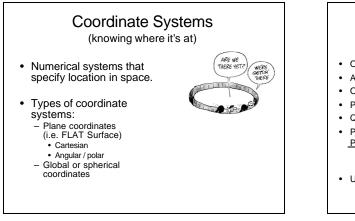
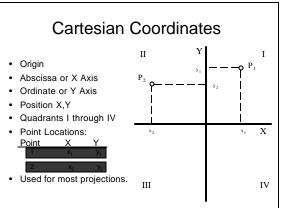
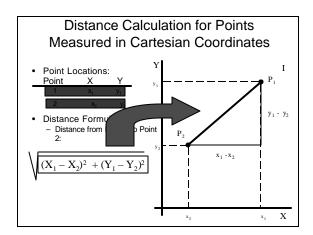
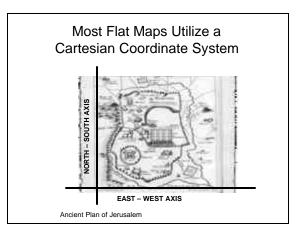
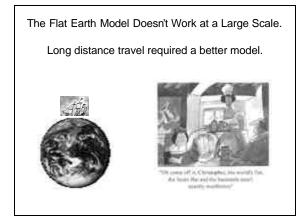

Long History of Mapping The Earth is Flat • Day to day, we live life in a flat world Prehistoric Renderings, Rock Paintings from the KhoiSan People in South Africa - sun rises in east, sets in west - sky is above, ground is below - we orient travel by north-south, east-west thinking • Ex. Philly is "north west" of Glassboro Map = Representation or Model of landscape Traditional Australian ٠ Aboriginal Art Symbols Communicated Place A Flat map (ie model of space) is a perfectly rational model for a local or regional scale

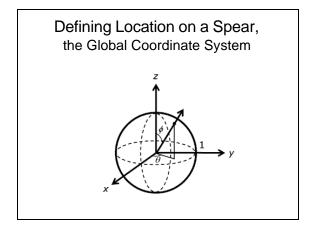


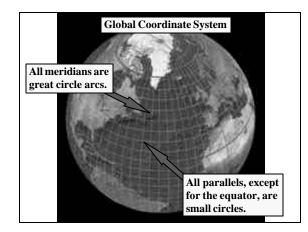


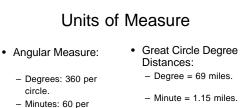




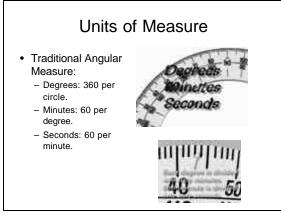


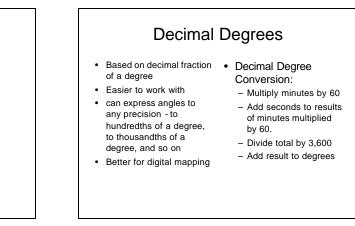




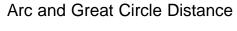

Basis of Global Coordinate System

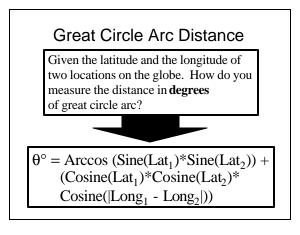
- Earth's rotation gives **poles** and **axis** as two natural points of reference on the sphere.
 - Equator: locus of points on sphere's surface that are equidistant from the poles.
 - Great Circle:
 - Pass a plane through a sphere's center.
 - Connect the points along which plane intersects sphere's surface.
 - Line defined by the points is a great circle.
 - Equator is only great circle perpendicular to axis of rotation.

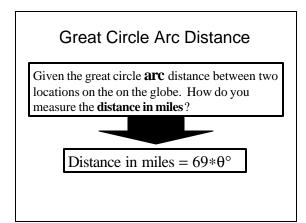

Terms to Specify Position on Globe

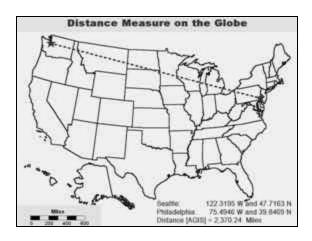

- Latitude: degrees north and south of equator.
- Longitude: degrees east and west of Greenwich, England.
- Meridian = line of constant longitude.
- Parallel = line of constant latitude
- **Great circle** = circle inscribed on surface by a plane passing through earth's center.
- Small circle = circle inscribed on surface by a plane that passes through earth, but misses the center.

- Minutes: 60 per degree.
- Seconds: 60 per minute.
- Second= .02 miles
- Second = .02 miles
 One tenth second =
- 10.12 feet
- One hundredth second
 = 1.012 feet.

