MATH. FOR ENG. ANAL. I REVIEW PROBLEMS

1. Let
$$f(x,y) = \frac{1}{\sqrt{x^2 + y^2 - 4}}$$

a) Find f(3,1). [Answer: $\frac{\sqrt{6}}{6}$]

- b) Sketch and shade the region where f is continuous.
- **2.** Evaluate $\lim_{(x,y)\to(1,2)} (x^2 + 3y)$. [Answer: 7]

3. Show that $\lim_{(x,y)\to(0,0)} \frac{x^2}{x^2+y^2}$ does not exist. [Answer: Along x = 0 the limit is 0, whereas along y = 0 the limit equals 1.]

- **4.** Sketch the graph of the surface $f(x, y) = x^2 + y^2$.
- **5.** Which of the following is the same as f_{xyy} ? [Answer: b]

a)
$$\frac{\partial^3 f}{\partial x \partial^2 y}$$
 or b) $\frac{\partial^3 f}{\partial^2 y \partial x}$

- 6. Find $\lim_{(x,y)\to(0,0)} \frac{x^4 y^4}{x^2 + y^2}$. [Answer: 0]
- 7. If $z = x^3 + 4xy y^2$, then find
- a) $\frac{\partial z}{\partial x}$ [Answer: $3x^2 + 4y$] b) $\frac{\partial z}{\partial y}(0,2)$ [Answer: -4]

8. Use implicit differentiation to find $\frac{\partial z}{\partial x}$ if $x^2 + y^2 + yz^2 = 5$. [Answer: $\frac{-x}{yz}$]

9. If
$$f(x,y) = x^3y^5 - 2x^2y + x$$
, then find f_{xxy} . [Answer: $30xy^4 - 4$]

10. Let
$$W = e^{x^2 + 4y^2 - z^2}$$
. Find $\frac{\partial w}{\partial y}(3, 2, -5)$. [Answer: 16]

11. If
$$f(x,y) = \frac{xy}{\sqrt{x+y}}$$
 for $x+y > 0$, then find f_x . [Answer: $\frac{xy+2y^2}{2(x+y)^{3/2}}$]

12. Let z = f(x, y) where f has continuous partial derivatives. If x = v - u and y = 2v - u, then which of the following is equal to $\frac{\partial z}{\partial u} + \frac{\partial z}{\partial v}$? [Answer: c]

a) $-\frac{\partial z}{\partial y}$ b) $\frac{\partial z}{\partial x}$ c) $\frac{\partial z}{\partial y}$ d) $\frac{\partial z}{\partial x} - \frac{\partial z}{\partial y}$

13. a) Find an equation of the plane tangent to the surface $z = x^2 + y^2x - 2$ at the point (1, 1, 0). [Answer: 3x + 2y - z - 5 = 0]

b) Find an equation of the normal line to the surface $z = x^2 + y^2x - 2$ at the point (1, 1, 0). [Answer: x = 1 + 3t, y = 1 + 2t, z = -t]

14. What is the directional derivative of $f(x, y) = \frac{x}{x+y}$ at the point P(1,0) in the direction of the vector a = -3i + 4j. [Answer: $-\frac{4}{5}$]

15. If y is a differentiable function of x such that $yx + x^2y^2 - 2 = 0$, then find $\frac{dy}{dx}$. [Answer: $-\frac{y + 2xy^2}{x + 2x^2y}$]

16. Suppose F(x, y) = xy, x = x(t) and y = y(t). If x(1) = 1, y(1) = 3, x'(1) = 2 and y'(1) = -3, then find $\frac{dF}{dt}|_{t=1}$. [Answer: 3]

17. Find a unit vector that is normal to the surface $z = \frac{1}{xy^2}$ at the point (1, -1, 1). [Answer: $-\frac{\sqrt{6}}{6}\mathbf{i} + \frac{\sqrt{6}}{3}\mathbf{j} - \frac{\sqrt{6}}{6}\mathbf{k}$]

18. If $f(x,y) = x^3 + xy + y^2$, x = 2u + v, and y = u - v, then use the chain rule to find $\frac{\partial f}{\partial u}$. [Answer: $24u^2 + 24uv + 6u - 3v + 6v^2$]

