Chapter 5 Exponential and Logarithmic Functions

1. Evaluate (a) $3^{-2} \cdot 3^{5}$ Answer: 27 (b) $\left(\frac{1}{4}\right)^{-1 / 2}\left(\frac{1}{3}\right)^{-2}$

Answer: 18
c) $\quad 9^{3 / 2} 27^{-1 / 3}$
Answer: 9
(d) $3^{1 / 3}\left(9^{1 / 6}\right)^{2}$
Answer: 3
2. Simplify
(a) $\left(16 x^{4}\right)^{1 / 2}$
Answer: $4 x^{2}$
(b) $\left(2 x^{2} y^{3}\right)^{2}$
Answer: $4 x^{4} y^{6}$
(c) $\left(2 x^{4}\right)\left(-3 x^{-1}\right)$
Answer: $-6 x^{3}$
(d) $\frac{8 a^{-4}}{2 a^{-2}}$
Answer: $\frac{4}{a^{2}}$
(e) $\frac{7^{0}}{\left(3^{-2} x^{-1} y\right)^{2}}\left(\frac{81 x^{2}}{y^{2}}\right)$
(f) $\frac{\left(a^{-m} \cdot a^{n}\right)^{2}}{\left(a^{m-n}\right)^{-2}}$
Answer: 1
3. Solve the equation $5^{2 x}=5^{4}$ for x. Answer: $\boldsymbol{x}=2$
4. Solve the equation $2.4^{-2 x+1}=2.4^{-3}$ for x. Answer: $\boldsymbol{x}=\mathbf{2}$
5. Express in logarithmic form: $4^{2}=16$. Answer: $\log _{4} 16=2$
6. Express in logarithmic form: $\left(\frac{1}{3}\right)^{4}=\frac{1}{81}$. Answer: $\log _{1 / 3} \frac{1}{81}=4$
7. Use the fact that $\log _{6} 5=0.8982$ and $\log _{6} 3=0.6131$ to find $\log _{6} 15$. Answer: $\mathbf{1 . 5 1 1 3}$
8. Use the laws of logarithms to expand and simplify the expression: $\log x(x-1)^{2}$.

Answer: $\log (x)+2 \log (x-1)$
9. Use the laws of logarithms to expand and simplify the expression: $\log \frac{\sqrt{x-2}}{x^{2}-3}$.

Answer: $\frac{1}{2} \log (x-2)-\log \left(x^{2}-3\right)$
10. Use the laws of logarithms to simplify the expression: $\log x^{3}\left(x^{3}+2\right)^{1 / 3}$.

Answer: $3 \log x+\frac{1}{3} \log \left(x^{3}+2\right)$
11. Use the laws of logarithms to simplify the expression: $\ln \left(x e^{x}\right)$. Answer: $\ln x+x$
12. Use the laws of logarithms to simplify the expression: $\ln \left(\frac{3 e^{x}}{x}\right)$.Answer: $\ln 3+x-\ln x$
13. Sketch the graph of
(a) $f(x)=\log _{2} x$.
(b) $g(x)=\ln 3 x$
(c) $g(x)=\log _{2 / 5} x$
14. Use the laws of logarithms to solve the equation $\log _{3} x=3$.

Answer: $\boldsymbol{x}=\mathbf{2 7}$
15. Use the laws of logarithms to solve the equation $\log _{2} \frac{1}{4}=x$. Answer: $x=-2$
16. Use the laws of \log arithms to solve $\log (x+2)-\log (x-1)=\log 4$.Answer: $x=2$
17. Use the laws of logarithms to solve the equation $e^{3 x-1}=5$. Answer: $x=\frac{1}{3}+\frac{1}{3} \ln 5$
18. Use the laws of logarithms to solve the equation $5 e^{-0.3 t}-3=7$. Answer: $t=-\frac{10 \ln 2}{3}$
19. What is the interest from $\$ 20,000$, invested at 6.5% for 7 years, and compounded annually? Answer: \$11,079.73
20. What is the interest from $\$ 1$ million, invested at 18% for 4 years, and compounded annually? Answer: \$938,777.76
21. What is the future value of $\$ 1250$, invested at 9.5% for 5 years, if it is compounded semiannually? Answer: \$1988.16
22. What is the present value of $\$ 25,000$ in 2 years, if it is invested at 12% compounded monthly?