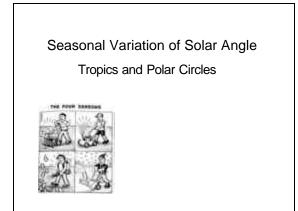


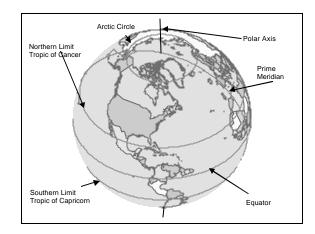

Example of D	Decimal Conversion
Traditional Measure:	45°20'30''
Convert minutes to seconds:	* 60 = 1200°
Add seconds to converted minutes:	+ = 1230°
Convert seconds to degree fraction:	/ 3600 = .3416667
Add whole degree to fraction:	45.3416667 °

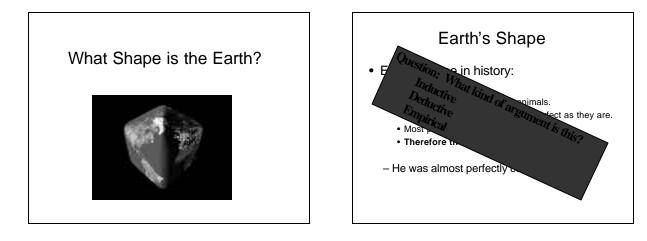

Global Grid Properties

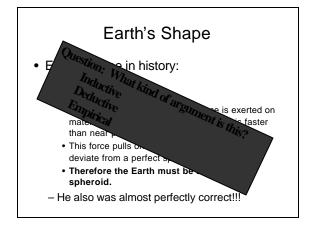

- 1. All meridians equal length
- 2. All meridians converge at poles (true north orientation)
- 3. All lines of latitude are parallel to the equator
- 4. All parallels maintain the same spacing
- 5. Meridians and parallels intersect at right angles
- 6. The scale on a globe is the same everywhere (unlike a map)

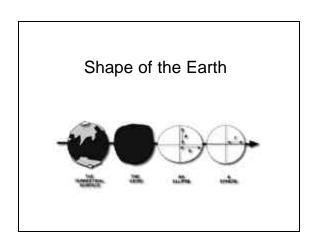
- Proper measure for long distances
- Data required:
 - Latitude in decimal degrees of each place.
 - Longitude in decimal degrees of each place.
- Procedure:
 - Calculate angular distance over the great circle route.
 - Convert angular distance into miles or kilometers.

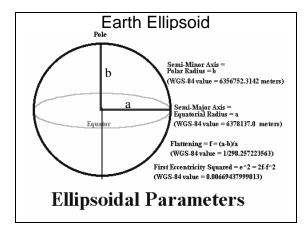



≣Calo Edit V		or Help							-	
										1
C Hex	⊙ De	e O (Dot C	Bin	Degree	ees '	🔿 Radi	ans	C Grad	ls
🗆 Inv	Γ	Нур				Backsp	асе	CE		С
Sta	F·E	()	MC	7	8	9	7	Mod	And
Ave	dms	Exp	In	MB	4	5	6	×	Or	Xo
Sum	sin	х^у	log	MS	1	2	3		Lsh	Not
s	cos	x^3	n!	M+	0	+/-		+	=	Int
Dat	tan	x^2	1/x	pi	A	в	С	D	E	F


1	10%		F					l.	
H.	ed.	intri i	1	6	191	Tel	- 61	-	-
	44	-	-	-	14	4	64		30
1	14	1 14	11	0				14	641
		8 01	2	1					
34	~	4.54		1	U/a	31	8	2	12



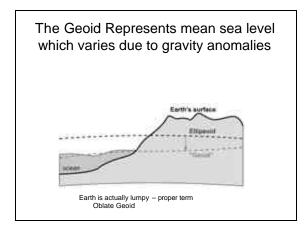


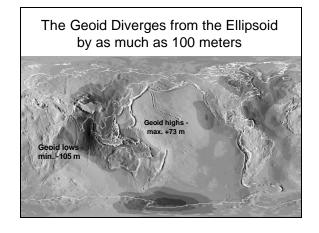


Shape of the Earth

- Ellipsoid: Earth as slightly flattened ball
- Ellipse of Earth's shape:
 - Semi-major axis = 6,378,137 meters
 - Semi-minor axis = 6,356,733 meters
 - 1/298 th difference pole to pole versus equatorial
 - Resulting ellipsoid provides mathematical model of planet's shape.
 - Used for creating accurate large scale maps

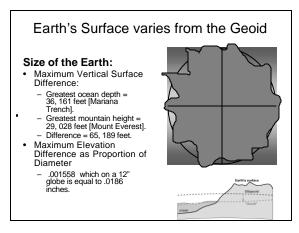
Does It Matter?

