predictions when a face is actually present in the frame. On 
the other hand, it is important to remember that in a real world 
application, the detector will always miss video frames 
similar to the image on the left of Figure 9, where a helmet is 
blocking the face of the pilot or copilot.  

An added benefit of the deep learning detector is that each 
detection comes with an accompanying confidence value. 
This value describes how sure the detector is that the detection 
is actually a face. This confidence metric is a valuable 
addition to the algorithm when a minimum confidence 
threshold is defined. This allows for weak detections or false 
positives to be eliminated if they do not meet the minimum 
threshold value.  

After manually watching the real world flight video with the 
face detection overlay, it was observed that there was one 
major cause of false detection where a very small bounding 
box is placed incorrectly in the image. These false detections 
occur almost exclusively when the copilot is looking out the 
window to the side. Two examples of this are shown in Figure 
10. 

     

Figure 10. Two false detections by the deep learning 
based face detector where a small bounding box is placed 

in the background of the image. 

These false detections can be easily removed by checking the 
diagonal distance of the predicted bounding box. Since the 
pilots are confined to a relatively small space, they cannot 
move enough that the size of their face’s bounding box will 
change drastically from frame to frame. Therefore, the 
algorithm checks that the diagonal distance of the bounding 
box is greater than a manually defined value.  

After the inspection of the false detections was conducted, 
various confidence thresholds were tested using the FAA 
Flight Dataset to find the optimal threshold value. The total 
number of faces detected as well as the total number of 
misdetections based on diagonal distance were recorded. 
Table 4 summarizes the results with confidence values 
ranging from 90% to 30% in increments of 10%.  

Table 4. Confidence threshold test results. 

Confidence 
Threshold 

Total 
Frames 

with 
Face 

Total 
False 

Positives 

Total 
Frames 

(%) 

False 
Positives 

(%) 

90% 18455 0 59.57% 0% 
80% 20587 8 66.46% 0.03% 
70% 21729 34 70.14% 0.15% 
60% 22516 102 72.68% 0.45% 
50% 23294 164 75.20% 0.70% 
40% 24035 256 77.59% 1.06% 
30% 24888 391 80.34% 1.57% 

As the confidence threshold decreases, the total number of 
frames with faces detected and the total number of false 
detections both increase. The optimal threshold value was 
selected to be 40% because it detects the largest amount of 
faces correctly while only having about a 1% misdetection 
rate. Figure 11 shows a few examples of frames where the 
face was detected accurately even at extreme angles and with 
some occlusion. 

    

    

Figure 11. Correctly detected faces at extreme angles and 
with some occlusion. 

This first step of face detection is the most important because 
the position of the bounding box is required for the next two 
steps of the algorithm. However, a method for estimating the 
head position when no face is detected is discussed in a future 
section. 
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Facial Landmark Annotation 

The second step of the algorithm looks within the bounding 
box provided by the previous step and annotates important 
facial landmarks on the face. The facial landmark annotation 
tool (Ref. 6) that was selected for this step will always output 
68 x-y coordinate pairs on the face which outline the jawline, 
eyes, eyebrows, nose, and mouth (Figure 12). 

 

Figure 12. Layout of 68 facial landmark annotations. 

Although there are 68 x-y pairs, the algorithm only considers 
six: the tip of the noise and chin, the two outside corners of 
the eyes, and the two outside corners of the mouth. These 
points were selected because they are sufficient in 
approximating the basic geometry of a face.  

Figure 13 shows a few examples of correctly placed facial 
landmark annotations on real world copilot images.  

    

Figure 13. Properly placed facial landmark annotations. 

The results are quite impressive because the facial landmarks 
are extremely robust to the added noise from the sunglasses 
and microphone, as well as occlusion from the copilot’s hand. 
At frontal angles, these points are consistently and accurately 
placed on the copilot’s face even with added noise. However, 
at more extreme angles, the facial landmarks are often skewed 
or wrong entirely as demonstrated in Figure 14.  

    

Figure 14. Misplaced facial landmark annotations. 

Because this annotation tool was trained primarily on frontal 
faces, it is not a surprise that the facial landmarks are placed 
incorrectly when the copilot turns to extreme angles. 
However, it is found that in most cases, the annotations are 
only slightly off and still give a reasonable estimate of the 
copilot’s head position. Because the goal of the algorithm is 
not labelling these points exactly, but rather, estimating the 
direction of the head, certain compensations can be made for 
poorly placed facial landmarks. This step of the algorithm was 
identified as one of the biggest limitations due to its inability 
to accurately place facial landmark annotations at extreme 
angles. 

Angle Calculations and Classification 

Once the positions of the facial landmarks are known, the next 
step is to use the pinhole camera model to obtain a rotation 
matrix and Euler angles that define the rotation of the pilot’s 
head. In order to do this, a set of 3D reference points was 
manually defined from Ref. 9, such that they roughly model a 
head looking straight forward in 3D space. The reference 
model consists of the same six points that were annotated in 
the previous step: the tip of the nose and chin, the two outside 
corners of the eyes, and the two outside corners of the mouth. 
The 3D reference model and an example of 2D image points 
are displayed in Figure 15.  

 

Figure 15. 3D reference model points (left) in comparison 
to 2D annotated points (right). 

In order to obtain a rotation matrix using the 3D reference 
model and the 2D annotated points, the pinhole camera model 
is used. This model is commonly used in computer vision and 
it defines a mathematical relationship between the points in 
the 3D world coordinate system and their projection onto the 
2D image plane of a pinhole camera. In simple terms, it is a 
method for approximating the mapping of points from a 3D 
scene, to points in a 2D image (Ref. 10).  

Once the 3D reference points were defined, and the 2D image 
points are annotated from the previous step of the algorithm, 
a rotation matrix could be calculated. This rotation matrix 
contains all the information needed to calculate a pitch (α), 
yaw (β), and roll (γ) angle of the head. Pitch is defined as a 
vertical movement, yaw is defined as a horizontal movement, 
and roll is defined as a tilt of the head to either side.  
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Given a 3x3 rotation matrix, the formulas defined in Ref. 11 
are used to calculate the angles of pitch, yaw, and roll. For the 
purpose of classification, only the pitch and yaw angles were 
considered for labeling any given head position in a video 
frame. After experimentation, it was concluded that the roll 
angle does not play a vital part in defining the direction a head 
is looking, and for that reason, it is omitted from the 
classification step of the algorithm. Each frame is applied a 
vertical or horizontal label depending on the pitch and yaw 
angles respectively. There a total of nine possible 
combinations of pitch and yaw labels and the threshold values 
for applying each label are shown in Table 5 below. 

