Chapter 7 Calculus

7.1 Sets of Measure Zero

Definition 7.1A The subset *E* of **R** is said to be of **measure zero** if for each $\epsilon > 0$, there exists a finite or a countable number of open intervals I_1, I_2, \cdots such that

$$E \subset \bigcup_n I_n$$
 and $\sum_n |I_n| < \epsilon$.

Theorem 7.1 B If each of the subsets E_1, E_2, \cdots of **R** is of measure zero, then $\bigcup_n E_n$ is also of measure zero.

Corollary 7.1C Every countable set is of measure zero. In particular the set of rational numbers is of measure zero.

Definition 7.1D A statement is said to hold at almost every point of [a, b] (or almost everywhere in [a, b]), if the set of points of [a, b] at which the statement does not hold is of measure zero.

Notation It is common to write a.e for almost everywhere. Thus "f if continuous almost everywhere in [a, b]" can be written as "f is continuous a.e in [a, b]."

7.2 Definition of the Riemann Integral

Definition 7.2A Let I be a bounded interval of real numbers and let f be a bounded function defined on I. We define M[f; I] and m[f; I] by

$$M[f; I] = \sup_{x \in I} f(x)$$
$$m[f; I] = \inf_{x \in I} f(x)$$

Definition 7.2B A subdivision of the closed bounded interval [a, b] we mean a finite subset $\{x_0, x_1, \dots, x_n\}$ of [a, b] such that

$$a = x_0 < x_1 < x_2 < \cdots < x_n = b.$$

If σ and τ are two subdivisions of [a, b], we say that τ is a **refinement** of σ if $\sigma \subset \tau$.

If $\sigma = \{\{x_0, x_1, \dots, x_n\}$ is a subdivision of [a, b], then the closed intervals

$$I_1 = [x_0, x_1], I_2 = [x_1, x_2], \cdots I_n = [x_{n-1}, x_n]$$

are called the **components** of σ .

Definition 7.2C Let f be a bounded function on [a, b] and let σ be a subdivision of [a, b] with components $I_1, I_2, \dots I_n$. We define $U[f; \sigma]$, called the **upper sum for** f corresponding to σ , by

$$U[f;\sigma] = \sum_{k=1}^{n} M[f;I_k]|I_k|.$$

Here $|I_k|$ is the length of I_k which is given by $I_k = x_k - x_{k-1}$.

The lower sum for f corresponding to σ , denoted by $L[f;\sigma]$ is defined by

$$L[f;\sigma] = \sum_{k=1}^{n} m[f;I_k]|I_k|$$

Remarks. 1) For any subdivision σ we have $L[f;\sigma] \leq U[f;\sigma]$

2) If f is continuous and positive on [a, b], then $U[f; \sigma]$ is the area of the n rectangles each of which has one the I_k as base and whose height is equal to the maximum value of the function on the interval I_k . In other words, $U[f; \sigma]$ is the sum of the areas of the "circumscribed rectangles". Similarly, $L[f; \sigma]$ is the sum of the area of the "inscribed rectangles". (Draw a graph to show this)

Lemma 7.2D Let f be a bounded function on [a, b]. Then every upper sum for f is greater than or equal to every lower sum for f. That is, if τ and σ are any two subdivisions of [a, b], then

$$U[f;\sigma] \ge L[f;\tau].$$

Remarks. 1) It follows that

$$g.l.b \ U[f;\tau] \ge l.u.b \ L[f;\sigma]$$

where the g.l.b and the l.u.b are taken over all subdivisions of [a, b]. (This assumption will be in effect throughout the chapter.)

Definition 7.2E Let f be a bounded function on [a, b]. We define the **upper integral of** f over [a, b] by _____

$$\int_{a}^{b} f(x) \, dx = g.l.b \, U[f;\tau]$$

We define the **lower integral of** f **over** [a, b] by

$$\underline{\int_{a}^{b}} f(x) \, dx = l.u.b \, L[f;\tau]$$

It is common to denote upper integrals and lower integrals of f, respectively, by

$$\overline{\int_a^b} f$$
 and $\underline{\int_a^b} f$.

Remarks. 1) For any bounded function f on [a, b] we have

$$\underline{\int_{a}^{b}} f \le \overline{\int_{a}^{b}} f.$$

For continuous functions, we will show that upper integral and lower integrals are equal.

2) If f is denied on [0, 1] by

$$f(x) = \begin{cases} 1 & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$$

then

$$\overline{\int_0^1} f = 1$$
 and $\underline{\int_0^1} f = 0.$

Definition 7.2F If f is bounded on [a, b], we say that f is **Riemann integrable on** [a, b] if

$$\underline{\int_{a}^{b}} f \le \overline{\int_{a}^{b}} f.$$

In this case, we define the **Riemann integral of** f over [a, b] as

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f = \underbrace{\int_{a}^{b}}_{a} f \le \overline{\int_{a}^{b}} f.$$

The class of all Riemann integrable functions is doted by $\mathcal{R}[a, b]$

Theorem 7.2G Let f be a bounded function on [a, b]. Then $f \in \mathcal{R}[a, b]$ if and only if, for each $\epsilon > 0$, there exists a subdivision σ of [a, b] such that

$$U[f;\sigma < L[f;\sigma] + \epsilon.$$

7.3 Existence of the Riemann Integral

Theorem 7.3A Let f be a bounded function on [a, b]. Then $f \in \mathcal{R}[a, b]$ if and only if f is continuous at almost every point of [a, b].

