Main Points from Linear Algebra

I System of Equations.

a) Express an equation of the form

$$
\begin{array}{ll}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & =b_{2} \\
& \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =b_{m}
\end{array}
$$

in matrix form and find its augmented matrix.
b) What are elementary row operations?
c) What do we mean by two matrices are (row) equivalent?
d) To solve $A X=b$, apply rref to the augmented matrix $[A \mid b]$. Suppose the rref of the augmented matrix is $[C \mid d]$. Then the solution of $A X=b$ is the same as that of $C X=d$.
e) If A is an invertible matrix, then the solution of $A X=b$ is given by $X=A^{-1} b$.

II The Determinant. (In what follows all matrices are $n \times n$).

a) $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$
b) $\left|\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right|=a\left|\begin{array}{ll}e & f \\ h & i\end{array}\right|-b\left|\begin{array}{ll}d & f \\ g & i\end{array}\right|+c\left|\begin{array}{ll}d & e \\ g & h\end{array}\right|=a e i-a f h-b d i+d f g+c d h-c e g$
c) Give a procedure for the determinant of a 4×4 matrix and then generalize to any $n \times n$ matrix.
d) If B is obtained from A by interchanging two rows of A, then $\operatorname{det}(B)=-\operatorname{det}(A)$
e) If B is obtained from A by multiplying a row of A by k, then $\operatorname{det}(B)=k \operatorname{det}(A)$.
f) If B is obtained from A by adding a multiple of a row of A to another row of A, then $\operatorname{det}(B)=\operatorname{det}(A)$.
g) $\operatorname{det}(k A)=k^{n} \operatorname{det}(A)$.
h) $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.
i) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.
j) If $\operatorname{det}(A) \neq 0$, then $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$.
k) If A has a zero row, then $\operatorname{det}(A)=0$.
l) If a row of A is a multiple of another row of A, then $\operatorname{det}(A)=0$.
m) If $\operatorname{det}(A) \neq 0$, then the system $A X=b$ has a unique solution and the solution can be found by the formula

$$
x_{i}=\frac{\operatorname{det}\left(A_{i}\right)}{\operatorname{det}(A)}
$$

where A_{i} is the matrix obtained by replacing the ith column of A by b.

III Linear Independence and Basis

a) A vector v in a vector space V is called a linear combination of vector $v_{1}, v_{2}, v_{3}, \cdots, v_{m}$, iff we can find numbers $x_{1}, x_{2}, x_{3}, \cdots, x_{m}$ such that

$$
v=x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{m} v_{m}
$$

b) If $S=\left\{v_{1}, v_{2}, v_{3}, \cdots, v_{m}\right\}$ is a set of m vectors, we say S is a linearly independent set iff

$$
x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{m} v_{m}=0
$$

holds only if

$$
x_{1}=x_{2}=x_{3}=\cdots=x_{n}=0
$$

If S is not linearly independent, we call it a linearly dependent set.
c) Any set of vectors that contains the zero vector is a linearly dependent set. Also if $S=\left\{v_{1}, v_{2}\right\}$ has two vectors in it, then S is linearly independent iff $v_{1}=c v_{2}$ for some number c.
d) A set $S\left\{v_{1}, v_{2}, v_{3}, \cdots, v_{m}\right\}$ is said to span V if any vector v in V is a linear combination of the vectors in S.
e) A set $S\left\{v_{1}, v_{2}, v_{3}, \cdots, v_{m}\right\}$ is said to be a basis for V if S is linearly independent and also spans V.
f) Any two bases of a vector space V have the same number of elements. This number is called the dimension of V and is denoted by $\operatorname{dim} \mathbf{V}$.
g) Suppose $\operatorname{dim} V=n$ and let $S=\left\{v_{1}, v_{2}, v_{3}, \cdots, v_{m}\right\}$ be a set of m vectors. If $m>n$, the S is linearly dependent. On the other hand, if $m<n$, then S does not span V. Thus, a basis of V contains the maximum number of linearly independent vectors and the minimum number of vectors that can span V.
h) If $v_{1}, v_{2}, v_{3}, \cdots, v_{n}$, are n vectors in R^{n}, then they are linearly independent iff $\operatorname{det}(A) \neq 0$, where A is the matrix whose columns are $v_{1}, v_{2}, v_{3}, \cdots, v_{m}$.
i) Let $V=R^{m}$ and let $S=\left\{v_{1}, v_{2}, v_{3}, \cdots, v_{n}\right\}$ Suppose $W=\operatorname{Span} S$. Here is the procedure to find a basis of W consisting of elements of S.
Step 1 Construct a matrix A whose columns are the vectors $v_{1}, v_{2}, \cdots, v_{n}$.
Step 2 Apply rref to A.
Step 3 The vectors corresponding to the columns of containing the leading 1's form a basis for W.
j) Suppose $S=\left\{v_{1}, v_{2}, v_{3}, \cdots, v_{n}\right\}$ is a linearly independent set of vectors in V, where $\operatorname{dim} V=m$, and $n<m$. Here is a procedure to find a basis for V containing the elements of S.

