Chapter 5 Exponential and Logarithmic Functions

1. Evaluate (a)
$$3^{-2} \cdot 3^{5}$$
 Answer: 27 (b) $\left(\frac{1}{4}\right)^{-1/2} \left(\frac{1}{3}\right)^{-2}$ Answer: 18
c) $9^{3/2}27^{-1/3}$ Answer: 9 (d) $3^{1/3} (9^{1/6})^{2}$ Answer: 3
2. Simplify
(a) $(16x^{4})^{1/2}$ Answer: $4x^{2}$ (b) $(2x^{2}y^{3})^{2}$ Answer: $4x^{4}y^{6}$
(c) $(2x^{4})(-3x^{-1})$ Answer: $-6x^{3}$ (d) $\frac{8a^{4}}{2a^{-2}}$ Answer: $\frac{4}{a^{2}}$
(e) $\frac{7^{6}}{(3^{2}x^{-1}y)^{2}}$ $\left(\frac{81x^{2}}{y^{2}}\right)$ (f) $\left(\frac{a^{-m} \cdot a^{n}}{(a^{m-n})^{2}}\right)$ Answer: 1
3. Solve the equation $5^{2x} = 5^{4}$ for x. Answer: $x = 2$
4. Solve the equation $2.4^{-2x-1} = 2.4^{-3}$ for x. Answer: $x = 2$
5. Express in logarithmic form: $\left(\frac{1}{3}\right)^{4} = \frac{1}{81}$. Answer: $\log_{1/3} \frac{1}{81} = 4$
7. Use the fact that $\log_{6} 5 = 0.8982$ and $\log_{6} 3 = 0.6131$ to find $\log_{6} 15$. Answer: 1.5113
8. Use the laws of logarithms to expand and simplify the expression: $\log x(x-1)^{2}$.
Answer: $\log(x) + 2\log(x-1)$
9. Use the laws of logarithms to expand and simplify the expression: $\log \frac{\sqrt{x-2}}{x^{2}-3}$.
Answer: $\frac{1}{2}\log(x-2) - \log(x^{2}-3)$
10. Use the laws of logarithms to simplify the expression: $\log x^{3}(x^{3}+2)^{1/3}$.
Answer: $3\log x + \frac{1}{3}\log(x^{3}+2)$
11. Use the laws of logarithms to simplify the expression: $\ln(\frac{3e^{x}}{x})$. Answer: $\ln x + x$
12. Use the laws of logarithms to simplify the expression: $\ln(\frac{3e^{x}}{x})$. Answer: $\ln 3 + x - \ln x$
13. Sketch the graph of (a) $f(x) = \log_{2} x$. (b) $g(x) = \ln 3x$ (c) $g(x) = \log_{2/5} x$
14. Use the laws of logarithms to solve the equation $\log_{3} x = 3$. Answer: $x = 27$
15. Use the laws of logarithms to solve the equation $\log_{2} \frac{1}{4} = x$. Answer: $x = 2$
16. Use the laws of logarithms to solve the equation $\log_{2} x = 3$.

- 17. Use the laws of logarithms to solve the equation $e^{3x-1} = 5$. Answer: $x = \frac{1}{3} + \frac{1}{3} \ln 5$
- 18. Use the laws of logarithms to solve the equation $5e^{-0.3t} 3 = 7$. Answer: $t = -\frac{10 \ln 2}{2}$
- **19.** What is the interest from \$20,000, invested at 6.5% for 7 years, and compounded annually? **Answer: \$11,079.73**
- 20. What is the interest from \$1 million, invested at 18% for 4 years, and compounded annually? **Answer: \$938,777.76**
- 21. What is the future value of \$1250, invested at 9.5% for 5 years, if it is compounded semiannually? **Answer: \$1988.16**
- 22. What is the present value of \$25,000 in 2 years, if it is invested at 12% compounded monthly? **Answer: \$19,689.15**
- 22. Find the accumulated amount after 5 years if \$1800 is invested at 8% per year compounded quarterly. Answer: \$2674.71
- 23. Find the accumulated amount after 5 years if \$3200 is invested at 7% per year compounded continuously. **Answer: \$4541.02**
- A father wants to be able to provide his newborn baby with a college education. To do this, the father estimates that he will need \$120,000 when his child turns 18. How much money should the father invest in an account that pays 7% interest per year compounded daily so that the account is worth \$120,000 in 18 years? Answer: \$34,042.60

