
Real Analysis II

Chapter 7 Calculus

7.1 Sets of Measure Zero

Definition 7.1A The subset E of R is said to be of measure zero if for each ε > 0, there exists a finite
or a countable number of open intervals I1, I2, · · · such that

E ⊂ ∪nIn and
∑

n

|In| < ε.

Theorem 7.1 B If each of the subsets E1, E2, · · · of R is of measure zero, then ∪nEn is also of measure
zero.

Corollary 7.1C Every countable set is of measure zero. In particular the set of rational numbers is of
measure zero.

Definition 7.1D A statement is said to hold at almost every point of [a, b] (or almost everywhere
in [a, b]), if the set of points of [a, b] at which the statement does not hold is of measure zero.

Notation It is common to write a.e for almost everywhere. Thus ”f if continuous almost everywhere in
[a, b]” can be written as ”f is continuous a.e in [a, b]. ”

7.2 Definition of the Riemann Integral

Definition 7.2A Let I be a bounded interval of real numbers and let f be a bounded function defined
on I. We define M [f ; I] and m[f ; I]by

M [f ; I] = sup
x∈I

f(x)

m[f ; I] = inf
x∈I

f(x)

Definition 7.2B A subdivision of the closed bounded interval [a, b] we mean a finite subset {x0, x1, · · ·xn

of [a, b] such that
a = x0 < x1 < x2 < · · · xn = b.

If σ and τ are two subdivisions of [a, b], we say that τ is a refinement of σ if σ ⊂ τ .

If σ = {{x0, x1, · · · xn} is a subdivision of [a, b], then the closed intervals

I1 = [x0, x1], I2 = [x1, x2], · · · In = [xn−1, xn]

are called the components of σ.

Definition 7.2C Let f be a bounded function on [a, b] and let σ be a subdivision of [a, b] with components
I1, I2, · · · In. We define U [f ;σ], called the upper sum for f corresponding to σ, by

U [f ;σ] =
n∑

k=1

M [f ; Ik]|Ik|.

Here |Ik| is the length of Ik which is given by Ik = xk − xk−1.



The lower sum for f corresponding to σ, denoted by L[f ;σ] is defined by

L[f ;σ] =
n∑

k=1

m[f ; Ik]|Ik|.

Remarks. 1) For any subdivision σ we have L[f ;σ] ≤ U [f ;σ]

2) If f is continuous and positive on [a, b], then U [f ;σ] is the area of the n rectangles each of which has
one the Ik as base and whose height is equal to the maximum value of the function on the interval Ik. In other
words, U [f ;σ] is the sum of the areas of the ”circumscribed rectangles”. Similarly, L[f ;σ] is the sum of the
area of the ”inscribed rectangles”. (Draw a graph to show this)

Lemma 7.2D Let f be a bounded function on [a, b]. Then every upper sum for f is greater than or equal
to every lower sum for f . That is, if τ and σ are any two subdivisions of [a, b], then

U [f ;σ] ≥ L[f ; τ ].

Remarks. 1) It follows that
g.l.b U [f ; τ ] ≥ l.u.b L[f ;σ]

where the g.l.b and the l.u.b are taken over all subdivisions of [a, b]. (This assumption will be in effect through-
out the chapter.)

Definition 7.2E Let f be a bounded function on [a, b]. We define the upper integral of f over [a, b]
by ∫ b

a
f(x) dx = g.l.b U [f ; τ ]

We define the lower integral of f over [a, b] by
∫ b

a
f(x) dx = l.u.b L[f ; τ ]

It is common to denote upper integrals and lower integrals of f , respectively, by
∫ b

a
f and

∫ b

a
f.

Remarks. 1) For any bounded function f on [a, b] we have
∫ b

a
f ≤

∫ b

a
f.

For continuous functions, we will show that upper integral and lower integrals are equal.

2) If f is denied on [0, 1] by

f(x) =

{
1 if x is rational
0 if x is irrational,

then ∫ 1

0
f = 1 and

∫ 1

0
f = 0.



Definition 7.2F If f is bounded on [a, b], we say that f is Riemann integrable on [a, b] if
∫ b

a
f ≤

∫ b

a
f.

In this case, we define the Riemann integral of f over [a, b] as
∫ b

a
f(x) dx =

∫ b

a
f =

∫ b

a
f ≤

∫ b

a
f.

The class of all Riemann integrable functions is doted by R[a, b]

Theorem 7.2G Let f be a bounded function on [a, b]. Then f ∈ R[a, b] if and only if, for each ε > 0,
there exists a subdivision σ of [a, b] such that

U [f ;σ < L[f ;σ] + ε.