7.4 Properties of the Riemann Integral

Theorem 7.4 A If $f \in \mathcal{R}[a, b]$ and a < c < b, then $f \in \mathcal{R}[a, c]$, $f \in \mathcal{R}[c, b]$ and $\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$

Theorem 7.4B If $f \in \mathcal{R}[a, b]$ and λ is any real number, then $\lambda f \in \mathcal{R}[a, b]$ and

$$\int_{a}^{b} \lambda f = \lambda \int_{a}^{b} f.$$

Theorem 7.4C If $f, g \in \mathcal{R}[a, b]$, then $f + g \in \mathcal{R}[a, b]$ and

$$\int_a^b (f+g) = \int_a^b f + \int_a^b g.$$

Lemma 7.4D If $f \in \mathcal{R}[a, b]$ and if

 $f(x) \ge 0$

almost everywhere in [a, b], then

$$\int_{a}^{b} f \ge 0.$$

Corollary 7.4E If $f \in \mathcal{R}[a, b]$ and if

$$f(x) \le g(x)$$

almost everywhere in [a, b], then

$$\int_{a}^{b} f \ge \leq \int_{a}^{b} g$$

Corollary 7.4F If $f \in \mathcal{R}[a, b]$, then If $|f| \in \mathcal{R}[a, b]$ and

$$\left|\int_{a}^{b} f\right| \leq \int_{a}^{b} |f|.$$

Remark If b < a, then we define

$$\int_a^b f$$
 to be $-\int_b^a f$.

7.5 Derivative

Definition 7.5A Let f be defined on an interval J. If $c \in J$, we say that f has a derivative at c if

$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

exists. If this limit exists, we denote it by f'(c). We also say that f is **differentiable at** c. We may also say that f'(c) exists. Note that the above limit could be restated as

$$\lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$$

Theorem 7.5B If f has a derivative at c, then f is continuous at c.

Remark If f is not continuous at c then f is not differentiable at c. On the other hand, the function f(x) = |x| is continuous at c = 0 but not differentiable at c = 0.

Theorem 7.5 C If f and g both have derivative at c, then do f + g, f - g, fg, and

$$\begin{array}{rcl} (f+g)'(c) &=& f'(c) + g'(c) \\ (f-g)'(c) &=& f'(c) - g'(c) \\ (fg)'(c) &=& f'(c)g(c) + f(c)g'(c) \end{array}$$

Furthermore, if $g(c) \neq 0$, then f/g has derivative at c and

$$\left(\frac{f}{g}\right)'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{g(c)^2}$$

Theorem 7.5 D(Chair Rule) If g has derivative at c and f has derivative at g(c), then $f \circ g$ has derivative at c and

$$(f \circ g)'(c) = f'(g(c))g'(c)$$

Theorem 7.5 E Let f be one-to-one function and let ϕ be the inverse of f. If f is continuous at c and if ϕ has derivative at d = f(c) with $\phi'(d) \neq 0$, then f'(c) exists and

$$f'(c) = \frac{1}{\phi'(d)}.$$

7.6 Rolle's Theorem

Theorem 7.6 A Let f be a continuous function on [a, b]. If the maximum value of f is attained at $c \in (a, b)$ and if f'(c) exists, then f'(c) = 0.

Theorem 7.6 B Let f be a continuous function on [a, b]. If the minimum value of f is attained at $c \in (a, b)$ and if f'(c) exists, then f'(c) = 0.

Theorem 7.6 C (Rolle's Theorem) Let f be continuous on [a, b] with f(a) = f(b) = 0. If f'(x) exists for every $x \in (a, b)$, then there exists some point $c \in (a, b)$ such that f'(c) = 0.

Theorem 7.6 E If f has derivative at every point of [a, b], then f' takes on every value between f'(a) and f'(b).

7.7 The Mean Value Theorem

Theorem 7.7 A (The Mean Value Theorem If f is continuous on [a, b] and differentiable on (a, b), then there exists a point $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Theorem 7.7 B If f is continuous on [a, b] and differentiable on (a, b) and if f'(x) > 0 for all $x \in (a, b)$, then f is strictly increasing on [a, b].

Theorem 7.7 C (Generalized Mean Value Theorem If f, g are continuous on $[a, b], g(a) \neq g(b)$, if f, g are both differentiable on (a, b), and if f'(x) and g'(x) are not both zero for any $x \in (a, b)$, then there exists a point $c \in (a, b)$ such that

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}$$

7.8 The Fundamental Theorem of Calculus

Theorem 7.8 A (The First Fundamental Theorem of Calculus) If f is continuous on [a, b], and if

$$F(x) = \int_{a}^{x} f(t) dt,$$

for each $x \in (a, b)$, then F'(x) = f(x) for all $x \in [a, b]$.