Answer: \$19,689.15
22. Find the accumulated amount after 5 years if $\$ 1800$ is invested at 8% per year compounded quarterly. Answer: \$2674.71
23. Find the accumulated amount after 5 years if $\$ 3200$ is invested at 7% per year compounded continuously. Answer: \$4541.02
24. A father wants to be able to provide his newborn baby with a college education.

To do this, the father estimates that he will need $\$ 120,000$ when his child turns
18. How much money should the father invest in an account that pays 7% interest per year compounded daily so that the account is worth $\$ 120,000$ in 18 years?
Answer: \$34,042.60
25. The temperature of a mug of coffee after t minutes is given by $T=80+100 e^{-0.182 t}$ where T is measured in degrees Fahrenheit.
(a) What is the initial temperature of the coffee? Answer: $\mathbf{1 8 0}^{\boldsymbol{\circ}} \mathbf{F}$
(b) When (to the nearest hundredth) will the coffee be at 100° ? Answer: 8.84 min
26. Find the derivative of the function $f(x)=e^{4 x}$. Answer: $4 e^{4 x}$
27. Find the derivative of the function $f(x)=3 e^{x}-x^{4}$.

Answer: $3 e^{x}-4 x^{3}$
28. Find the derivative of the function $f(x)=x^{2} e^{4 x}$.

Answer: $4 x^{2} e^{4 x}+2 x e^{4 x}$
29. Find the derivative of the function $f(x)=\frac{2 x}{e^{2 x}}$.

Answer: $\frac{2-4 x}{e^{2 x}}$
30. Find the derivative of the function $f(t)=18 e^{0.5 t}+2$. Answer: $9 e^{0.5 t}$
31. Find the derivative of the function $f(x)=3 e^{2 x+2}$. Answer: $6 e^{2 x+2}$
32. Find the derivative of the function $f(x)=\left(e^{2 x}+1\right)^{12}$. Answer: $24 e^{2 x}\left(e^{2 x}+1\right)^{11}$
33. Find the derivative of the function $f(x)=\frac{e^{2 x}+1}{e^{2 x}-1}$. Answer: $-4 \frac{e^{2 x}}{\left(e^{2 x}-1\right)^{2}}$

Find the second derivative of the function $f(t)=3 e^{-3 t}+4 e^{-2 t}$. Answer: $27 e^{-3 t}+16 e^{-2 t}$
35. Find the interval(s) where $h(x)=x e^{x}$ is increasing and decreasing.

Answer: Increasing: $(-1, \infty)$; decreasing: $(-\infty,-1)$
36. Find the equation of the tangent line to the graph of the function $y=e^{3 x-1}$ at the point (1/3,1). Answer: $y=3 x$
37. Find the derivative of the function $f(x)=\ln \left(x^{2}+3\right)$. Answer: $\frac{2 x}{x^{2}+3}$
38. Find the derivative of the function $f(x)=\frac{1}{\ln x}$. Answer: $\frac{-1}{x(\ln x)^{2}}$
39. Find the derivative of the function $f(x)=x^{2} \ln x$. Answer: $x+2 x \ln x$
40. Find the derivative of the function $f(x)=\ln \left(\frac{2}{3 x^{5}}\right)$. Answer: $\frac{-5}{x}$
41. Find the derivative of the function $f(x)=e^{2 x} \ln (x+2)$. Answer: $\frac{e^{2 x}}{x+2}+2 e^{2 x} \ln (x+2)$
42. Use logarithmic differentiation to find the derivative of the function $y=(2 x+1)^{2}(x+3)^{3}$. Answer: $5(2 x+3)(2 x+1)(x+3)^{2}$
43. Use logarithmic differentiation to find the derivative of the function

$$
y=\sqrt[3]{x+4}(2 x+3)^{3} . \quad \text { Answer: } \sqrt[3]{x+4}(2 x+3)^{3}\left[\frac{1}{3(x+4)}+\frac{6}{2 x+3}\right]
$$

44. Find the interval(s) on which $f(x)=x-\ln x$ is increasing and the interval(s) on which it is decreasing.

Answer: Increasing: $(1, \infty)$; decreasing: $(0,1)$
45. Let $f(x)=x e^{2 x}$.
(a) Find the interval(s) on which $f(x)$ is concave upward.
Answer: $(-1, \infty)$
(b) Find the interval(s) on which $f(x)$ is concave downward.
(c) Find the x-coordinate(s) of any point(s) of inflection of f.

Answer: $(-\infty,-1)$
Answer: $x=-1$

