Controlled Release

Estimation of the Diffusion Coefficient

Stokes-Einstein Relation

For free diffusion

 $D = \frac{kT}{6prh}$

- Assumes a spherical molecule
 - i.e., not valid for a longchain protein

- *k* = Boltzman Constant
 1.38 x 10⁻²³ J/K
- ? = solvent viscosity (kg/ms)
- T is temperature (K)
- r is solute molecule radius
 - related to molecular weight

Stokes-Einstein Relation

Radius, r, is related to MW

$$(MW) = N\mathbf{r}V = N\mathbf{r}\left(\frac{4}{3}\mathbf{p}r^3\right)$$

Solve for r

$$r = \left[\frac{3(MW)}{4pNr}\right]^{\frac{1}{3}}$$

Substitute into S-E eqn

$$D = \frac{kT}{6ph \left[\frac{3(MW)}{4pNr}\right]^{\frac{1}{3}}}$$

Note D is not a strong fn of MW

- N is Avagadro's Number
- V is the molal volume of the solute.
- r is the hydrodynamic radius, which considers solvent bound to solute

Diffusion Coefficient

- Many drugs have a low molecular wt
 - □ 100 < MW < 500 g/mol
 - Not true for proteins and larger molecules
- Examples

Drug	MW (g/mol)	D(cm²/s) Aqueous	Note
Caffeine	194.2	4.9 x 10 ⁻⁶	Medium size
Insulin	41,000	8.3 x 10 ⁻⁷	Huge size

Sutherland-Einstein Correlation

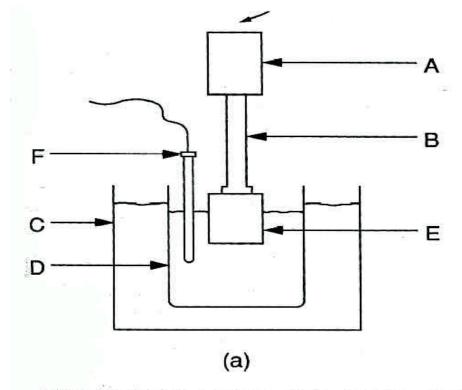
Sutherland-Einstein Equation

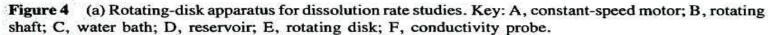
- More reliable prediction for smaller solutes.
- Modification of Stokes-Einstein, which considers sliding friction between solute and solvent.

$$D = \frac{RT}{6\mathbf{p}Nr\mathbf{h}} \left(\frac{\mathbf{b}r + 3\mathbf{h}}{\mathbf{b}r + 2\mathbf{h}} \right)$$

 For large molecules, ß approaches infinity to reflect "no slip" conditions, and the equation reduces to the Stokes-Einstein relation

Wilke-Chang Correlation


- Semi-empirical modification of the Stokes-Einstein relation. 10-15% error.
- Widely used for small molecules in low MW solvents, at low concentrations.
- Involves
 - MW of solvent
 - Absolute temperature
 - Solvent viscosity
 - Solute molal volume at normal BP
 - Association factor of solvent (2.6 for water, 1.9 for methanol, 1.5 for EtOH)


Diffusion Coefficients in Polymers

For large pores

- diffusion through liquid filled pores
- Porosity, tortuosity, partition coefficient
- For small pores
 - Diffusion through liquid filled pores
 - Steric hindrance, friction
- For non-porous polymer networks
 - Complicated; various mechanisms proposed
 - Depends on crystallinity, swelling, crosslinking, rubbery vs. glassy state
- Predictions based on semi-empirical or empirical approaches

Measurement of D: rotating disk

From Kydonieus, A., <u>Treatise on Controlled Drug Delivery</u>

Measurement of diffusion coefficient

- Rotating disk for measurement of D in liquids
 - Considers the rate of dissolution of a drug from a disk spinning in a liquid

 $Q = 0.62AD^{2/3}v_0 - 1.6w^{0.5}C_s$

- Q is rate of dissolution
- A is surface area of drug on disk
- \Box v_o is the kinematic viscosity of the solvent,
- C_s is the drug solubility in the solvent
- □ ? is the rotational speed of the disk
- Perform experiments at different ?. What plot will give a slope of D?
 - □ Q vs. ? ^{0.5}