7.3 Existence of the Riemann Integral

Theorem 7.3A Let f be a bounded function on [a, b]. Then f ∈ R[a, b] if and only if f is continuous at
almost every point of [a, b].

7.4 Properties of the Riemann Integral

Theorem 7.4 A If f ∈ R[a, b] and a < c < b, then f ∈ R[a, c], f ∈ R[c, b] and
∫ b

a
f =

∫ c

a
f +

∫ b

c
f.

Theorem 7.4B If f ∈ R[a, b] and λ is any real number, then λf ∈ R[a, b] and
∫ b

a
λf = λ

∫ b

a
f.

Theorem 7.4C If f, g ∈ R[a, b], then f + g ∈ R[a, b] and
∫ b

a
(f + g) =

∫ b

a
f +

∫ b

a
g.

Lemma 7.4D If f ∈ R[a, b] and if
f(x) ≥ 0

almost everywhere in [a, b], then ∫ b

a
f ≥ 0.



Corollary 7.4E If f ∈ R[a, b] and if
f(x) ≤ g(x)

almost everywhere in [a, b], then ∫ b

a
f ≥≤

∫ b

a
g.

Corollary 7.4F If f ∈ R[a, b], then If |f | ∈ R[a, b] and
∣∣∣∣∣

∫ b

a
f

∣∣∣∣∣ ≤
∫ b

a
|f |.

Remark If b < a, then we define ∫ b

a
f to be −

∫ a

b
f.

7.5 Derivative

Definition 7.5A Let f be defined on an interval J . If c ∈ J , we say that f has a derivative at c if

lim
x→c

f(x) − f(c)

x− c

exists. If this limit exists, we denote it by f ′(c). We also say that f is differentiable at c. We may also say
that f ′(c) exists. Note that the above limit could be restated as

lim
h→0

f(c + h) − f(c)

h
Theorem 7.5B If f has a derivative at c, then f is continuous at c.

Remark If f is not continuous at c then f is not differentiable at c. On the other hand, the function
f(x) = |x| is continuous at c = 0 but not differentiable at c = 0.

Theorem 7.5 C If f and g both have derivative at c, then do f + g , f − g, fg, and

(f + g)′(c) = f ′(c) + g′(c)
(f − g)′(c) = f ′(c) − g′(c)

(fg)′(c) = f ′(c)g(c) + f(c)g′(c)

Furthermore, if g(c) 6= 0, then f/g has derivative at c and
(

f

g

)′

(c) =
f ′(c)g(c) − f(c)g′(c)

g(c)2
.

Theorem 7.5 D(Chair Rule) If g has derivative at c and f has derivative at g(c), then f ◦ g has
derivative at c and

(f ◦ g)
′
(c) = f ′(g(c))g′(c).

Theorem 7.5 E Let f be one-to-one function and let φ be the inverse of f . If f is continuous at c and if
φ has derivative at d = f(c) with φ′(d) 6= 0, then f ′(c) exists and

f ′(c) =
1

φ′(d)
.



7.6 Rolle’s Theorem

Theorem 7.6 A Let f be a continuous function on [a, b]. If the maximum value of f is attained at
c ∈ (a, b) and if f ′(c) exists, then f ′(c) = 0.

Theorem 7.6 B Let f be a continuous function on [a, b]. If the minimum value of f is attained at
c ∈ (a, b) and if f ′(c) exists, then f ′(c) = 0.

Theorem 7.6 C (Rolle’s Theorem) Let f be continuous on [a, b] with f(a) = f(b) = 0. If f ′(x) exists
for every x ∈ (a, b), then there exists some point c ∈ (a, b) such that f ′(c) = 0.

Theorem 7.6 E If f has derivative at every point of [a, b], then f ′ takes on every value between f ′(a)
and f ′(b).

7.7 The Mean Value Theorem

Theorem 7.7 A ( The Mean Value Theorem If f is continuous on [a, b] and differentiable on (a, b),
then there exists a point c ∈ (a, b) such that

f ′(c) =
f(b) − f(a)

b − a
.

Theorem 7.7 B If f is continuous on [a, b] and differentiable on (a, b) and if f ′(x) > 0 for all x ∈ (a, b),
then f is strictly increasing on [a, b].