Step 1 Let $T=\left\{v_{1}, v_{2}, v_{3}, \cdots, v_{n}, e_{1}, e_{2}, \cdots, e_{m}\right\}$, where $e_{1}=(1,0,0, \cdots, 0), e_{2}=(0,1,0, \cdot 0), \cdots e_{m}=$ $(0,0,0, \cdots 1)$.
Step 2 Apply the steps of (i) above to T.

IV Eigenvalues and Eigenvectors

a) Let A be an $n \times n$ matrix. We say that a number λ is an eigenvalue of A iff there exits a nonzero vector X such that $A X=\lambda X$. The vector X is called an eigenvector corresponding to the eigenvalue λ.
b) To find eigenvalues of a given matrix A, we solve its characteristic equation:

$$
\operatorname{det}\left(A-\lambda I_{n}\right)=0
$$

c) To find an eigenvector corresponding to an eigenvalue $l a m b d a_{1}$, we solve the matrix equation

$$
\left(A-\lambda_{1} I_{n}\right) X=0
$$

Apply rref to the coefficient matrix $A-\lambda_{1} I_{n}$. At least one row at the bottom of the rref must be a zero row. Then you pick a nonzero solution from the infinitely many possible solutions!.
d) A matrix A is diagonalizable(that is, there exists a nonsingular matrix P and a diagonal matrix D such that $P A P^{-1}=D$) if all the roots of its characteristic polynomial are real and distinct. In fact, if $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ are distinct real eigenvalues of A and $v_{1}, v_{2}, \cdot, v_{n}$ are eigenvectors corresponding to these eigenvalues, the we can take P to be the matrix whose columns are $v_{1}, v_{2}, \cdot, v_{n}$ and D is the diagonal matrix whose elements on the diagonal are $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$.

V Sqaure Matrices

1) The row rank of a matirx is defined to be the number of linearly independent row vectors of A, while the column rank of A is the number of linearly independent column vectors of A. It is known that $\operatorname{rowrank}(\mathbf{A})=\operatorname{columnrank}(\mathbf{A})$. The rank of a matix A is then defined to be the row rank of A.
2) The nullity of a matrix A is defined to be the dimension of the solution space of $A X=0$. The rank and nullity of A are related by $\operatorname{rank}(A)+\operatorname{Nullity}(A)=n$.
3) If A is an $n \times n$ matrix, the following are equivalent.
a) A is invertible.
b) $A X=0$ has only trivial solution.
c) The reduced row-echelon form of A is I_{n}.
d) $A X=b$ has a unique solution for any b.
e) $\operatorname{det}(A) \neq 0$
f) The column vectors of A are linearly independent.
g) The row vectors of A are linearly independent.
h) The row vector of A span R^{n}.
i) The column vectors of A span R^{n}.
j) The column vectors of A form a basis for R^{n}.
k) The row vectors of A form a basis for R^{n}.
l) The rank of A is n.
m) The nullity of A is 0 .
n) $\lambda=0$ is not an eigenvalue of A.

NOTE: The web site http://www.rowan.edu/math/HASSEN/Mathematica/index.html contains a helpful manual for a TI 89(6 pages) for linear algebra.

