Review of Mass Transfer

- Fick's First Law (one dimensional diffusion)
 - J flux (moles/area/time)
 - At steady-state or any instant in time

$$J = -D\frac{dC}{dx}$$

- Fick's Second Law
 - When concentration changes with time

$$\frac{dC}{dt} = D\frac{d^2C}{dx^2}$$

Example – Fick's First Law

- SS valid if a high C₁ is maintained and
- C₂ remains << C₁ by removal of drug or large volume

- Determine amount of drug to pass through membrane in one hour
- D = $1 \times 10^{-10} \text{ cm}^2/\text{s}$
- h = 2×10^{-3} cm
- A = 10 cm^2
- $C_1 = 0.5 \text{ mol/L}$

Example Fick's First Law

Soln
$$J = -0 \frac{dC}{dx} = -0 \frac{C_2 - C_1}{h}$$

$$= -1 \times 10^{-10} \frac{cm^2}{s} \left[0.5 \frac{mol}{J} - 0 \frac{mol}{J} \right]$$

$$10 \frac{cm^2}{s \frac{cm^2}{s}}$$

$$Amt = J \cdot A \cdot t$$

$$= 2.5 \times 10^{-8} \frac{mol}{s \frac{cm^2}{s}} \cdot 3600 \cdot 10 \frac{cm^2}{s} - 9 \times 10^{-7} \frac{mol}{s} \cdot 1 \frac{mol}{s}$$

Partitioning

- So far we have assumed the drug has equal affinity for solution and membrane. This is unlikely.
- Preference is indicated by partitioning

Flux across membrane

$$J = -D\frac{dCm}{dx} = -D\left[\frac{C_{m2} - C_{m1}}{h}\right]$$

- Cannot measure C_m
- Partition Coefficient relates C_m to C

$$K_{m1} = \frac{C_{m1}}{C_1} \qquad K$$

$$K_{m2} = \frac{C_{m2}}{C_2}$$

Partition Coefficient

- A measure of relative concentrations in membrane vs. solution at equilibrium
- If both solvents (1 and 2) are the same, then

$$K_{m1} = K_{m2} = K_m$$

Flux becomes

$$J = -D\frac{dCm}{dx} = -DK_m \left[\frac{C_2 - C_1}{h} \right]$$

■ The term [DK_m/h] is the *Permeability*

Partition Coefficient

Sketch the profiles for a high K_m and a low K_m

- Sketch the profile for C2=0
 - Common situation: body acts as a sink to remove the drug

Example – Transdermal Delivery

- Digitoxin (used for heart failure; ointment)
- How much digitoxin can be delivered transdermally in one day
- Membrane control skin acts as barrier membrane (stratum corneum, outermost layer)

- $K_{m1} = 0.014$
 - Between ointment and s.c.
- $D = 5.2 \times 10^{-10} \text{ cm}^2/\text{s}$
 - □ Through the *s.c.*
- h = $2x10^{-3}$ cm
 - Typical thickness of s.c.
- A = 10cm^2
 - Covered by ointment
- $C_1 = 0.01 \text{ mg/cm}^3$
 - Saturation C of drug in ointment

Solution

Solu
$$J = -\frac{D \text{ Kmr.}}{h} \left(C_2 - C_1\right)$$

$$J = 5.2 \times 10^{-10} \frac{\text{cm}^2}{3} \frac{(a.014)}{2.0 \times 10^3} \left(0.01 \frac{\text{ms}}{3}\right)$$

$$= 3.64 \times 10^{-11} \frac{\text{ms}}{3} \frac{\text{cm}}{3}$$
For I day = \$.64 \text{ xio}^4 \text{ and Ic cm}^2 \text{ and a...}
$$And = J \cdot A \cdot A = \boxed{3.15 \times 10^{-5} \text{ msg}} \begin{cases} \frac{\text{msg.}}{\text{critically infty}} \\ \frac{\text{sect.}}{\text{critically infty}} \text{ and the section of types} \end{cases}$$

Some K values

Steroid	K
Cortisol	5.5e-3
Estradiol	2e-1
Melengstiol acetate	18.87
Norethindrone	1.22
Norgestrel	3.19
19-Norprogesterone	33.3
Megesterol acetate	35.7
Mestranol	100
Progesterone	22.7
Testosterone	4.31

Reported by Sundaram and Kincl [93] in Kydonieus, Treatise in CDD

Fick's Second Law

For one-dimensional unsteady-state diffusion

$$\frac{dC}{dt} = D\frac{d^2C}{dx^2}$$

How many IC's and BC's are needed?

Finite source

- IC
 - At t=0, C=C₀
- BC1
 - x=L, C=0
- BC2
 - X=0, dC/dx = 0 (symmetric)

Finite source, reflective boundary

- IC
 - At t=0, C=C₀
- BC1
 - x=L, C=0
- BC2
 - X=0, dC/dx = 0 (symmetric)

Solution method

- For cartesian (planar) systems
 - Separation of variables or Laplace Transforms
 - Error function solution
- We will investigate this later!