19. Use the chain rule to find $\frac{dz}{dt}$ if $z = 3x^2y^3$, $x = t^4$ and $y = t^2$. [Answer: $42t^{13}$]

20. Let $f(x, y) = x^3 y^3 - xy$.

a) Find the gradient of f, $\nabla f(x, y)$. [Answer: $(3x^2y^3 - y)\mathbf{i} + (3x^3y^2 - x)\mathbf{j}$]

b) Find a unit vector u for which the directional derivative of f at (1,-1) is zero. i.e. Find u such that $D_u f(1,-1) = 0$. [Answer: $\frac{\sqrt{2}}{2}\mathbf{i} + \frac{\sqrt{2}}{2}\mathbf{j}$]

21. Use the chain rule to find $\frac{dz}{dy}$ if z = xy and $x = y \cos y$. [Answer: $-y^2 \sin y + 2y \cos y$]

22. The temperature, T, at a point (x, y) on a semicircular plate is given by $T = 3x^2y - y^3 + 273$ degrees Celsius.

a) Find the temperature at (1,2). [Answer: 271]

b) Find the rate of change of temperature at (1,2) in the direction of a = i - 2j. [Answer: $6\sqrt{5}$]

c) Find a unit vector in the direction in which the temperature increases most rapidly at (1,2). [Answer: $\frac{4}{5}\mathbf{i} - \frac{3}{5}\mathbf{j}$]

d) Find the maximum rate of increase in temperature at the point (1,2). [An-swer: 15]

23. Find the maximum and minimum value of $f(x, y) = x^2y^2$ subject to the constraint $4x^2 + y^2 = 8$. Solve the above problem by using two methods:

Method 1: Use the constraint to eliminate a variable.

Method 2: Use the method of Lagrange multipliers.

[Answer: Maximum = f(-1, -2) = f(1, -2) = f(1, 2) = f(-1, 2) = 4, Minimum = $f(0, -\sqrt{8}) = f(0, \sqrt{8}) = f(-\sqrt{2}, 0) = f(\sqrt{2}, 0) = 0$.]

24. Let $f(x, y) = x^3 + y^3 - 3x - 3y$.

a) Find the critical points of f. [Answer: (-1, -1), (-1, 1), (1, -1), (1, 1)]

b) Find the point(s) at which f has a saddle point. [Answer: (1, -1), (-1, 1)]

c) What are the point(s) at which f has a relative maximum? [Answer: (-1,-1)]

d) Find the point(s) at which f has a relative minimum. [Answer: (1,1)]

25. Find an equation of the tangent plane to the surface xyz+2x+3y+3z+2=0 at the point P(1, 2, -2). [Answer: -2x + y + 5z + 10 = 0]

26. A company manufactures two products. The total revenue from x_1 units of product 1 and x_2 units of product 2 is

$$R = -2x_1^2 - 3x_2^2 + 3x_1x_2 + 100x_2 + 1600x_1.$$

Find x_1 and x_2 so as to maximize the revenue.

[Answer: $x_1 = 660$ and $x_2 = \frac{1040}{3} \approx 346.67$]

27. Let $f(x,y) = x^2 - 3y^2 - 2x + 6y$ and R be the closed square region with vertices (0, 0), (0, 2), (2, 2) and (2, 0).

a) Find all critical point(s) of f that lie in the interior of R. [Answer: (1,1)]

b) Find the absolute maximum value of f on R. [Answer: Absolute maximum = f(2,1) = f(0,1) = 3],

c) Find the absolute minimum value of f on R. [Answer: Absolute minimum = f(1,0) = f(1,2) = -1]

28. Suppose that $x^2 - 3xyz^2 + yz - 2 = 0$ defines z implicitly as a function of x and y. Find $\frac{\partial z}{\partial x}$. [Answer: $\frac{2x - 3yz^2}{6xyz - y}$]

29. Find the least squares regression line for the points (0,0), (1,1), (3,4), (4,2) and (5,5). [Answer: $y = \frac{37}{43}x + \frac{7}{43}$]

30. Let *C* be the curve of intersection of the cylinder $x^2 + y^2 = 5$ and the plane z = 2x. Find a symmetric equation of the tangent line to *C* at the point (1,-2,2). [Answer: $\frac{x-1}{4} = \frac{y+2}{2} = \frac{z-2}{8}$]

31. Use Lagrange multipliers to find the maximum of f(x, y) = 2xy subject to the constraint $\frac{x^2}{4} + \frac{y^2}{2} = 1$. [Answer: Maximum $= f(\sqrt{2}, 1) = f(-\sqrt{2}, -1) = 2\sqrt{2}$]