Table 5. Threshold values for applying pitch and 
yaw labels. 

Label Pitch (α) Yaw (β) 
Up α > 10° - 
Down α < -10° - 
Straight -10° < α < 10° -10° < β < 10° 
Left - β < -10° 
Right - β > 10° 

These values were determined by manually watching the real 
world copilot video and deciding when the copilot was 
considered to be looking in each direction. The threshold 
values will need to be manually adjusted depending on the 
conditions of the test video.  

The combination of pitch and yaw label are used to classify 
the head position of the pilot into one of four classes for the 
hybrid algorithm: (0) Straight of the window, (1) Down at the 
instrument panel, (2) Out the window to the side, and (3) 
None of the above. The nine classes from the FAA Flight 
Dataset were organized into these four classes as given in 
Table 6.  

Table 6. Combination of labels from the FAA 
Simulator Dataset that were used to classify head 

positions into the main classes of interest for the hybrid 
algorithm. 

Class Label Combinations 
(Pitch/Yaw) 

0: Straight out the window (3) Left 
(5) Straight 
 

1: Down at the instrument panel (0) Down 
(1) Down_Left 
 

2: Out the window to the side (2) Down_Right 
(4) Right 
(8) Up_Right 
 

3: None of the above (6) Up 
(7) Up_Left 

The final output of the algorithm is an output video which has 
the class printed in the bottom left corner of the frame and a 
.csv file that contains the calculated head position of each 

frame. The algorithm has the option to display the face 
detection bounding boxes, facial landmarks, and angles if 
desired but will always output the class labels regardless of 
these other displays. In addition to the output video and output 
.csv file, the algorithm will also output the total number of 
frames that were labeled into each of the four classes.  

Hybrid Compensation Method 

As stated previously, the algorithm cannot estimate head pose 
angles if it doesn’t first detect a face in the image. This limits 
the amount of correct predictions primarily in class 2: out the 
window to the side. In a real world scenario the copilot’s 
helmet is almost always blocking their face from view when 
they are looking out the window, and therefore a face will not 
be detected. 

After manually looking at the frames that had no face 
detected, it was observed that most of them were when the 
subject was looking out the window. Since the majority of 
missed faces do happen when the subject is looking out the 
window to the side, an assumption was made that if a face is 
not detected, the subject is most likely looking in that 
direction. The frame can then be labeled as belonging to class 
2 even though a face is not present. 

In order to prevent this assumption from also labelling cases 
of occlusion, each frame where no face is detected will check 
the previous frame’s bounding box location to ensure that it 
is close to the window side of the cockpit. If the frame prior 
to no face being detected is close enough to the window, it is 
assumed that the subject continued to turn their head farther 
to the side to look out the window. The point that is 
considered “close enough” must be defined manually and will 
be dependent on the position of the camera in the cockpit. 

DEEP LEARNING ALGORITHM  
The hybrid head pose estimation algorithm works well for 
frontal facing poses and certain compensations were made to 
increase the accuracy at more extreme angles. However, this 
method does rely on a certain number of assumptions and 
approximations and will require a decent amount of 
calibration each time the conditions change. For that reason, 
it was decided that a ground truth dataset would be created 
and a purely deep learning approach would be used. This 
model would require less calibration in different scenarios 
and would be able to accurately predict head positions 
regardless of whether a face is present in the frame.  
 
The goal of this deep learning algorithm is to create a fully 
automated algorithm, where the only input is the test video. 
The algorithm therefore should be able to tell automatically if 
the video is of a pilot or copilot, and be able to output the 
appropriate head pose class. 



 10 

Dataset Organization 

The process of collecting and labelling the data need to train 
a deep learning network has already been discussed but it is 
important to discuss the data distribution and data splits. 

The entire labelled dataset is generally split into a training set, 
validation set, and test set. The training set is always the 
largest and can range anywhere from 60-98% of the total 
amount of labelled data. This data is used to help the network 
learn the optimal weights and biases needed to map the inputs 
to the outputs (Ref. 12). The validation and test sets are split 
evenly, based on the remaining percentage of labeled data that 
was not used in the training set. The validation set is passed 
through the network at the end of each forward pass during 
the training process to help measure how well the network is 
generalizing to an unknown dataset. The test set is used to 
evaluate the network’s overall performance after training is 
complete. The network does not actually learn and update its 
parameters based on the validation and test sets, but these sets 
do provide important information on how the network will 
perform in real world scenarios after training.  

It is important that the data be distributed evenly as well. In a 
multi-class problem, the number of labelled examples should 
be similar across all classes. The validation and test sets must 
also be of the same distribution as the training set. Without 
the proper organization of the labelled data, any network will 
be unable to produce accurate results. 

From the total data collected, there were approximately 
21,000 images in each of the nine classes, totaling 189,000 for 
the pilot and the same 189,000 images flipped over the y-axis 
for the copilot. A total of eight datasets were created by 
splitting the 189,000 images into four groups for the pilot and 
four groups for the copilot. A ninth dataset was created to 
determine if a video was on the pilot side or the copilot side 
of the cockpit. 

The first grouping of data was created as the baseline dataset 
and consisted of a combination of helmet and headset images 
(with sunglasses, visors, etc.). However, after closer 
inspection of the data, it was a possible concern that the 
headset images and the helmet images that belonged to the 
same class might confuse the network during training, 
specifically when the pilot is looking out the window. This 
concept is demonstrated in Figure 16 below.  

 

Figure 16. Variations between headset and helmet 
images within the same class.  

For this reason, two more groups of data were created: one 
that contained nine classes but only images of the pilot/copilot 
with a headset on, and another that contained nine classes but 
only images of the pilot/copilot with a helmet on. The point 
of separating the data into these two groups was to increase 
the overall accuracy of the algorithm especially in the case 
where the pilot/copilot is looking out the window. Due to the 
limited amount of labeled data at the time of this research, 
these separate helmet/headset datasets have the potential to 
offer a more accurate prediction than the combined dataset. In 
addition, having one combined prediction and one 
headset/helmet prediction also adds some redundancy to the 
algorithm and can help analysts or interpreters to identify 
misclassifications if they see a significant difference between 
the two predictions. 

