MATH. FOR ENG. ANAL. I REVIEW PROBLEMS

1. Let $f(x, y)=\frac{1}{\sqrt{x^{2}+y^{2}-4}}$
a) Find $f(3,1)$. [Answer: $\frac{\sqrt{6}}{6}$]
b) Sketch and shade the region where f is continuous.
2. Evaluate $\lim _{(x, y) \rightarrow(1,2)}\left(x^{2}+3 y\right)$. [Answer: 7]
3. Show that $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}}{x^{2}+y^{2}}$ does not exist. [Answer: Along $x=0$ the limit is 0 , whereas along $y=0$ the limit equals 1.]
4. Sketch the graph of the surface $f(x, y)=x^{2}+y^{2}$.
5. Which of the following is the same as $f_{x y y}$? [Answer: b]
a) $\frac{\partial^{3} f}{\partial x \partial^{2} y}$ or
b) $\frac{\partial^{3} f}{\partial^{2} y \partial x}$
6. Find $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-y^{4}}{x^{2}+y^{2}}$. [Answer: 0]
7. If $z=x^{3}+4 x y-y^{2}$, then find
a) $\frac{\partial z}{\partial x} \quad\left[\right.$ Answer: $\left.3 x^{2}+4 y\right]$
b) $\frac{\partial z}{\partial y}(0,2) \quad$ [Answer: -4$]$

8. If $f(x, y)=x^{3} y^{5}-2 x^{2} y+x$, then find $f_{x x y}$. [Answer: $30 x y^{4}-4$]
9. Let $W=e^{x^{2}+4 y^{2}-z^{2}}$. Find $\frac{\partial w}{\partial y}(3,2,-5)$. [Answer: 16]
10. If $f(x, y)=\frac{x y}{\sqrt{x+y}}$ for $x+y>0$, then find f_{x}. [Answer: $\frac{x y+2 y^{2}}{2(x+y)^{3 / 2}}$]
11. Let $z=f(x, y)$ where f has continuous partial derivatives. If $x=v-u$ and $y=2 v-u$, then which of the following is equal to $\frac{\partial z}{\partial u}+\frac{\partial z}{\partial v}$? [Answer: c]
a) $-\frac{\partial z}{\partial y}$
b) $\frac{\partial z}{\partial x}$
c) $\frac{\partial z}{\partial y}$
d) $\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}$
12. a) Find an equation of the plane tangent to the surface $z=x^{2}+y^{2} x-2$ at the point $(1,1,0)$. [Answer: $3 x+2 y-z-5=0$]
b) Find an equation of the normal line to the surface $z=x^{2}+y^{2} x-2$ at the point (1, 1, 0). [Answer: $x=1+3 t, y=1+2 t, z=-t$]
13. What is the directional derivative of $f(x, y)=\frac{x}{x+y}$ at the point $\mathrm{P}(1,0)$ in the direction of the vector $a=-3 i+4 j$. [Answer: $-\frac{4}{5}$]
14. If y is a differentiable function of x such that $y x+x^{2} y^{2}-2=0$, then find $\frac{d y}{d x} . \quad\left[\right.$ Answer: $-\frac{y+2 x y^{2}}{x+2 x^{2} y}$]
15. Suppose $F(x, y)=x y, x=x(t)$ and $y=y(t)$. If $x(1)=1, y(1)=$ $3, x^{\prime}(1)=2$ and $y^{\prime}(1)=-3$, then find $\left.\frac{d F}{d t}\right|_{t=1}$. [Answer: 3]
16. Find a unit vector that is normal to the surface $z=\frac{1}{x y^{2}}$ at the point (1 , -1, 1). $\quad\left[\right.$ Answer: $\left.\quad-\frac{\sqrt{6}}{6} \mathbf{i}+\frac{\sqrt{6}}{3} \mathbf{j}-\frac{\sqrt{6}}{6} \mathbf{k}\right]$
17. If $f(x, y)=x^{3}+x y+y^{2}, x=2 u+v$, and $y=u-v$, then use the chain rule to find $\frac{\partial f}{\partial u}$. [Answer: $24 u^{2}+24 u v+6 u-3 v+6 v^{2}$]
18. Use the chain rule to find $\frac{d z}{d t}$ if $z=3 x^{2} y^{3}, x=t^{4}$ and $y=t^{2}$. [Answer: $\left.42 t^{13}\right]$
19. Let $f(x, y)=x^{3} y^{3}-x y$.
a) Find the gradient of $f, \nabla f(x, y)$. [Answer: $\left.\left(3 x^{2} y^{3}-y\right) \mathbf{i}+\left(3 x^{3} y^{2}-x\right) \mathbf{j}\right]$
b) Find a unit vector u for which the directional derivative of f at $(1,-1)$ is zero. i.e. Find u such that $D_{u} f(1,-1)=0 . \quad\left[\right.$ Answer: $\frac{\sqrt{2}}{2} \mathbf{i}+\frac{\sqrt{2}}{2} \mathbf{j}$]
20. Use the chain rule to find $\frac{d z}{d y}$ if $z=x y$ and $x=y \cos y$. [Answer: $\left.-y^{2} \sin y+2 y \cos y\right]$
21. The temperature, T, at a point (x, y) on a semicircular plate is given by $T=3 x^{2} y-y^{3}+273$ degrees Celsius.
a) Find the temperature at (1,2). [Answer: 271]
b) Find the rate of change of temperature at (1,2) in the direction of $a=i-2 j$. [Answer: $6 \sqrt{5}$]
c) Find a unit vector in the direction in which the temperature increases most rapidly at $(1,2)$. [Answer: $\frac{4}{5} \mathbf{i}-\frac{3}{5} \mathbf{j}$]
d) Find the maximum rate of increase in temperature at the point (1,2). [Answer: 15]
22. Find the maximum and minimum value of $f(x, y)=x^{2} y^{2}$ subject to the constraint $4 x^{2}+y^{2}=8$. Solve the above problem by using two methods:

