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Definition

A linear equation is

a1x1 + a2x2 + · · ·+ anxn = b

It is homogeneous if b = 0

For n = 2, we write
ax + by = c

For n = 3, we write
ax + by + cz = d
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Definition

(s1, s2, s3, · · · sn) is a solution of a1x1 + a2x2 + · · ·+ anxn = b if

a1s1 + a2s2 + · · ·+ ansn = b

is true.

Example (2, 5, 4) is a solution of 3x − 4y + 5z = 6.

Find a solution of 2x + 4y = 0.
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Definition

A system of linear equations:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm.

(s1, s2, s3, · · · sn) is solution if

a1js1 + a2js2 + · · ·+ anjsn = bj for all j .
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When m = n = 2 we write

ax + by=e
cx + dy=f
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Examples

Solve

1)
x + 4y = 5
2x − y = 1

2)
x + 2y = 1
2x + 4y = 4

3)
x − 2y = 3
3x − 6y = 9
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When m = n = 3 we write

ax + by + cz = u
dx + ey + fz = v
gx + hy + iz = w
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Solve
x − y + 2z = 5

2x − 2y + 4z = 10
3x − 3y + 6z = 15
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Augmented Matrices and Elementary Row Operations


a11 a12 · · · a1n b1

a21 a22 · · · a2n b2
...

am1 am2 · · · amn bm.


is called the augmented matrix of

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm.
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Examples
Find the augmented matrix

1)
x + 4y = 5
2x − y = 1

−→
[

1 4 5
2 - 1 1

]

2)
x + 2y = 1
2x + 4y = 4

−→
[

1 2 1
2 4 4

]

3)
x + y + 2z = 9

2x + 4y − 3z = 1
3x + 6y − 5z = 0

−→

 1 1 2 9
2 4 -3 1
3 6 -5 0


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7.2 Matrices and Matrix Operations
DEFINITION An m× n (read as m by n) matrix is a rectangular
array of mn numbers arranged in m horizontal rows and n vertical
columns.
An m × n matrix is given by

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn



The numbers aij are called the i , j-th entries of the matrix.

For brevity, we write

A = [aij ] , i = 1, 2, · · ·m; j = 1, 2, · · · n.
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More Terminology

If m = n, the matrix A is called a square matrix.

The i-th row of A is [
ai1 ai2 · · · ain

]
.

The j-th row of A is 
a1j

a2j

· · ·
amj

 .
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Examples
For each of the following matrices find the size, the rows, the
columns, and entries.

A =

 1 2 3 6
2 -3 2 14
3 1 -1 -2

 B =

[
2 -3 5
6 -5 4

]

C =

[
2 -3 5
6 -5 4

]
D =

[
1 2
3 5

]
E =

 1 21 3
-3 15 6
9 2 0



F = [101] G =
[

0 20 3 1
]

H =


1
2
9
3
0


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More Terminology

In a matrix A the entries aii for the main diagonal.

A 1× n matrix is called row matrix or a row vector

An m × 1 matrix is called column matrix or a column vector

Definition Two matrices are defined to be equal if they have the
same size and their corresponding entries are equal.
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Addition of Matrices

DEFINITION 3 If A = [aij ] and B = [bij ] are m × n, then

A + B = [aij + bij ] A− B = [aij − bij ]
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Scalar Multiplication

DEFINITION If A = [aij ] is m × n, then

cA = [caij ]
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Matrix Multiplication

DEFINITION 5 If A is an m × r matrix and B is an r × n matrix,
then the product AB is the m × n.

If A = [aij ] is m × r and B = [bij ] are r × n, then

AB = [cij ] where cij =
r∑

k=1

aikbkj , for each i , j .
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Examples
Given

A =

 1 2 3 6
2 -3 2 14
3 1 -1 -2

 B =

 2 -3 5
6 -5 4
0 7 -1



C =

[
2 -3 5
6 -5 4

]
D =

[
1 2
3 5

]
E =

 1 21 3
-3 15 6
9 2 0



F =
[

0 2 -3
]

G =

 1
0
3

 H =

[
3 -2
-1 4

]

find the dimensions, the sum, and products of the matrices. If you
cannot add or multiply any two, state the reason(s).
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Transpose

DEFINITION If A is any m× n matrix, then the transpose of A,
denoted by AT , is defined to be the n ×m matrix that results by
interchanging the rows and columns of A.

Note The first column of AT is the first row of A

The second column of AT is the second row of A, and so forth.