Additionally, a two class dataset was created to identify the 
headgear that the pilot/copilot is wearing in the test videos. 
This dataset has two classes where the first class consists of 
headset images and the second class contains helmet images. 
The same images from all nine classes in the previous datasets 
were reused but reorganized into these two new classes. All 
the headset images were used totaling 63,000 images in class 
0, and this number was matched with helmet images in class 
1 to ensure an even data distribution. The images in this 
dataset were selected at random from all available helmet 
images belonging to all nine classes.  
 
Finally, a two class dataset was created to identify which side 
of the cockpit the video was taking place. This dataset was 
created to further automate the video processing step of the 
algorithm. 

Each dataset was split into a training/validation/test split 
using a distribution of 90/5/5 respectively. A summary of the 
datasets and approximate distributions are provided in Table 
7. The numbers listed are for the pilot datasets but the 
numbers will be identical for the copilot datasets. 

Table 7. Summary of datasets used in the deep 
learning algorithm. 

Dataset Name 
(Classes) 

Training 
Images per Class 

Test/Validation 
Images per Class 

PCombined (9) 19,800 1,100 
PHeadset (9) 6,660 370 
PHelmet (9) 13,140 730 
PClassifier (2) 59,742 3,319 
HelicopterSide (2) 30,000 1,500 

Model Selection and Hyperparameter Tuning 

The challenge of any deep learning approach is that the 
hyperparameter values such as learning rate, dropout rate, and 
pooling that will produce a viable solution are almost always 
unknown. On top of this, it is also difficult to know what 
network architecture will work best given the data available. 
If the data is very complex, the network needs to be deep 
enough to learn complex features, but if the data is simpler, a 
deep network may cause overfitting. In order to tune the 
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hyperparameters and to figure out which network architecture 
will work best for the task of head pose estimation, multiple 
network architectures were trained with different 
combinations of hyperparameters in order to explore a variety 
of possible solutions.  
 
The coding framework that was used for the training and 
evaluating process was Keras. This framework provides users 
with Keras Applications which allow for the easy 
implementation of preconfigured network architectures. 
There are a wide variety of network architectures that are 
available in Keras Applications and seven of them were 
considered in the initial testing phase of this research. The 
architectures include: ResNet50, VGG16, VGG19, 
InceptionV3, Xception, InceptionResNetV2, and 
DenseNet121. An output layer was added to each of these 
networks to ensure that the output of the network had the 
correct number of classes for the dataset being used.  
 

Alongside different network architectures, different 
combinations of hyperparameters were used. Table 8 below 
shows the possible values of each hyperparameter. The 
pooling in this table refers to the pooling applied to the last 
layer only. 

Table 8. Selected hyperparameter values that were 
considered for model training. 

Learning Rate Dropout Rate Pooling 
0.0009 0.5 None 
0.005 0.25 Average 
0.001 0.1  
0.01 0  

 
The first dataset that was considered for training was the 
PHelmet_9Class dataset. This nine class network consisted of 
pilot helmet images only and was selected as the dataset for 
initial testing for a few reasons. First, it was smaller than the 
full dataset, allowing for multiple models to be trained 
quickly, and second, the images in this dataset are 
generalizable to the images in the other eight datasets. For 
each of the seven network architectures listed above, a total 
of eight models were trained with different hyperparameter 
combinations. The initial results from these 56 trained models 
were used to narrow down the search for well-performing 
combinations of architecture and hyperparameters. 
 
In order to evaluate each of the models, the model weights 
and network architectures were saved after each training 
session. The architectures and weights were then used to get 
a head pose prediction for each image in the test set. The 
networks did not see these test images at any time during the 
training process so the testing accuracies represent the 
generalizability of the model on unknown data. The 
predictions for each image were recorded and aligned in a 
confusion matrix so the accuracy of each class could be 
observed.  

A confusion matrix is a representation of how well a deep 
learning model is performing. An example is shown in Figure 
17. 

 

Figure 17. Sample confusion matrix. 

Each block of a confusion matrix represents how many test 
images from a specific class were classified into each of the 
nine classes. For example, the top row of the confusion matrix 
in Figure 17 represents all the test images from class 0, and 
the columns represent the output predictions of the model. 
The blocks in the first row show that 62% of the test images 
belonging to class 0, were correctly classified as class 0. 
However, 37% of the test images from class 0 were classified 
as class 1, and 1% were also classified as class 2 and 4. 
Looking at the second row from the top, it shows that 100% 
of the test images from class 1 were correctly classified as 
class 1. 

A model that is 100% accurate on the test set should ideally 
have a confusion matrix with a diagonal of 1’s going from the 
top left corner to the bottom right corner. The total accuracy 
of the model is calculated by taking the average of all the 
diagonal blocks in the confusion matrix, because these blocks 
represent correct predictions in the correct class. 

The confusion matrices for all 56 models trained on the 
PHelmet_9Class dataset were observed in order to gain more 
information on which architectures performed well on the 
data and which combination of hyperparameters 
outperformed others. The architecture, learning rate, dropout 
rate, and pooling for the best performing models were 
recorded along with the overall accuracy of each model on the 
test set. 

From the initial results it was clear that the networks 
performed best with a relatively small learning rate and at 
least some percentage of dropout. For that reason, the dropout 
rate of 0 and the learning rate of 0.01 were removed from 
testing in the future. The most promising results were 
obtained in most cases using a learning rate of 0.0009 and a 
dropout rate of 0.5, with average pooling and no pooling both 
working in some cases. It was also observed that the VGG16 
and VGG19 architectures produced poor results regardless of 
the hyperparameters.  
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For the remaining eight datasets, the Xception, InceptionV3, 
and ResNet50 architectures were considered. These 
architectures were selected because they each have their own 
unique aspects to them whether it is using residual blocks 
(Ref. 13), inception modules (Ref. 14), or a combination of 
both (Ref. 15). By narrowing down the architectures and 
hyperparameter combinations moving forward, the number of 
models trained for each dataset was greatly reduced from 56 
models to 18 models. 
 
Once the number of networks was reduced, the 18 different 
models were trained on each of the four copilot datasets. The 
copilot datasets were considered next in order to verify that 
the hyperparameters and architectures that produced good 
results on the pilot helmet dataset also produced good results 
on the copilot datasets. The results and overall accuracies of 
the 18 models were recorded for each of the copilot datasets 
and the model with the best overall accuracy was highlighted.  
 