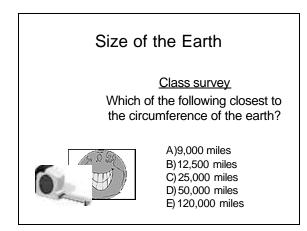

- Small scale maps. No, go ahead and use the sphere as model.
- Large scale maps. Yes, use ellipsoid as model.
- Difference in length of a degree of latitude due to flattening:

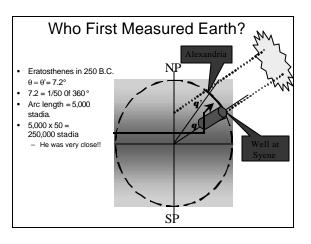

$-0^{\circ} = 68.708$

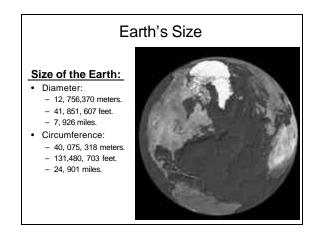
- 45° = 69.054 miles
- 90° = 69.403 miles

Which Ellipsoids Are Used?

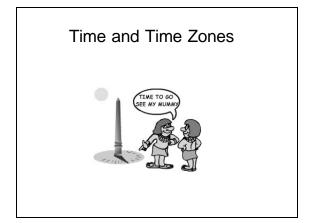

- NAD 1927: Based on calculations by British geodesist Alexander Clark.
- NAD 1983: Based on Geodetic Referencing System of 1980.
- Conversion from NAD27 to NAD83 can be troublesome

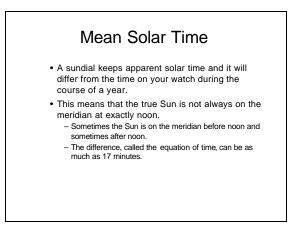


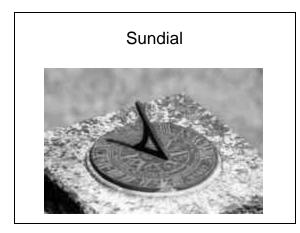


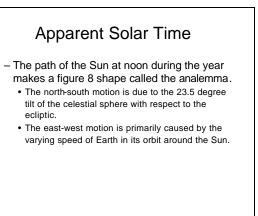

Who cares about the Geoid?

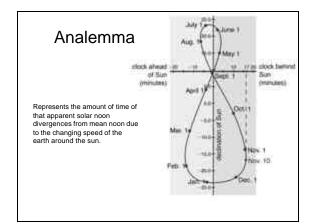

- We all do
 - It is the reference level against which elevations are measured
 - It skews the orbit of satellites
- Earth scientists do - It tells us about the deep interior of Earth
- Surveyors do
 - It purturbs leveling measurements
 - That is, it changes the direction of "straight down"

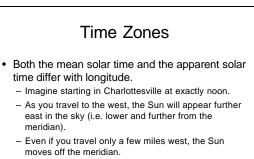












- Each city would have its own time.

Time Zones

- With the advent of rapid travel by trains in the 19th century, it became necessary to standardize the time for all cities within a certain region.
- In November 1883, the railroad companies divided the United States into four time zones.
 - Everyone in a time zone set their clocks to the same standard time.

Time Zones

- In 1884, an international conference was held in Washington D.C. by 26 countries.
 - The world was divided into 24 times zones, with each zone being roughly 15 degrees wide in longitude.
 - Time zones have been modified for political, social and economic reasons.
 - Since there are 24 hours in a day, and 360/15=24, the time in each zone differs from the time in adjacent zones by one hour.
 - Some time zones are not standard (example India)
 - China has only 1 time zone

International Date Line

- Standard time gets earlier as you travel to the west.
- The International Date Line line was established in the middle of the Pacific Ocean.
- As you go from east to west, you gain a day as you cross the line.
- As you go from west to east, you lose a day as you cross the line.

Calculating Differences in Time

- 8am England to Beijing
 - Beijing is to the east so it is Later
 - Beijing is 8 time zones east so it is 8 hours later
 - ANSWER = 4pm
- 1pm Auckland New Zealand to Los Angeles
 - Auckland is 12 hours east (later in the day) than London
 - London = 1amLA is 8 hours west (earlier) of London
 - LA IS 8 hours v
 1am 8 hours
 - ANSWER = <u>5pm the evening before</u>