Theorem 7.8 C If f'(x) = 0 for every $x \in (a, b)$, then f(x) = f(a) for all $x \in [a, b]$.

Theorem 7.8 D If f'(x) = g'(x) for all $x \in (a, b)$, then there exists a constant C such that f(x) = g(x) + C for all $x \in [a, b]$.

Theorem 7.8 E (The Second Fundamental Theorem of Calculus) If f is a continuous function on [a, b] and if

$$\Phi'(x) = f(x) \qquad \text{for all } x \in (a, b),$$

then

$$\int_{a}^{b} f(x) \, dx = \Phi(b) - \Phi(a).$$

Theorem 7.8 G Let ϕ be a function on [a, b] such that ϕ' is continuous on [a, b]. Let $A = \phi(a)$ and $B = \phi(b)$. Then, if f is continuous on $\phi([a, b])$, we have

$$\int_A^B f(x) \, dx = \int_a^b f[\phi(u)]\phi'(u) \, du.$$

7.9 Improper Integral

Definition Suppose $f \in \mathcal{R}[a, s]$ for every s > a. We define

$$F(s) = \int_{a}^{s} f(x) \, dx$$

We say

$$\int_{a}^{\infty} f(x) \, dx$$

is convergent to A if

$$\lim_{s \to \infty} F(s) = A$$

If $\int_a^{\infty} f(x) dx$ does not converge, we say it **diverges**.

Example

$$\int_{1}^{\infty} \frac{1}{x^2} dx$$
 convegres while $\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$ diverges.

 $\int_a^\infty f$ and $\int_a^\infty g$

Remark. If

converge, the so does

$$\begin{split} &\int_a^\infty (f\pm g),\\ &\int_a^\infty (f\pm g)=\int_a^\infty f~\pm~\int_a^\infty g\\ &\int_a^\infty \lambda f=\lambda\int_a^\infty f. \end{split}$$

We also have

Definition If $f \in \mathcal{R}[a, s]$ for every s > a and if

convegres, we say that

converges absolutely

If

convegres but

divegres, we sat that **converges conditionally**.

Example The improper integral

$$\int_{\pi}^{\infty} \frac{\sin x}{x} \, dx$$

 $\int_{a}^{\infty} |f(x)| \, dx$

 $\int_{a}^{\infty} f$

 $\int_a^\infty f$

 $\int_{a}^{\infty} |f|$

converges conditionally. (For the proof see page 213-214 of the text.)

Theorem 7.9 A The improper integral

$$\int_{1}^{\infty} \frac{1}{x} dx$$

 $\int_{1}^{\infty} f$

 $\sum_{n=1}^{\infty} f(n)$

diveges.

Theorem 7.9 B Let f be a decreasing function on $[1, \infty]$ such that $f(x) \ge 0$ for all x. Then

converges if and only if

convegres.

Definition We define

$$\int_{-\infty}^{a} f(x) \, dx = \lim_{s \to \infty} \int_{-s}^{a} f(x) \, dx$$

provided the limit exists. If the limit exists we say

$$\int_{-\infty}^{a} f$$

converges and if the limit does not exist, we say the

 $\int_{-\infty}^{a} f$

diverges.

7.10 Improper Integral (Continued)

Definition Suppose $f \in \mathcal{R}[a + \epsilon, b]$ for every ϵ such that $0 < \epsilon < b - a$ but $f \notin \mathcal{R}[a, b]$. Define

$$F(\epsilon) = \int_{a+\epsilon}^{b} f(x) \, dx$$

 $\int_{a}^{b} f(x) \, dx$

We say the **improper integral**

converges to A if

 $\lim_{\epsilon \to 0} F(\epsilon) = A.$ $\int_{a}^{b} f$

If the limit does not exist, we say

divegres.

An improper integral of the form

 $\int_a^b f$

is called an improper intgeral of second kind.

Example

$$\int_0^1 (1/\sqrt{x}) dx$$
 converges while $\int_0^1 (1/x^2) dx$ diverges.

Theorem 7.10 A The improper intgeral

is divergent.

Example Show that the improper intgeral

$$\int_0^1 \frac{1}{\sqrt{1-x^2}} \, dx$$

is convergenet.

Remrak There are other types of improper integrals that do not fall under either of the first or the second kind. For example, the improper integral

$$\int_0^\infty \frac{1}{x^2}$$

is neither of fisrt kind or secon kind. Hoewever, we can break it up in the form

$$\int_0^\infty \frac{1}{x^2} = \int_0^1 \frac{1}{x^2} \int_1^\infty \frac{1}{x^2}.$$

In general if, for a fixed b > a, $f \in \mathcal{R}[a + \epsilon, b]$ for every ϵ such that $0 < \epsilon < b - a$ but $f \notin \mathcal{R}[a, b]$, we define

$$\int_{a}^{\infty} f(x) dx = \int_{a}^{b} f(x) dx + \int_{b}^{\infty} f(x) dx$$

$$\int_0^1 \frac{1}{x}$$