After the copilot models were trained, the remaining pilot 
models and the helicopter side model were trained. Rather 
than training 18 networks per pilot dataset, only one or two 
networks were trained using the combination of architecture 
and hyperparameters that produced the best results on the 
corresponding copilot dataset. This assumption was made 
because the pilot images are similar to the copilot images 
except that they are flipped over the y-axis. The best results 
from the copilot classifier were used to train the helicopter 
side model. 
Final Algorithm Structure 

Once there was a working model for each of the nine datasets, 
the final structure of the algorithm was designed (Figure 18). 
Each frame of the input video passes through a total of four 
networks, and the predictions of each frame are performed 
independently of one another. 

 

Figure 18. Deep learning algorithm structure. 

The input image will first pass through the helicopter side 
model to determine if the video is of a pilot or a copilot. 
Depending on that prediction, the image will then be given to 
both the combined model and the headgear classifier model. 
The output from the headgear classifier will then determine if 
the image will be given to the headset model or helmet model. 
Each image will have an accompanying helicopter side 
prediction, combined prediction, classifier prediction, and 
either a headset or helmet prediction.  

 
The final output of the deep learning algorithm is an output 
video and an accompanying .csv file. All four predictions for 
each frame will be printed on the output video and these four 
predictions will be saved to a .csv file with its appropriate time 
stamp and frame number. A summary of the total number of 
frames classified into each class is also included at the bottom 
of the .csv file. 

Up to this point all classes were labeled from the point of view 
of the camera. However, it is known that the actual direction 
of the head pose should be from the point of view of the 
pilot/copilot. For that reason, all labeled data for the training 
and testing of the networks will remain from the camera’s 
point of view, but the display on the output video and the 
predictions in the .csv file are changed to be from the 
pilot/copilot’s point of view. 

Generalizing to a Real World Dataset 

The models discussed in the previous section were trained on 
simulator data only and no real flight data was included. That 
being said, these simulator models did not perform well on 
the images from the FAA Flight Dataset because of the 
difference between the two sets of images. This difference is 
displayed in Figure 19. 

  

Figure 19. Simulator data (left) compared to real flight 
data (right). 

Although the camera angle may not look much different to the 
human eye, remember that a computer only sees an image as 
pixel values. This means that any change of background, 
average pixel color, or camera angle can drastically affect the 
ability of the model to provide accurate predictions.  
 
Since this algorithm will be used for real flight video data and 
not just simulator data, it is important that the models 
generalize to new cockpits, camera angles, or testing 
conditions. In order to generalize to more situations, more 
variations in the training data are required. The simulator data 
must be used at this stage of the research because labeled head 
pose data is limited, however future training data variations 
should include slight camera angle adjustments, different 
cockpit interiors, different pilots/copilots, different 
headgear/equipment, and different flight scenarios such as 
daytime or nighttime flights. 
 
To demonstrate the process of generalizing the models to a set 
of real world data, images from the real world copilot video 
were labelled manually and included in the training data along 
with the simulator images. From the thirty minute test video, 
the first ten minutes were set aside for final testing, and the 
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images from the second twenty minutes were manually 
labeled into each of the nine classes. The total data 
distribution from this manual labeling is shown in Table 9. 
 

Table 9. Data distribution from collected simulator 
images. 

Class Label  Total Number of Images 
0  761 
1  186 
2  919 
3  2339 
4  4141 
5  6678 
6  1175 
7  1328 
8  380 

 
 
A total of 17,907 images were collected across all nine 
classes. While there is a clear imbalance in the new images 
shown in Table 9, this imbalance became less obvious when 
these images are added and shuffled in with the current copilot 
datasets that contained only simulator data. The total data 
distribution with both the combined simulator data and the 
additional 17,907 images from the copilot test video is 
displayed in Table 10.  

Table 10. Distribution of total copilot images after 
simulator data and real world data were combined. 

Class Label  Total Number of Images 
0  22614 
1  22277 
2  22909 
3  24599 
4  26322 
5  28185 
6  23254 
7  23289 
8  22408 

 
Once these new images were added to the training set, four of 
the nine models were retrained with the real world copilot 
images included. By adding only a few more examples to each 
class from this new dataset, the networks were able to perform 
well on real flight data without sacrificing their accuracies on 
the simulator data. 

RESULTS 
This section will contain a full presentation of the results of 
both the hybrid computer vision algorithm and the deep 
learning models that were trained throughout this research. 
The performance of the hybrid algorithm on a benchmark 
dataset and a real world dataset will be explored. The effects 
of the hybrid compensation method for classifying images 
where no face is detected will be discussed as well. The 
training and validation accuracies of each deep learning 

model are presented as well as the best confusion matrix that 
was obtained for each model.  

Hybrid Head Pose Estimation Algorithm Results 

The first experiment that was conducted for testing the 
accuracy of the hybrid head pose estimation algorithm was 
performed on the Head Pose Image Dataset. As stated 
previously, this benchmark dataset is made up of 2790 
images, each with a corresponding pitch and yaw label to 
define the position of the head in the image. The absolute error 
between the true pitch and yaw angle and the algorithm’s 
calculated pitch and yaw angle was calculated for all 2790 
images. Once the error was calculated for every image, the 
average absolute error for each individual pitch and yaw angle 
was obtained. The average absolute error is displayed in 
Figures 20 and 21.  

 

Figure 20. Average absolute error calculated by the 
hybrid algorithm on the Head Pose Image Dataset for all 

possible yaw angles. 

 

Figure 21. Average absolute error calculated by the 
hybrid algorithm on the Head Pose Image Dataset for all 

possible pitch angles. 

From these two figures it is clear to see that as the head angle 
becomes more extreme, the absolute error increases very 
quickly. The algorithm performs well in calculating yaw 
angles in the range of ±30° and pitch angles in the range of 
±15°. This is not an unexpected result because of the fact that 
the facial landmark annotation tool was only trained on faces 
in these ranges. Figures 20 and 21 show that the tool does 
provide accurate annotations within that range, and verifies 
that the algorithm works very accurately for frontal facing 
poses within a certain range.  
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After collecting a quantifiable accuracy of the angles 
calculated by the hybrid algorithm, the next experiment was 
performed on the FAA Flight Dataset. The first 10,000 frames 
of this flight video were manually labeled into nine classes so 
the output classifications from the algorithm could be 
compared to ground truth values. Table 6 in the Angle 
Calculation and Classification section displays how the nine 
classes from this dataset were divided into the four classes of 
interest for the hybrid algorithm. Table 11 shows the total 
number of frames belonging to each class. 