If A = [aij ] is m × n, then AT = [aji ] is n ×m

: Chapter Seven: Linear Algebra: Matrices, Vectors, and Linear Systems



7.1 Matrices and Systems of Linear Equations 7.2 Matrices and Matrix Operations 7.3 Linear Systems of Equations: Gauss Elimination 7.4 Linear Independence and Rank of a Matrix 7.7 Determinants and Cramer’s Rule 7.8 Inverse of a Matrix

Transpose

DEFINITION If A is any m× n matrix, then the transpose of A,
denoted by AT , is defined to be the n ×m matrix that results by
interchanging the rows and columns of A.

Note The first column of AT is the first row of A

The second column of AT is the second row of A, and so forth.

If A = [aij ] is m × n, then AT = [aji ] is n ×m

: Chapter Seven: Linear Algebra: Matrices, Vectors, and Linear Systems



7.1 Matrices and Systems of Linear Equations 7.2 Matrices and Matrix Operations 7.3 Linear Systems of Equations: Gauss Elimination 7.4 Linear Independence and Rank of a Matrix 7.7 Determinants and Cramer’s Rule 7.8 Inverse of a Matrix

Transpose

DEFINITION If A is any m× n matrix, then the transpose of A,
denoted by AT , is defined to be the n ×m matrix that results by
interchanging the rows and columns of A.

Note The first column of AT is the first row of A

The second column of AT is the second row of A, and so forth.
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Algebraic Properties of Matrices

THEOREM
(a) A + B = B + A

(b) A + (B + C ) = (A + B) + C

(c) A(BC ) = (AB)C

(d) A(B ± C ) = AB ± AC

(e) (B ± C )A = BA± CA
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Properties of Matrix Addition and Multiplication

(f) α(B ± C ) = αB ± αC

(g) (α± β)(B = αB ± βB

(h) α(B ± C ) = αB ± αC

(1) α(βC ) = (αβ)C

(j) α(BC ) = (αB)C = B(αC )
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Properties of Matrix Multiplication

1) AB may be defined and BA may not

For example, if A is 2× 3 and B is 3× 4.

2) AB and BA may both be defined, but they may have different
sizes

For example, if A is 2× 3 and B is 3× 2, then AB is 2× 2 while
BA is 3× 3.

3) AB and BA may both be defined and have the same size, but
the two matrices may be different.
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Properties of the Transpose

THEOREM If the sizes of the matrices are such that the stated
operations can be performed, then:

(a)
(
AT

)T
= A

(b) (A± B)T = AT ± BT

(c) (kA)T = kAT

(d) (AB)T = BTAT
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Diagonal, Triangular, and Symmetric Matrices

Diagonal Matrices A square matrix in which all the entries off
the main diagonal are zero is called a diagonal matrix.

Triangular Matrices A square matrix in which all the entries
above the main diagonal are zero is called lower triangular matrix
A square matrix in which all the entries below the main diagonal
are zero is called upper triangular matrix.

A matrix that is either upper triangular or lower triangular is called
a triangular matrix.
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Properties of Triangular Matrices

1) A square matrix A = [aij ] is upper triangular if and only if all
entries to the left of the main diagonal arc zero; that is, aij = 0 if
i > j .

2) A square matrix A = [aij ] is lower triangular if and only if aij

entries to the right of the main diagonal are zero; that is, aij = 0 if
i < j .

3) A square matrix A = [aij ] is upper triangular if and only if the
ith row starts with at least i − 1 zeros for every i .

4) A square matrix A = [aij ] is lower triangular if and only if the
jth column starts with at least j − 1 zeros for every j .
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Properties of Triangular Matrices

THEOREM a) The transpose of a lower triangular matrix is
upper triangular,and the transpose of an upper triangular matrix is
lower triangular.

b) The product of lower triangular matrices is lower
triangular,and the product of upper triangular matrices is upper
triangular.

c) A triangular matrix is invertible if and only if its diagonal
entries are all nonzero.

d) The inverse of an invertible lower triangular matrix is lower
triangular, and the inverse of an invertible upper triangular matrix
is upper triangular.
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Symmetric Matrices

DEFINITION A square matrix A is said to be symmetric if
A = AT . In other words, A = [aij ] us symmetric if and only

aij = aji for alli , j = 1, 2, · · · , n.
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Properties of Symmetric Matrices

Find AT , BT , 5A, and B − A if A =

[
2 3
3 4

]
and

B =

[
1 2
2 5

]
.

