Real Analysis II

Chapter Zero Things Past

0.1 Real Number System

Assumption: We shall assume familiarity with the basic properties of the operations of addition and multiplication on the set of real numbers \mathbf{R}. In particular, we shall use freely the fact that $(\mathbf{R},+, \cdot)$ is an ordered field. We also assume familiarity with operations (union, intersection, complement) on sets and the definition and operations of real-valued functions. In particular, you should read Section 1.1 through Section 1.4. The following theorems will be used freely.

Theorem 0. 1 a) A countable union of countable sets is countable. In particular, the set of rational numbers is countable.
b) For real numbers $a<b$, the interval (a, b) is uncountable. In particular, \mathbf{R} is uncountable.

Note: For the proof of this theorem and further results on countable sets, please read Sections 1.5 and 1.6. We now review the important concepts of least upper bound and greatest lower bound of sets of real numbers. A detailed discussion can be found in Section 1.7.

Definition: 1) A subset $A \subset \mathbf{R}$ is said to be bounded from above if there is a number $N \in \mathbf{R}$ such that $x \leq N$ for all $x \in A$. A subset $A \subset \mathbf{R}$ is said to be bounded from below if there is a number $M \in \mathbf{R}$ such that $M \leq x$ for all $x \in A$. A subset $A \subset \mathbf{R}$ is said to be bounded if A is bounded from above and from below.
2) If $A \subset \mathbf{R}$, we say a real number N is an upper bound for A if $x \leq N$ for all $x \in A$. If $A \subset \mathbf{R}$, we say a real number M is an lower bound for A if $M \leq x$ for all $x \in A$.
3) Suppose $A \subset \mathbf{R}$ is bounded above. A number L is called the least upper bound of A if

1) L is an upper bound of A
2) no number smaller than L is an upper bound for A.

The least upper bound of A is denoted by l.u.b or l.u. $b_{x \in A} x$ or $\sup A$.
4) Suppose $A \subset \mathbf{R}$ is bounded above. A number l is called the greatest lower bound of A if

1) l is an lower bound of A
2) no number greater than l is an lower bound for A.

The greatest lower bound of A is denoted by g.l.b or g.l. $b_{x \in A} x$ or $\inf A$.
The Completeness Property of the Real Numbers If A is a nonempty subset of \mathbf{R} that is bounded from above, then A has a least upper bound.

0.2 Sequences

Definition 1) In what follows, I will be the set of positive integers. A sequence $S=\left\{s_{n}\right\}_{n \in \mathbf{I}}$ is a function whose domain is \mathbf{I}.
2) A subsequence of \mathbf{I} is a strictly increasing function $N: \mathbf{I} \longrightarrow \mathbf{I}$. We write N_{i} instead of $N(i)$ and note that if $i<j$, then $N_{i}<N_{j}$.
3) Let $\left\{n_{k}\right\}$ be a subsequence of \mathbf{I}. Then the sequence $\left\{s_{n_{k}}\right\}$ is called a subsequence of a sequence $\left\{s_{n}\right\}$.
4) We say the sequence $\left\{s_{n}\right\}$ converges to a real number s, if for every $\epsilon>0$, there exists $N>0$ such that

$$
\left|s_{n}-s\right|<\epsilon \quad \text { whenever } \quad n>N .
$$

In this case we write

$$
\lim _{n \rightarrow \infty} s_{n}=s \quad \text { or } \quad s_{n} \rightarrow s \quad \text { as } n \rightarrow \infty \quad \text { or simply } \quad s_{n} \rightarrow s
$$

If $\left\{s_{n}\right\}$ does not converge, then we say it diverges.
5) A sequence $\left\{s_{n}\right\}$ is called bounded if there exists a number M such that $\left|s_{n}\right| \leq M$ for all $n \in I$.
6) We say a sequence $\left\{s_{n}\right\}$ is increasing if $s_{n} \leq s_{n+1}$ for all $n \in \mathbf{I}$. We say a sequence $\left\{s_{n}\right\}$ is decreasing if $s_{n} \geq s_{n+1}$ for all $n \in \mathbf{I}$. We say a sequence $\left\{s_{n}\right\}$ is monotone if it is either increasing or decreasing.
7) A sequence $\left\{s_{n}\right\}$ is called a Cauchy sequence if for every $\epsilon>0$, there exists a real number N such that $\left|s_{m}-s_{n}\right|<\epsilon$ for every $n \geq m>N$.

Note: \quad The following theorems will be used freely. For their proofs, please read Sections 2.1 through 2.7.
Theorem 0.4 If $s_{n} \rightarrow s$ and $t_{n} \rightarrow t$, then $s_{n} \pm t_{n} \rightarrow s \pm t, s_{n} t_{n} \rightarrow s t$, and if $t_{n} \neq 0$ and $t \neq 0$, then $s_{n} / t_{n} \rightarrow s / t$.

Theorem 0.5 Every sequence has a monotone subsequence.
Theorem 0.6 If a sequence $\left\{s_{n}\right\}$ converges to s, then every subsequence of $\left\{s_{n}\right\}$ convergence to s.
Theorem 0.7 (Monotone Convergence Theorem) A bounded monotone sequence is convergent.
Theorem 0.8 A sequence $\left\{s_{n}\right\}$ converges if and only if $\left\{s_{n}\right\}$ is a Cauchy sequence.