Method 1: Use the constraint to eliminate a variable.
Method 2: Use the method of Lagrange multipliers.
[Answer: Maximum $=f(-1,-2)=f(1,-2)=f(1,2)=f(-1,2)=4$, Minimum $=f(0,-\sqrt{8})=f(0, \sqrt{8})=f(-\sqrt{2}, 0)=f(\sqrt{2}, 0)=0$.]
24. Let $f(x, y)=x^{3}+y^{3}-3 x-3 y$.
a) Find the critical points of f. $\quad[$ Answer: $(-1,-1),(-1,1),(1,-1),(1,1)]$
b) Find the point(s) at which f has a saddle point. [Answer: (1, -1$),(-1,1)$]
c) What are the point(s) at which f has a relative maximum? [Answer: $(-1,-1)]$
d) Find the point(s) at which f has a relative minimum. [Answer: $(1,1)$]
25. Find an equation of the tangent plane to the surface $x y z+2 x+3 y+3 z+2=0$ at the point $P(1,2,-2)$. [Answer: $-2 x+y+5 z+10=0$]
26. A company manufactures two products. The total revenue from x_{1} units of product 1 and x_{2} units of product 2 is

$$
R=-2 x_{1}^{2}-3 x_{2}^{2}+3 x_{1} x_{2}+100 x_{2}+1600 x_{1} .
$$

Find x_{1} and x_{2} so as to maximize the revenue.
[Answer: $x_{1}=660$ and $x_{2}=\frac{1040}{3} \approx 346.67$]
27. Let $f(x, y)=x^{2}-3 y^{2}-2 x+6 y$ and R be the closed square region with vertices $(0,0),(0,2),(2,2)$ and $(2,0)$.
a) Find all critical point(s) of f that lie in the interior of R. [Answer: $(1,1)]$
b) Find the absolute maximum value of f on R. [Answer: Absolute maximum $=f(2,1)=f(0,1)=3]$,
c) Find the absolute minimum value of f on R. [Answer: Absolute minimum $=f(1,0)=f(1,2)=-1]$
28. Suppose that $x^{2}-3 x y z^{2}+y z-2=0$ defines z implicitly as a function of x and y. Find $\frac{\partial z}{\partial x}$. [Answer: $\frac{2 x-3 y z^{2}}{6 x y z-y}$]
29. Find the least squares regression line for the points $(0,0),(1,1),(3,4),(4,2)$ and $(5,5) . \quad\left[\right.$ Answer: $y=\frac{37}{43} x+\frac{7}{43}$]
30. Let C be the curve of intersection of the cylinder $x^{2}+y^{2}=5$ and the plane $z=2 x$. Find a symmetric equation of the tangent line to C at the point $(1,-2,2)$. [Answer: $\frac{x-1}{4}=\frac{y+2}{2}=\frac{z-2}{8}$]
31. Use Lagrange multipliers to find the maximum of $f(x, y)=2 x y$ subject to the constraint $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1 . \quad[$ Answer: \quad Maximum $=f(\sqrt{2}, 1)=f(-\sqrt{2},-1)=$ $2 \sqrt{2}]$