Are they all symmetric?

THEOREM If A and B are symmetric matrices with the same
size, and if k is any scalar, then:

(a) AT is symmetric

b) A± B are symmetric.

c) kA is symmetric.

: Chapter Seven: Linear Algebra: Matrices, Vectors, and Linear Systems



7.1 Matrices and Systems of Linear Equations 7.2 Matrices and Matrix Operations 7.3 Linear Systems of Equations: Gauss Elimination 7.4 Linear Independence and Rank of a Matrix 7.7 Determinants and Cramer’s Rule 7.8 Inverse of a Matrix

Properties of Symmetric Matrices

Find AT , BT , 5A, and B − A if A =

[
2 3
3 4

]
and

B =

[
1 2
2 5

]
.

Are they all symmetric?

THEOREM If A and B are symmetric matrices with the same
size, and if k is any scalar, then:

(a) AT is symmetric

b) A± B are symmetric.

c) kA is symmetric.

: Chapter Seven: Linear Algebra: Matrices, Vectors, and Linear Systems



7.1 Matrices and Systems of Linear Equations 7.2 Matrices and Matrix Operations 7.3 Linear Systems of Equations: Gauss Elimination 7.4 Linear Independence and Rank of a Matrix 7.7 Determinants and Cramer’s Rule 7.8 Inverse of a Matrix

Properties of Symmetric Matrices

Find AT , BT , 5A, and B − A if A =

[
2 3
3 4

]
and

B =

[
1 2
2 5

]
.

Are they all symmetric?

THEOREM If A and B are symmetric matrices with the same
size, and if k is any scalar, then:

(a) AT is symmetric

b) A± B are symmetric.

c) kA is symmetric.

: Chapter Seven: Linear Algebra: Matrices, Vectors, and Linear Systems



7.1 Matrices and Systems of Linear Equations 7.2 Matrices and Matrix Operations 7.3 Linear Systems of Equations: Gauss Elimination 7.4 Linear Independence and Rank of a Matrix 7.7 Determinants and Cramer’s Rule 7.8 Inverse of a Matrix

Properties of Symmetric Matrices

Find AT , BT , 5A, and B − A if A =

[
2 3
3 4

]
and

B =

[
1 2
2 5

]
.

Are they all symmetric?

THEOREM If A and B are symmetric matrices with the same
size, and if k is any scalar, then:

(a) AT is symmetric

b) A± B are symmetric.

c) kA is symmetric.

: Chapter Seven: Linear Algebra: Matrices, Vectors, and Linear Systems



7.1 Matrices and Systems of Linear Equations 7.2 Matrices and Matrix Operations 7.3 Linear Systems of Equations: Gauss Elimination 7.4 Linear Independence and Rank of a Matrix 7.7 Determinants and Cramer’s Rule 7.8 Inverse of a Matrix

Properties of Symmetric Matrices

Find AT , BT , 5A, and B − A if A =

[
2 3
3 4

]
and

B =

[
1 2
2 5

]
.

Are they all symmetric?

THEOREM If A and B are symmetric matrices with the same
size, and if k is any scalar, then:

(a) AT is symmetric

b) A± B are symmetric.

c) kA is symmetric.

: Chapter Seven: Linear Algebra: Matrices, Vectors, and Linear Systems



7.1 Matrices and Systems of Linear Equations 7.2 Matrices and Matrix Operations 7.3 Linear Systems of Equations: Gauss Elimination 7.4 Linear Independence and Rank of a Matrix 7.7 Determinants and Cramer’s Rule 7.8 Inverse of a Matrix

System of Equations as Matrix Equation

A system

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm.

can be represented as a matrix equation

AX = b

where
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System of Equations as Matrix Equation

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

am1 am2 · · · amn

 , X =


x1

x2
...
xn

 , b =


b1

b2
...

bm


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Examples

Express the following systems in matrix form:

1)
x − 4y = −5
3x − y = 2

2)
x + 2y = 1
2x + 4y = 4
3x − 4y = 8

3)
x + y + 2z = 9

x + 4y − 3z = 13

4)
x − 4y + z = −5

3x − y = 2
2y − 3z = 4

5)

x + 2y + 3z − w = 1
2x + 4y − 4w = 0

3x − 4y + z + w = 8
x − w = 4
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7.3 Linear Systems of Equations: Gauss Elimination