Theorem 7.7 C ( Generalized Mean Value Theorem If f, g are continuous on [a, b], g(a) 6= g(b),
if f, g are both differentiable on (a, b), and if f ′(x) and g′(x) are not both zero for any x ∈ (a, b), then there
exists a point c ∈ (a, b) such that

f ′(c)

g′(c)
=

f(b) − f(a)

g(b) − g(a)
.

7.8 The Fundamental Theorem of Calculus

Theorem 7.8 A (The First Fundamental Theorem of Calculus) If f is continuous on [a, b], and if

F (x) =
∫ x

a
f(t) dt,

for each x ∈ (a, b), then F ′(x) = f(x) for all x ∈ [a, b].

Theorem 7.8 C If f ′(x) = 0 for every x ∈ (a, b), then f(x) = f(a) for all x ∈ [a, b].

Theorem 7.8 D If f ′(x) = g′(x) for all x ∈ (a, b), then there exists a constant C such that

f(x) = g(x) + C for all x ∈ [a, b].



Theorem 7.8 E (The Second Fundamental Theorem of Calculus ) If f is a continuous function
on [a, b] and if

Φ′(x) = f(x) for all x ∈ (a, b),

then ∫ b

a
f(x) dx = Φ(b) − Φ(a).

Theorem 7.8 G Let φ be a function on [a, b] such that φ′ is continuous on [a, b]. Let A = φ(a) and
B = φ(b). Then, if f is continuous on φ([a, b]), we have

∫ B

A
f(x) dx =

∫ b

a
f [φ(u)]φ′(u) du.

7.9 Improper Integral

Definition Suppose f ∈R[a, s] for every s > a. We define

F (s) =
∫ s

a
f(x) dx.

We say ∫ ∞

a
f(x) dx

is convergent to A if
lim
s→∞

F (s) = A

If
∫∞
a f(x) dx does not converge, we say it diverges.

Example ∫ ∞

1

1

x2
dx convegres while

∫ ∞

1

1√
x
dx diverges.

Remark. If ∫ ∞

a
f and

∫ ∞

a
g

converge, the so does ∫ ∞

a
(f ± g),

and ∫ ∞

a
(f ± g) =

∫ ∞

a
f ±

∫ ∞

a
g

We also have ∫ ∞

a
λf = λ

∫ ∞

a
f.



Definition If f ∈ R[a, s] for every s > a and if
∫ ∞

a
|f(x)| dx

convegres, we say that ∫ ∞

a
f

converges absolutely

If ∫ ∞

a
f

convegres but ∫ ∞

a
|f |

divegres, we sat that converges conditionally.

Example The improper integral ∫ ∞

π

sinx

x
dx

converges conditionally. (For the proof see page 213-214 of the text.)

Theorem 7.9 A The improper integral ∫ ∞

1

1

x
dx

diveges.

Theorem 7.9 B Let f be a decreasing fucntion on [1,∞] such that f(x) ≥ 0 for all x. Then
∫ ∞

1
f

converges if and only if
∞∑

n=1

f(n)

convegres.

Definition We define ∫ a

−∞
f(x) dx = lim

s→∞

∫ a

−s
f(x) dx

provided the limit exists. If the limit exists we say
∫ a

−∞
f

converges and if the limit does not exist, we say the
∫ a

−∞
f

diverges.



7.10 Improper Integral (Continued)

Defintion Suppose f ∈R[a + ε, b] for every ε such that 0 < ε < b− a but f 6∈R[a, b]. Define

F (ε) =
∫ b

a+ε
f(x) dx.

We say the improper integral ∫ b

a
f(x) dx

converges to A if
lim
ε→0

F (ε) = A.

If the limit does not exist, we say ∫ b

a
f

divegres.

An improper integral of the form ∫ b

a
f

is called an improper intgeral of second kind.

Example ∫ 1

0
(1/

√
x)dx converges while

∫ 1

0
(1/x2)dx diverges.

Theorem 7.10 A The improper intgeral ∫ 1

0

1

x
is divergent.

Example Show that the improper intgeral
∫ 1

0

1√
1 − x2

dx

is convergenet.

Remrak There are other types of improper integrals that do not fall under either of the first or the
second kind. For example, the improper integral

∫ ∞

0

1

x2

is neither of fisrt kind or secon kind. Hoewever, we can break it up in the form
∫ ∞

0

1

x2
=
∫ 1

0

1

x2

∫ ∞

1

1

x2
.

In general if, for a fixed b > a, f ∈R[a + ε, b] for every ε such that 0 < ε < b − a but f 6∈R[a, b], we define
∫ ∞

a
f(x) dx =

∫ b

a
f(x) dx +

∫ ∞

b
f(x) dx