0.3 Series of Real Numbers

Definition 1) A sum of the form

$$
a_{1}+a_{2}+a_{3}+\cdots
$$

is called an infinite series and is denoted by $\sum_{n=1}^{\infty} a_{n}$ or simply $\sum a_{n}$. The sum

$$
s_{n}=a_{1}+a_{2}+\cdots a_{n}
$$

is called the nth partial sum of the infinite series. We say the infinite series $\sum a_{n}$ convergence to a real number s if the sequence of partial sums $\left\{s_{n}\right\}$ converges to s. In this case, we write $s=\sum a_{n}$.
2) We say $\sum a_{n}$ convergence absolutely if $\sum\left|a_{n}\right|$ convergence. If $\sum a_{n}$ convergence but $\sum\left|a_{n}\right|$ diverges, then we say $\sum a_{n}$ converges conditionally.
3) Suppose $a_{n}>0$ and $b_{n}>0$. We say $\sum a_{n}$ is dominated by $\sum b_{n}$, if $a_{n} \leq b_{n}$.

Note: \quad The following theorems will be used freely. For their proofs, please read Sections 3.1 through 3.6.
Theorem 0.9 If $\sum a_{n}$ convergence, then $a_{n} \rightarrow 0$.
Theorem 0.10 If $\sum a_{n}$ and $\sum b_{n}$ are convergent, then so are $\sum\left(a_{n} \pm b_{n}\right)$ and $\sum\left(c a_{n}\right)$.
Theorem 0.11 Assume $a_{n} \geq 0$. If the sequences of partial sums $\left\{s_{n}\right\}$ is bounded, then $\sum a_{n}$ is convergent.
Theorem 0.12 (Alternating Series Test) If $a_{n}>0,\left\{a_{n}\right\}$ is decreasing, and $a_{n} \rightarrow 0$, then the alternating series $\sum(-1)^{n} a_{n}$ is convergent. Furthermore, if $s=\sum(-1)^{n} a_{n}$, then

$$
\left|s-s_{n}\right|<a_{n+1}
$$

for all n.
Theorem 0.13 If $|x|<1$, then $\sum x^{n}=1 /(1-x)$.
Theorem 0.14 If $\sum a_{n}$ converges absolutely, then $\sum a_{n}$ converges.
Theorem 0.15 (Comparison Test) Suppose $\sum a_{n}$ is dominated by $\sum b_{n}$. If $\sum b_{n}$ is convergent, then $\sum a_{n}$ converges. If $\sum a_{n}$ diverges, then $\sum b_{n}$ diverges.

Theorem 0.16 (Limit Comparison Test) Suppose $b_{n} \neq 0$ and let

$$
L=\lim _{n \rightarrow \infty}\left(\frac{a_{n}}{b_{n}}\right) .
$$

If $0<L<\infty$, then $\sum a_{n}$ converges if and only if $\sum b_{n}$ converges.
Theorem 0.17 (Ratio Test) Let

$$
r=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| .
$$

$$
r=\lim _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|} .
$$

Then

1) If $r<1$, then $\sum a_{n}$ convergence absolutely.
2) If $r>1$, then $\sum a_{n}$ diverges.
3) If $r=1$, then no conclusion can be drawn.

Theorem 0.19 If $\sum a_{n}$ is conditionally convergent, then for every real number x, there is a rearrangement of $\sum a_{n}$ that converges to x.

Theorem 0.20 Let

$$
r=\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| .
$$

Then

1) If $|x|<1 / r$, then $\sum a_{n} x^{n}$ convergence absolutely.
2) If $|x|>1 / r$, then $\sum a_{n} x^{n}$ diverges.
$3)$ If $|x|=1 / r$, then no conclusion can be drawn about the convergence of $\sum a_{n} x^{n}$.

0.4 Continuous Functions

Definition 1) We say a function f has a limit L at $x=a$ if and only if for every $\epsilon>0$, there exists a $\delta>0$ such that

$$
|f(x)-L|<\epsilon \quad \text { whenver } \quad 0<|x-a|<\delta .
$$

In this case we write $\lim _{x \rightarrow a} f(x)=L$.
2) We say f is continuous at $x=a$ if and only if $\lim _{x \rightarrow a} f(x)=f(a)$.
3) We say a function f has a limit L at ∞ if and only if for every $\epsilon>0$, there exists a real number $M>0$ such that

$$
|f(x)-L|<\epsilon \quad \text { whenver } \quad x>M
$$

In this case we write $\lim _{x \rightarrow \infty} f(x)=L$. We define $\lim _{x \rightarrow-\infty} f(x)=L$ in a similar manner. Give the technical definition of $\lim _{x \rightarrow a}= \pm \infty$ and also that of the right-hand and left-hand limits.

Note: \quad The following theorems will be used freely. For their proofs, please read Section 4.1.
Theorem $0.21 \lim _{x \rightarrow a} f(x)=L$ if and only if for every sequence $\left\{x_{n}\right\}$ that converges to a the sequence $\left\{f\left(x_{n}\right)\right\}$ converges to L.

Theorem 0.22 If $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$, then

Theorem 0.23 If f and g are continuous at $x=a$, then so are $f \pm g, f g$, and $f / g(\operatorname{provided} g(a) \neq 0)$. Also the composition of continuous functions is continuous.

Theorem 0.24 A function f is continuous at $x=a$ if and only if for every sequence $\left\{x_{n}\right\}$ that converges to a the sequence $\left\{f\left(x_{n}\right)\right\}$ converges to $f(a)$.

Theorem 0.25 (Extreme Value Theorem or EVT) Let f be a continuous function on a closed bounded interval $[a, b]$. Then f attains both the minimum and maximum values on $[a, b]$. In other words, there are points $c, d \in[a, b]$ such that $f(c) \leq f(x) \leq f(d)$ for all $x \in[a, b]$.

Theorem 0.26 (Intermediate Value Theorem or IVT) Let f be a continuous function on a closed and bounded interval $[a, b]$. If K is any number between $f(a)$ and $f(b)$, then there exists a point $c \in[a, b]$ such that $f(c)=K$. In particular, if $f(a) f(b)<0$, then f has a root in $[a, b]$.