Elementary row operations on a matrix are

1. Multiply a row through by a nonzero constant.

2. Interchange two rows.

3. Add a constant times one row to another.
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Example

x + y + 2z = 9
2x + 4y - 3z = 1
3x + 6y - 5z = 0

−→

 1 1 2 9
2 4 -3 1
3 6 -5 0



Add −2 times the first equation (row) to the second (row):

x + y + 2z = 9
2y − 7z = −17

3x + 6y − 5z = 0
−→

 1 1 2 9
0 2 -7 -17
3 6 -5 0


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Example

x + y + 2z = 9
2y − 7z = −17

3x + 6y − 5z = 0

−→

 1 1 2 9
0 2 -7 -17
3 6 -5 0


Add −3 times the first equation (row) to the third (row):

x + y + 2z = 9
2y − 7z = −17
3y − 11z = −27

−→

 1 1 2 9
0 2 -7 -17
0 3 -11 -27


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Example
Multiply the second equation (row) by 1/2:

x + y + 2z = 9
y − 7

2z = −17
2

3y − 11z = −27
−→
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1 1 2 9
0 1 −7

2 −17
2

0 3 −11 −27
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y − 7

2z = −17
2

− 1
2z = −3

2
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0 1 −7

2 −17
2

0 0 −1
2 −3

2
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7.1 Matrices and Systems of Linear Equations 7.2 Matrices and Matrix Operations 7.3 Linear Systems of Equations: Gauss Elimination 7.4 Linear Independence and Rank of a Matrix 7.7 Determinants and Cramer’s Rule 7.8 Inverse of a Matrix

Example

Multiply the third equation (row) by −2:

x + y + 2z = 9
y − 7

2z = −17
2

z = 3

−→

 1 1 2 9
0 1 −7

2 −17
2

0 0 1 3



We now have z = 3 and so use the second equation to get y = 2
and then use these values of z and y to get x = 1.
Or we could continue.....
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Add −1 times the second equation(row) to the first:

x + 11
2 z = 35

2
y − 7

2z = −17
2

z = 3

−→

 1 0 11
2

35
2

0 1 −7
2 −17

2
0 0 1 3



Add −11/2 times the third to the first and 7/2 time the third to
the second:

x = 1
y = 2

z = 3
−→

 1 0 0 1
0 1 0 2
0 0 1 3


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7.1 Matrices and Systems of Linear Equations 7.2 Matrices and Matrix Operations 7.3 Linear Systems of Equations: Gauss Elimination 7.4 Linear Independence and Rank of a Matrix 7.7 Determinants and Cramer’s Rule 7.8 Inverse of a Matrix

A matrix is said to be in reduced row echelon form if it satisfies
the following properties:

1) The first nonzero number in the row is a 1 (a leading 1).

2) Rows of zeros are at the bottom of the matrix.

3) The leading 1 in the lower row occurs further to the right of
the leading 1 in the higher row.

4) Each column that contains a leading 1 has zeros everywhere
else.
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7.1 Matrices and Systems of Linear Equations 7.2 Matrices and Matrix Operations 7.3 Linear Systems of Equations: Gauss Elimination 7.4 Linear Independence and Rank of a Matrix 7.7 Determinants and Cramer’s Rule 7.8 Inverse of a Matrix

Row Echelon Form

A matrix that has the first three properties is said to be in row
echelon form.

Thus, a matrix in reduced row echelon form is in row echelon form,
but not conversely.

A =

 1 4 2 6
0 1 6 8
0 0 1 4

 and B =

 0 1 2 8 0
0 0 1 -9 0
0 0 0 0 1

 are in

row echelon forms but not reduced row echelon forms. (Why?)
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Row Equivalent

Two matrices A and B are called row equivalent if one is obtained
from the other by performing a series of elementary row operation.

Note: If the augmented matrices of two linear systems are row
equivalent, then the systems have the same solutions.
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Examples

Which of the following are in reduced row echelon form?

A =

 1 0 0 1
0 1 0 -17
0 0 1 3

 B =

 1 0 0
0 1 0
0 0 0



C =


1 2 0 3 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0

 D =

 1 -3 4 1
0 1 2 2
0 0 1 5



E =

 0 1 2
0 0 0
1 3 4

 F =

 1 0 8 -3 2
0 1 4 -9 3
0 0 1 1 2


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RREF

Note: Every m × n nonzero matrix can be reduced to a unique
matrix that is in reduced row echelon form (or rref.