Table 11. Total number of frames belonging to each 
class of the FAA Flight Dataset. 

Class Total Frames 
0: Straight out the window 5629 
1: Down at the instrument panel 627 
2: Out the window to the side 1859 
3: None of the above 1885 

From Table 11, it is apparent that the majority of the time 
during flight, the copilot is looking straight out the window. 
That being said, the algorithm should be able to perform well 
on this class specifically. Figure 22 shows a correctly 
classified image from the first three classes. 

 

 

 

Figure 22. Frames that were correctly classified by the 
hybrid algorithm. 

After supplying all 10,000 test images to the hybrid algorithm 
and comparing its classifications with the ground truth, the 
overall accuracy was calculated to be 46.01%. While this 
accuracy does seem quite low, it is important to look at the 
accuracy of each class individually by observing the 
confusion matrix in Figure 23.  

 

Figure 23. Confusion matrix for standard hybrid 
algorithm when evaluated on the FAA Flight Dataset. 

The algorithm performs best in classifying frames where the 
copilot is looking straight out the window, correctly 
classifying 76% of those images. Of the 10,000 labeled test 
frames, about 56% of them belong to class 0. Therefore, it is 
a good sign that the algorithm performs well in that class 
specifically. However, the correct classifications for class 1 
and class 2 are much lower than would be desired. The 
confusion matrix also clearly shows that when the algorithm 
classifies a frame incorrectly, it is frequently classifying the 
frame as straight out the window. This should not be a 
surprise, again because the facial landmark annotation tool 
was trained on frontal faces only.  
 
Looking more closely at the incorrectly classified images, a 
few conclusions can be made. First, the algorithm struggles to 
classify images into class 1, down at the instrument panel, 
because the difference between the copilot looking straight 
and the copilot looking down is quite subtle. Therefore, the 
facial landmarks that are annotated onto the face need to be 
very accurate in order to detect this small change from class 0 
to class 1. Due to the added noise from the copilot’s 
sunglasses, microphone, and other equipment, the facial 
landmarks are not as accurate as they would be on a clean 
image with no noise. Therefore, the inaccuracy of the facial 
landmark annotations due to this added noise was concluded 
to be the major reason for the lack of correctly classified 
frames in class 1.  
 
On the other hand, the algorithm does not classify frames into 
class 2, out the window to the side, because of the limitations 
of the face detector. It was found that from the 1859 frames 
belonging to class 2, the face detector was unable to detect a 
face in 70% of them. As stated previously, a face must be 
detected in the frame in order to get a head pose classification. 
This is a huge limitation for the overall accuracy of the 
algorithm. However, a method for classifying head positions 
where no face is detected was included in a second version of 
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the algorithm. After implementing this new method and 
calculating the overall accuracy again, it was found that the 
new accuracy of the algorithm with the added compensation 
method was 55.26%, an increase in the overall accuracy of 
about 9%. 

 

Figure 24. Confusion matrix for the hybrid algorithm 
with the added compensation method when evaluated on 

the FAA Flight Dataset. 

Looking at the confusion matrix in Figure 24, it is clear that 
rows 0, 1, and 3 have not changed much from the confusion 
matrix in Figure 23. However, the main difference can be 
viewed in that there was an increase in the accuracy of class 
2 by 50%. This improvement shows the validity of the 
assumptions made for the compensation method. Of the 70% 
of frames that had no face detected, almost 1000 of these 
frames were now correctly classified as belonging to class 2 
even though no face was detected. One image that was 
previously labeled as having no face detected but is now 
labeled correctly to class 2 is displayed in Figure 25. 

 

Figure 25. Correctly classified frame from the FAA 
Flight Dataset where no face was detected.  

From these results it can be said that the hybrid algorithm 
proposed can provide an accurate estimation of helicopter 
pilot head pose in certain scenarios. Since the pilots are 
looking straight ahead most of the time (56% in the first ten 
minutes of this test video) the algorithm is a valid solution for 
predicting these head poses. However, there are some obvious 
limitations when it comes to detecting small changes between 
classes and when the head position is at an extreme angle. 
Certain methods have been implemented to overcome these 
limitations, but there is more to be desired in terms of 

accuracy in the extreme angle case.  For that reason, these 
initial results were used as motivation to create a true ground 
truth dataset so that a more accurate deep learning model 
could be trained. This deep learning algorithm would be able 
to predict head poses at both frontal angles and at extreme 
angles, regardless of whether or not a face is present in the 
frame. 

Deep Learning Simulator Model Results 

A total of 18 models were trained on each of the four copilot 
datasets for a total of 72 copilot models. The network 
architectures considered in these tests were the ResNet50, 
InceptionV3, and Xception architectures. A total of six 
models were trained for each architecture using the following 
combinations of hyperparameters shown in Table 12.  

Table 12. Hyperparameter combinations for each of 
the six models trained for each of the three selected 

network architectures. 

Model Learning Rate Dropout Rate Pooling 
1 0.0009 0.5 Average 
2 0.0009 0.5 None 
3 0.005 0.25 Average 
4 0.005 0.25 None 
5 0.001 0.1 Average 
6 0.001 0.1 None 

 
The copilot datasets were trained with simulator images only, 
and the hyperparameters that produced the best results for 
each of the four datasets are displayed in Table 13. 

Table 13. Summary of hyperparameters that 
produced the best results for the copilot models. 

Network 
(Classes) 

Architecture Learning 
Rate 

Dropout 
Rate 

Pooling 

CPHelmet (9) Xception 0.0009 0.5 Average 
CPHeadset (9) Xception 0.0009 0.5 Average 
CPCombined (9)  Xception 0.0009 0.5 Average 
CPClassifier (2)  ResNet50 0.0009 0.5 None 

From this table it is clear to see that the best learning rate and 
dropout rate in all cases was 0.0009 and 0.5 respectively. 
Average pooling seemed to perform well on the nine class 
datasets, where no pooling in the last layer resulted in better 
performance on the two class headgear classifier. The 
Xception architecture also outperformed the other 
architectures on the nine class datasets, and the ResNet50 
architecture performed best on the data with only two classes. 
The training accuracy, validation accuracy, and test accuracy 
for each of the best models are shown in Table 14. 