25. The temperature of a mug of coffee after t minutes is given by T = 80+100e^{-0.182t} where T is measured in degrees Fahrenheit.
(a) What is the initial temperature of the coffee? Answer: 180° F
(b) When (to the nearest hundredth) will the coffee be at 100°? Answer: 8.84 min
26. Find the derivative of the function f(x) = e^{4x}. Answer: 4e^{4x}

- 27. Find the derivative of the function $f(x) = 3e^x x^4$. Answer: $3e^x 4x^3$
- 28. Find the derivative of the function $f(x) = x^2 e^{4x}$. Answer: $4x^2 e^{4x} + 2x e^{4x}$
- 29. Find the derivative of the function $f(x) = \frac{2x}{e^{2x}}$. Answer: $\frac{2-4x}{e^{2x}}$
- 30. Find the derivative of the function $f(t) = 18e^{0.5t} + 2$. Answer: $9e^{0.5t}$
- 31. Find the derivative of the function $f(x) = 3e^{2x+2}$. Answer: $6e^{2x+2}$
- 32. Find the derivative of the function $f(x) = (e^{2x} + 1)^{12}$. Answer: $24e^{2x}(e^{2x} + 1)^{11}$

33. Find the derivative of the function
$$f(x) = \frac{e^{2x} + 1}{e^{2x} - 1}$$
. Answer: $-4 \frac{e^{2x}}{(e^{2x} - 1)^2}$

- Find the second derivative of the function $f(t) = 3e^{-3t} + 4e^{-2t}$. Answer: $27e^{-3t} + 16e^{-2t}$
- 35. Find the interval(s) where $h(x) = xe^x$ is increasing and decreasing. Answer: Increasing: $(-1,\infty)$; decreasing: $(-\infty,-1)$

- 36. Find the equation of the tangent line to the graph of the function $y = e^{3x-1}$ at the point (1/3,1). Answer: y = 3x
- 37. Find the derivative of the function $f(x) = \ln(x^2 + 3)$. Answer: $\frac{2x}{x^2 + 3}$
- 38. Find the derivative of the function $f(x) = \frac{1}{\ln x}$. Answer: $\frac{-1}{x(\ln x)^2}$

39. Find the derivative of the function $f(x) = x^2 \ln x$. Answer: $x + 2x \ln x$

40. Find the derivative of the function $f(x) = \ln\left(\frac{2}{3x^5}\right)$. Answer: $\frac{-5}{x}$

41. Find the derivative of the function $f(x) = e^{2x} \ln(x+2)$. Answer: $\frac{e^{2x}}{x+2} + 2e^{2x} \ln(x+2)$

- 42. Use logarithmic differentiation to find the derivative of the function $y = (2x+1)^2 (x+3)^3$. Answer: $5(2x+3)(2x+1)(x+3)^2$
- 43. Use logarithmic differentiation to find the derivative of the function $y = \sqrt[3]{x+4}(2x+3)^3$. Answer: $\sqrt[3]{x+4}(2x+3)^3 \left[\frac{1}{3(x+4)} + \frac{6}{2x+3}\right]$

44. Find the interval(s) on which $f(x) = x - \ln x$ is increasing and the interval(s) on which it is decreasing. Answer: Increasing: $(1, \infty)$; decreasing: (0,1)

45. Let
$$f(x) = xe^{2x}$$
.

(a) Find the interval(s) on which f(x) is concave upward.Answer: $(-1, \infty)$ (b) Find the interval(s) on which f(x) is concave downward.Answer: $(-\infty, -1)$ (c) Find the x-coordinate(s) of any point(s) of inflection of f.Answer: x = -1