Measurement of D: permeation cell

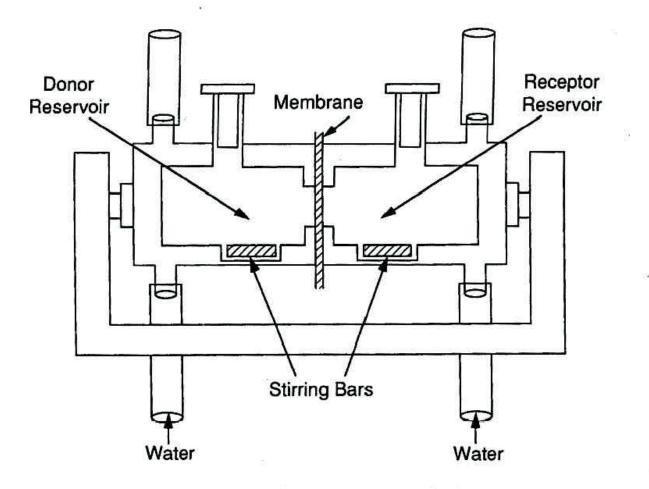


Figure 5 Two-cell system for diffusion coefficient measurement and membrane permeation experiment.

From Kydonieus, A., <u>Treatise on Controlled Drug Delivery</u>

Measurement of diffusion coefficient

- Two Cell Permeation System
 - For D in liquids or polymers
 - Two stirred cells divided by a membrane. Initially one contains the drug in suspension.

$$\left(\frac{dM}{dt}\right)_{\infty} = \frac{DKC_s}{l}$$

- LHS is the steady-state permeation rate
- K is the partition coefficient (membrane/solution)
- L is the membrane thickness

Measurement of diffusion coefficient

- More methods for polymers
- Direct release method curve fitting from a release experiment.
 - Usually preferable to determine through independent experiments.
- Sorption and desorption from stirred finite volume
 - □ Simple experiment
 - Mathematics of diffusion through a solid will be investigated later

D values for small solutes in liquids

Diffusant	Molecular weight (daltons)	Molal volume V _A by Table 1 (cm ³ /g-mol)	D _{cale} Eq. (1) (× 10 ⁶) (cm ² /s)	D _{colic} Eq. (4) (× 10 ⁶) (cm ² /s)	Molai volume V _A ' by Table 2 (cm ³ /g-mol)	D_{calc} Eq. (5) (× 10 ⁶) (cm ² /s)	D _{exp} (cm²/s)	Ref
α-Aminoisohexaic	0.242427	512121 12	22.72	02020				ond
acid (leucine)	131	107.6	10.4	6.9	171.4	7.7	7.3	14
Threonine	119	77.4	11.6	7.7	134.4	8.9	8.0	14
Asparagine	132	79.0	11.5	7.7	141.2	8.7	8.3	14
Proline	115	76.8	11.6	7.8	132.3	9.0	8.8	14
Hydroxyproline	131	79.1	11.5	7.7	139.7	8.7	8.3	14
Phenylalanine	165	125.9	9.9	6.6	197.1	7.1	7.0	14
Tryptophan	204	127.3	9.8	6.6	227.2	6.5	6.6	14
Glucose	180	105.5	10.5	7.0	166.2	7.9	6.8	14
Cellobiose	342	202.5	8.4	5.6	314.6	5.4	5.2	14
Triose	504	299.5	7.4	4.9	476.2	4.2	4.2	14
Tetrose	666	396.5	6.7	4.5	631.2	3.5	3.8	14
Pentose	828	493.5	6.3	4.2	786.2	3.1	3.2	14
Hexose	990	590.5	5.9	3.9	941.2	2.8	2.9	14

Source: Part of this table was compiled by Flynn et al. [5].

From Kydonieus, A., Treatise on Controlled Drug Delivery

D values for small solutes in polymers

Solute	Polymer	Diffusion Coefficient (cm ² /s)
Hydrocortisone	Silicone rubber	4.5 x 10 ⁻⁷
	EVA	1.18 x 10 ⁻¹¹
	PVA terpolymer	4.31 x 10 ⁻¹²
	Poly(EVA)	2.8 x 10 ⁻⁹
Salicylic acid	PMMA	9.55 x 10 ⁻¹⁵
	PVA	4.37 x 10 ⁻¹¹