Table 14. Summary of copilot model accuracies. 

Network 
(Classes) 

Training 
Accuracy 

Validation 
Accuracy 

Test 
Accuracy 

CPHelmet (9) 99.84% 99.96% 98.67% 
CPHeadset (9)  99.71% 99.93% 99.89% 
CPCombined (9)  99.91% 100% 99.11% 
CPClassifier (2) 99.98% 99.98% 100% 
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The training and validation accuracies are expected to be high 
because that confirms that the networks are learning the 
important features and information from the training images. 
The test accuracy was calculated using a test set of images 
that was not shown to the network at any time during the 
training process. Observing a small difference between the 
training, validation, and test accuracies validates that the 
model is not overfitting to the training data and is remaining 
generalizable to data that it has not seen before. The confusion 
matrices for these four models are shown in Figure 26. 

 

Figure 26a. Copilot helmet confusion matrix trained on 
simulator data only. This model was trained using the 

Xception network architecture, a learning rate of 0.0009, 
a dropout rate of 50%, and average pooling in the last 

layer.  

 

Figure 26b. Copilot headset confusion matrix trained on 
simulator data only. This model was trained using the 

Xception network architecture, a learning rate of 0.0009, 
a dropout rate of 50%, and average pooling in the last 

layer. 

 

 

Figure 26c. Copilot combined confusion matrix trained 
on simulator data only. This model was trained using the 
Xception network architecture, a learning rate of 0.0009, 

a dropout rate of 50%, and average pooling in the last 
layer. 

 

Figure 26d. Copilot headgear classifier confusion matrix 
trained on simulator data only. This model was trained 

using the ResNet50 network architecture, a learning rate 
of 0.0009, a dropout rate of 50%, and no pooling in the 

last layer. 

 
Once the four copilot datasets had working models, the same 
combinations of hyperparameters from Table 14 were used to 
train a single model for each of the four pilot datasets. These 
hyperparameters work for both pilot and copilot images 
because these images are essentially the same just flipped 
over the y-axis. The accuracies for the pilot models are shown 
in Table 15. 

Table 15. Summary of pilot model accuracies. 

Network 
(Classes) 

Training 
Accuracy 

Validation 
Accuracy 

Test 
Accuracy 

PHelmet (9) 99.87% 100% 99.78% 
PHeadset (9) 99.82% 100% 99.89% 
PCombined (9) 99.95% 100% 99.33% 
PClassifier (2) 99.87% 100% 99.50% 

Again, there is a small difference between training accuracy 
and testing accuracy which shows that the network is not 
overfitting. The accuracies are very high again because the 
variations in the data are limited at this time. The confusion 
matrix for each model is displayed in Figure 27. 



 17 

 

Figure 27a. Pilot helmet confusion matrix trained on 
simulator data only. This model was trained using the 

Xception network architecture, a learning rate of 0.0009, 
a dropout rate of 50%, and average pooling in the last 

layer. 

 

Figure 27b. Pilot headset confusion matrix trained on 
simulator data only. This model was trained using the 

Xception network architecture, a learning rate of 0.0009, 
a dropout rate of 50%, and average pooling in the last 

layer. 

 

Figure 27c. Pilot combined confusion matrix trained on 
simulator data only. This model was trained using the 

Xception network architecture, a learning rate of 0.0009, 
a dropout rate of 50%, and average pooling in the last 

layer. 

 

 Figure 27d. Pilot headgear classifier confusion matrix 
trained on simulator data only. This model was trained 

using the ResNet50 network architecture, a learning rate 
of 0.0009, a dropout rate of 50%, and no pooling in the 

last layer. 

The final network to analyze was the helicopter side network. 
This network was trained using the same combination of 
hyperparameters as the pilot and copilot head gear classifier 
models. 

Table 16. Hyperparameter Summary of Best Results. 

Network 
(Classes) 

Training 
Accuracy 

Validation 
Accuracy 

Test 
Accuracy 

HelicopterSide (2) 100% 100% 95.5% 

Table 16 shows that the model had extremely high accuracies 
on both the training and validation data meaning that the 
features for determining which side of the cockpit the video 
is on are fairly simple to learn. The confusion matrix for this 
model displayed in Figure 28. 

 

Figure 28. Helicopter side confusion matrix trained on 
simulator data only. 

These initial results on the simulator data show that a working 
model with high accuracy was achieved for each of the nine 
models within the final algorithm structure. A few correctly 
classified images from the test sets are shown in Figure 29 and 
Figure 30. The text in the top left of the image is the prediction 
from the headgear classifier (white), under that is the 
headset/helmet prediction (green/blue respectively), and the 
beneath that is the combined prediction (red). The helicopter 
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side prediction, point of view, and frame number are printed 
in yellow at the bottom of the images. 

 

 

 

Figure 29. Pilot frames correctly classified by simulator 
models. The white text in the top left is the prediction of 
the headgear classifier. The green/blue text and red text 

are the nine class head pose predictions for the 
headset/helmet model and combined model respectively. 
The yellow text at the bottom displays the helicopter side 
prediction, prediction point of view, and frame number.  

These images demonstrate the deep learning algorithm’s 
ability to correctly predict the head pose of pilots and copilots 
regardless of whether a face is present in the frame. The 
algorithm also consistently predicts the correct helicopter side 
as well as the head gear worn by the pilot and copilot. Figure 
29 and 30 also display examples of the combined predictions 
in red being consistent with the headset/helmet predictions in 
green/blue. When both head pose predictions are the same, it 
gives added confidence that the prediction is correct.  

 

 

 

 

Figure 30. Copilot frames correctly classified by 
simulator models. The white text in the top left is the 

prediction of the headgear classifier. The green/blue text 
and red text are the nine class head pose predictions for 

the headset/helmet model and combined model 
respectively. The yellow text at the bottom displays the 
helicopter side prediction, prediction point of view, and 

frame number. 

While these examples quite clearly demonstrate the 
algorithm’s success, there are also certain conditions that can 
cause the algorithm to struggle with making accurate head 
pose predictions.  

 

Figure 31a. Pilot frame incorrectly classified by 
simulator models due to occlusion. 
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Figure 31b. Pilot frame incorrectly classified by 
simulator models due to image quality. 

 

Figure 31c. Pilot frame incorrectly classified by 
simulator models due to poor representation in the 

training set. 

