Controlled Release

Introduction and Background

Topics

Definitions

- Classifications of CR Systems
 - Rate control, physical form
- Design considerations
- Routes of administration
- Review of mass transfer

Definition of Controlled Release

• A system that:

- Delivers an agent at a controlled rate for an extended time
- Might localize drug action by spatial placement near where it is needed
- Might target drug action by using techniques to deliver drug to a particular cell type

Controlled Release Agents

- In nature (?)
 - Oxygenation of blood
 - Transport of nutrients and waste through cell membranes
 - Transport and evaporation of water (sweat) to control body temperature

- Engineered systems (?)
 - Drugs
 - Biocides
 - Fragrances

Controlled Release vs. Sustained Release

Controlled drug delivery

- Well-characterized and reproducible dosage form
- Controls entry to the body according to the specifications of the required drug delivery profile
 - rate and duration of delivery are designed to achieve desired concentration
- Sustained Release
 - Release of drug is extended in time
 - Rate and duration are not designed to achieve a particular profile.

Controlled Release vs. Conventional

- CR
 - Drug Concentration rises quickly to effective level.
 - Effective concentration is maintained for extended time

Conventional

- Periodic administration
- Non-specific administration
- High systemic concentrations can be toxic, causing side effects or damage to organs
- Low concentrations can be ineffective

Disadvantages of Conventional Delivery

(Brainstorm)

- Inconvenient
- Difficult to monitor
- Careful calculation necessary to prevent overdosing
- Large amounts of drug can be "lost" when they don't get to the target organ
- Drug goes to non-target cells and can cause damage
- Expensive (using more drug than necessary)

Advantages of Controlled Release

(Brainstorm)

- Reproducible rate, prolonged delivery
- Less frequent administration
 - Better patient compliance
 - Increased convenience
- Reduced side effects because effective C is maintained
- Targeting can eliminate damage to non-target organs
- Less drug used
- Re-patenting without new drug development

Challenges to Controlled Release

- Cost of formulation preparation and processing
- Fate of controlled release system if not biodegradable
- Biocompatibility
- Fate of polymer additives, e.g., plasticizers, stabilizers, antioxidants, fillers

Polymer Systems for Controlled Release

Classified by

- □ Type of device
- Rate controlling mechanism

Types	Mechanisms
Matrix	Diffusion
	Through a matrix or membrane
Reservoir/Membrane	Chemical reaction – erosion or cleavage
(Hybrids)	
Osmotic Pumps	Solvent activation Osmotic pump or polymer swelling

Matrix Systems

- Drug is physically blended with the polymer
 Dissolved or dispersed
- This is the simplest and cheapest device

At t=0

Polymer matrix contains uniformly dissolved or dispersed drug

Drug is being released by some rate-controlling mechanism **Reservoir Systems**

- With or without a rate-controlling membrane
- Geometric Form
 - Microbead thin polymer coating around particles or droplets
 - Microtube polymeric hollow fiber

Microbeads

Microtube

The Osmotic Pump

Rate Control: Diffusion

Adapted from Langer, Science, 249, 1990

14

Rate Control: Chemical Reaction

Adapted from Langer, Science, 249, 1990

Biodegradable Systems

- Implants for release of anticancer drugs
- Lupron Depot[®]
 - Injectable microspheres
 - Once per month injecton

- Prostrate cancer, fertility treatment, early puberty
- Malaria vaccine

Rate Control: Solvent Activation

Design Considerations

- Basic components
 - Active agent
 - Polymer
- Polymer design considerations (?)
 - Physical properties
 - Glass transition temperature
 - Diffusion characteristics
 - Compatibility with active
 - Stability must not decompose in storage
 - Biocompatibility of polymer and degradation products
 - Ease of formulation and fabrication
 - Mechanical properties are stable when drug is added
 - Cost

Design considerations

Agent

Physicochemical properties

- Stability
- Solubility
- Partitioning
- Charge
- Protein binding propensity

Design Considerations

- Route of delivery
- Target sites
 - Desired site for efficacy
 - Sites to avoid to minimize side effects
- Type of therapy
 - Acute or chronic rate and duration
 - e.g., 1 yr contraceptive implant vs. antibiotic for acute infection
- Patient condition
 - Cognative ability and memory
 - □ Physical condition ambulatory, bedridden, etc.

Routes of Administration for CR

- Parenteral outside GI tract
 - Usually refers to injectables
 - Subcutaneous
 - Intramuscular
 - Intraperitoneal
 - Intravenous

- Advantages
 - Bypasses some routes of metabolic clearance
- Disadvantages (?)
 - Painful
 - Inconvenient

Routes of Administration

Oral

Most common route

- Easy to formulate and manufacture
- Patient compliance is generally good
- Inexpensive dosage form
- Tricky due to environment of GI tract
 - pH degradation
 - Enzymatic degradation
 - Intestinal motility affects residence time
 - Single patient and patient-to-patient variations
 - Absorption limitations in stomach

Routes of Administration

- Buccal/ Sublingual
 - Thin mucous membrane
 - Rich blood supply
 - □ Mild pH ~6.0
- Nasal
 - Easy administration
 - Rapid absorption
 - Bypasses certain clearance routes

Rectal

- No pH or enzymatic degradation as in oral (+)
- More effective than buccal or sublingual for some drugs (+)
- Limited absorption (-)
- Pulmonary
 Large S.A. for absorption

Routes of Administration

Transdermal

- Accessible organ, large surface area
- Avoid first pass metabolism
- Avoid GI incompatibility of drugs
- Good patient compliance
- Transport across skin can be a challenge
- Ocular
 - Localized delivery for eye disorders
 - Good absorption for many drugs
 - Loss of drug in tears