 

Figure 31d. Pilot frames incorrectly classified by 
simulator models that are technically incorrect but still 

present information about the head position. 

Figure 31a demonstrates the most common reason for any 
image-based deep learning algorithm to fail: occlusion. The 
pilot’s hand is adjusting the camera and therefore slightly 
obscuring the view that the camera has of his head. An 
occlusion that causes a portion of the image to be blocked will 
almost always cause issues with a deep learning solution that 
consists of image data, regardless of the specific application. 
While the Figure 31a shows an error due to occlusion, Figure 
31b shows a misprediction due to image quality. The pilot is 
moving their head very quickly from left to right and this 
blurred image causes the algorithm to have a poor headset 
prediction.  
 
Figure 31c shows the helmet prediction as “Up” when the 
subject is looking down. This misclassification is due to the 
limited amount of data available for training. There were most 
likely not very many images in the training data that 
resembled this one, so the network will have a difficult time 
classifying these images in the test set. Figure 31d shows the 
helmet prediction and combined prediction as “Up_Left” and 

“Down_Left” when the pilot is just looking left. While these 
predictions are technically incorrect, it is important to 
remember that the algorithm was created for estimating head 
positions so that analysts and accident investigators can 
interpret the data. That being said, there is still information 
available in this last image that will describe the general 
position of the head even if the predictions are not exactly 
correct. 

The issue of occlusion will always be an issue in an image-
based deep learning solution. However, the majority of the 
remaining issues discussed can easily be resolved once more 
data becomes available. As stated previously, the current 
datasets primarily consist of simulator data that was created 
in a controlled environment. When more labeled examples 
with more variations are included during training, the 
algorithm should begin to learn more features of the input data 
and become more generalizable to new data and to specific 
outlier scenarios. 

As an additional experiment, the deep learning models that 
were trained on simulator data only were used to evaluate the 
first 10,000 frames of the FAA Flight Dataset. The total 
number of frames belonging to each of the nine classes is 
shown in Table 17.  

Table 17. Total number of frames belonging to each 
class in the FAA Flight Dataset. 

Class Total Frames 
(0) Down 440 
(1) Down_Left 187 
(2) Down_Right 402 
(3) Left 1348 
(4) Right 1155 
(5) Straight 4280 
(6) Up 1552 
(7) Up_Left 333 
(8) Up_Right 302 

 
This experiment was conducted to observe the 
generalizability of the simulator models to a different set of 
data and observe whether or not the high accuracies from the 
simulator carry over to the real world. The algorithm 
performed well on this new data in some cases but the overall 
performance was much worse than on the simulator test data. 
This is somewhat of an expected result because the simulator 
images are different than the real flight video (Figure 19). The 
confusion matrices (Figure 32a and 32b) for the two nine class 
networks show these results. 
 



 20 

 
Figure 32a. Combined model confusion matrix for the 
FAA Flight Dataset evaluated by the simulator models. 

 
Figure 32b. Helmet model confusion matrix for the FAA 

Flight Dataset evaluated by the simulator models. 

Both models seem to be favoring classes 5, 6, and 7 with 
almost no predictions in classes 2, 3, 4, and 8. Two examples 
of incorrectly classified images are shown in Figure 33. 
 

 

 

Figure 33. Incorrectly classified images from the FAA 
Flight Dataset evaluated by the simulator models.  

The side classifier was the only model that generalized well 
to this new data while the head gear classifier and both the 
combined and headset/helmet models struggled to provide 

accurate predictions. The change of camera angle and 
background were most likely the main causes for these 
decreases in overall accuracy.   

Deep Learning Generalized Model Results 

To solve the issue of the simulator models poor performance 
on the real world data, labeled images from the last twenty 
minutes of the real world flight video were added to the 
simulator training images using the method described in the, 
Generalizing to a Real World Dataset section. With this new 
data available, the four models outlined in red in Figure 34 
were retrained with these new images included during 
training. The CPHeadset_9Class model was not retrained 
because there was no real world headset image data available. 

 

Figure 34. Models that were retrained with real world 
images included. 

The training, validation, and test accuracies of these 
new models are shown in Table 18. 

Table 18. Summary of copilot model accuracies with 
real world images included during training.  

Network 
(Classes) 

Training 
Accuracy 

Validation 
Accuracy 

Test 
Accuracy 

CPHelmet (9) 99.52% 99.65% 99.65% 
CPCombined (9) 99.81% 99.81% 99.69% 
CPClassifier (2) 100% 100% 100% 
HelicopterSide (2) 100% 100% 100% 

These results show that both nine class networks performed 
with about the same accuracy compared to when they were 
trained and tested on the simulator data only. The helicopter 
side model and head gear classifier model were both 100% 
accurate in all cases and this can be attributed to the fact that 
the features of the image that depict the correct helicopter side 
and depict the difference between a helmet and a headset are 
easy to learn.  

With the addition of these real world copilot images to the 
training data, the models were able to generalize much better 
to the first 10,000 frames of the FAA Flight Dataset. The 
combined model had an overall accuracy of 91.49% and the 
helmet model had an overall accuracy of 84.18%. The 
confusion matrices for these two models are shown in Figure 
35a and 35b. 
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Figure 35a. Combined confusion matrix for the FAA 
Flight Dataset evaluated by the generalized models. 

 

Figure 35b. Helmet confusion matrix for the FAA Flight 
Dataset evaluated by the generalized models. 

The combined model with real world data outperformed the 
simulator-only model by about 55% and the new helmet 
model saw an increase in accuracy of about 40%.  

While both models do well at classifying images from most 
classes, they also both struggle to classify images belonging 
to class 8. Similar to before, this was caused by lack of data 
in this class. From the entire 30976 images from the real world 
copilot video, only about 600 fell into class 8. For that reason, 
the network has a hard time classifying these images simply 
because it didn’t see many images from that class during 
training. A few examples of correctly classified images are 
displayed in Figure 36.  

Alongside more accurate head pose predictions, the new head 
gear classifier had no trouble correctly detecting a helmet in 
all 10,000 test images. By adding just a few labeled images 
from the real world dataset to the training data, the models 
were able to generalize well even though the majority of the 
training images were created in the simulator. 

 

 

 

 

Figure 36. Correctly classified images from the FAA 
Flight Dataset evaluated by the generalized models.  

Comparison of Hybrid Algorithm and Deep Learning 
Algorithm 

In order to compare both algorithms, the quantifiable 
accuracies are summarized in Table 19. 
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Table 19. Final accuracies of both algorithms on the 
FAA Flight Dataset. 

Algorithm Name Accuracy 
Hybrid Algorithm  46.01% 
Hybrid Algorithm with Compensator 55.26% 
Simulator-Only Deep Learning Algorithm 35.82% 
Generalized Deep Learning Algorithm 91.49% 

 
The algorithm that performs the best is clearly the generalized 
deep learning algorithm with an accuracy of 91.49%. 
However, it is interesting to point out that the deep learning 
algorithm without the real world data included during training 
actually performs worse than both versions of the hybrid 
algorithm. This continues to emphasize the point that a large 
amount of labeled data that adequately represents the test data 
is required for the deep learning algorithm to perform well on 
real flight videos. 
 
If a sufficient amount of labeled data is available, there is no 
doubt that the deep learning solution will provide the most 
accurate head pose predictions when compared to the hybrid 
computer vision algorithm. However, creating a ground truth 
dataset or labeling any real world flight data can be 
challenging in this specific application because it is a process 
that is difficult to automate and will mostly need to be done 
by hand. This process can be very time consuming and also 
introduces the potential for human error. The added time 
needed to create labeled data is well worth the overall 
accuracy provided by the deep learning algorithm. 

On the other hand, the main benefit of the hybrid algorithm is 
that it does not require ground truth data in order to output 
head pose classifications. This makes the hybrid algorithm a 
possible solution if time is more important than accuracy. The 
hybrid algorithm does take some time to calibrate to each 
video but this time is negligible when compared to the amount 
of time it takes to manually label thousands of images and 
retrain a deep learning model. Since this head pose 
information will be used for incident/crash analysis however, 
it is very important that the algorithm provide accurate 
predictions in all situations, especially in the extreme angle 
case. For that reason, the generalized deep learning algorithm 
is the best choice when looking for accurate head pose 
predictions in the presence of excessive cockpit background, 
extreme head positions, and added noise from the pilot’s 
operational equipment. 

CONCLUSIONS 
The goal of this research was to automate post flight video 
processing and provide safety analysts or accident 
investigators with data on where a pilot was focused during 
any particular moment of any given flight. In order to get 
more helicopter operators to participate in FDM programs, 
and therefore provide more information for analysts, the video 
processing needed to be kept simple while being able to have 
a low cost method of implementation. These issues were both 
solved using a deep learning algorithm whose only input was 

video data. The results show that a combination of deep 
learning models were trained to identify not only pilot/copilot 
head positions, but also information about the pilot/copilot’s 
head gear and which side of the cockpit the video took place. 
The overall accomplishments of this research are listed 
below: 

1. Multiple methods for estimating head pose were explored 
including a hybrid algorithm that utilizes both computer 
vision and deep learning techniques, and a purely deep 
learning algorithm that uses a total of nine deep learning 
models to gain information about head positions, pilot/copilot 
equipment, and cockpit side.  
 
2. A hybrid head pose estimation algorithm was created that 
uses classical computer vision techniques of face detection, 
facial landmark annotation, and the pinhole camera model to 
calculate angles for classification. This algorithm performed 
well for frontal facing poses but struggled to classify head 
positions at extreme angles. However, a compensation 
method was introduced that aided to increase the number of 
correct classifications at extreme angles. This algorithm had 
its limitations but was the main driving force for creating a 
labeled ground truth dataset for a purely deep learning 
approach. 
 
3. Working closely with the FAA, a dataset consisting of just 
under 200,000 labeled images was created in a Sikorsky S76D 
simulator for helicopter pilot and copilot head positions. The 
dataset consisted of nine total classes covering the full range 
of head poses and was used to train the deep learning models 
for the purely deep learning algorithm. Up to this point, there 
was no labeled head pose data for helicopter pilots available, 
and this FAA Simulator Dataset is one of the major 
contributions of this thesis.  
 
4. A total of nine models were successfully trained using the 
FAA Simulator Dataset. A two class model was trained to 
learn what side of the cockpit the video took place. Four 
networks were then trained for both the copilot and the pilot. 
A single two class network was trained to learn whether the 
pilot/copilot was wearing a helmet or headset.  On top of that, 
three nine class networks were trained for predicting head 
pose. The first model was trained on helmet and headset 
images combined, the second model was trained on headset 
images only, and the final model was trained on helmet 
images only. Each frame of the test video has four 
accompanying predictions: helicopter side, headgear 
classifier, combined head pose prediction, and headset/helmet 
prediction. The separate helmet and headset models are used 
as added robustness to the combined model since data is 
limited at this time. This algorithm structure was able to 
correctly classify head positions for 91.49% of images from 
the first 10,000 frames of a real world flight video.  
5. The main disadvantages of the purely deep learning 
algorithm are the amount of data required to train a working 
model, and the time required to collect the labeled data. It can 
be very difficult to collect labelled data automatically which 
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results in the majority of data being collected by hand. 
Although time can be a factor, the main advantage of the deep 
learning solution is that it can easily be improved as more data 
becomes available. Once enough data is collected with 
enough variations, the deep learning models will eventually 
be able to generalize to any real world flight video.   

Future Work and Research Recommendations 

As with any deep learning model, improvements can be made 
as more data becomes available. That being said, the current 
state of the models can be used to semi-automatically label 
new test videos to gather more training data. Once more data 
is collected, the new images can be added into the existing 
dataset and a new model can be trained. 
 
Using the process of transfer learning would allow for new 
models to be initialized with the same weights of the current 
version of the model. This will drastically reduce the amount 
of time it will take for the network to learn the new features 
from the newly added images. Rather than relearning the early 
level features of all the images, transfer learning would allow 
the network to begin learning the more complex features of 
the new images right away. 
 
In addition, as more data becomes available, the less 
necessary the separate helmet/headset models become. At the 
time of this research, the amount of available data was limited 
so the added headset/helmet models provide some robustness 
and confidence to the combined head pose model. However, 
once the amount of data becomes sufficiently large and the 
network is able to generalize well to all types of helicopter 
images, these additional headset/helmet models should be 
removed to cut down on processing time and to simplify the 
output of the algorithm. Rather than having four predictions 
per video frame, the network eventually will only need to 
output which side of the cockpit the video is on, and a single 
nine class head pose prediction.  
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