Example Find the rref of the matrix

A =


0 2 3 −4 1
0 0 2 3 4
2 3 1−5 2 4
2 0 −6 9 7


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Elimination Method

Example Solve the following using the method of elimination.

x + 2y + 3z = 6
2x − 3y + 2z = 14
3x + y − z = −2

Solution: The augmented matrix of the system is 1 2 3 6
2 -3 2 14
3 1 -1 -2


We now apply elementary row operations to reduce it to a reduced
row echelon form.
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Gauss-Jordan Elimination

Definition The method used in the above example is called
Gauss-Jordan Elimination method.

Example Use the Gauss-Jordan elimination method to solve the
system whose augmented matrix is


1 3 −2 0 2 0 0
2 0 −5 −2 4 −3 −1
0 0 5 10 0 15 5
2 6 0 8 4 18 6


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Use Gauss-Jordan elimination method to the solve the
homogeneous system:

x1 + 3x2 − 2x3 + 2x5 = 0
2x1 + 6x2 + 5x3 + 2x4 + 4x5 + 3x6 = 0

5x3 + 10x4 + 15x6 = 0
2x1 + 6x2 + 8x4 + 4x5 + 18x6 = 0
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Theorem Every homogeneous system of linear equations is
consistent. The solution

x1 = 0, x2 = 0, · · · , xn = O

is called the trivial solution.

Any other solution is called nontrivial solutions.
Note Any homogeneous system has either the trivial solution or
infinitely many solutions.
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Theorem If a homogeneous linear system has n unknowns, and if
the reduced row echelon form of its augmented matrix has r
nonzero rows, then the system has n − r free variables.

Example Solve

x + 2y + 3z + w = 0
x − y + z − w = 0
x + 5y + 5z + 3w = 0
5x + 4y + 11z + w = 0
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7.4 Linear Independence and Rank of a Matrix
DEFINITION A set S = {v1, v2, · · · , vr} of vectors in Rn is
called a linearly independent set if the only solution of the vector
equation

k1v1 + k2v2 + · · ·+ krvr = 0

is the trivial solution

k1 = 0, k2 = 0, k3 = 0, + · · ·+ kr = 0.

If there are solutions in addition to the trivial solution, then S is
said to be a linearly dependent set.

Example The most basic linearly independent set in Rn is the set
of standard unit vectors

e1 = (1, 0, 0, · · · , 0), · · · , en = (0, 0, 0, · · · , 1)
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EXAMPLES

Determine whether the vectors are linearly independent or linearly
dependent

1. v1 = (1,−2, 3), v2 = (5, 6,−1) , v3 = (3, 2, 1) in R3.

2. v1 = (1, 2,−2,−1), v2 = (4, 9, 9,−4) , v3 = (5, 8, 9,−5) in
R4.
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Some Properties of Linear Independence
THEOREM (a) A set S with two or more vectors is linearly
dependent if and only if at least one of the vectors in S is
expressible as a linear combination of the other vectors in S.

(b) A set S with two or more vectors is linearly independent if
and only if no vector in S is expressible as a linear combination of
the other vectors in S.

THEOREM (a) A finite set that contains 0 is linearly
dependent.
(b) A set with exactly one vector is linearly independent if and
only if that vector is not 0.
(c) A set with exactly two vectors is linearly independent if and
only if neither vector is a scalar multiple of the other.

THEOREM Let S = {v1, v2, · · · , vr} be a set of vectors in Rn.
If r > n, then S is linearly dependent.
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Row Space, Column Space, and Null Space

DEFINITION If A is an m × n matrix, then the subset of Rn

containing all linear combination of the row vectors of A is called
the row space of A.

The subset of Rm containing all linear combination of the column
vectors of A is called the column space of A.

The solution space of the homogeneous system of equations
AX = 0, which is a subspace of Rn, is called the null space of A.
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Let b = (1,−9,−3) and A =

 −1 3 2
1 2 −3
2 1 −2

.

Show that b is in the column space of A.
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THEOREM

If X0 is any solution of a consistent linear system AX = b, and if
S = {v1, v2, · · · , vk} is a basis for the null space of A,then every
solution of AX = b can be expressed in the form

X = X0 + c1v1 + c2v2 + · · ·+ ckvk .

Conversely, for all choices of scalars c1, c2, · · · , ck , the vector X in
this formula is a solution of AX = b.

Example Find the general solution of AX = b, where

b = (0,−1, 5, 6) and A =


1 3 −2 0 2 0
2 6 −5 −2 4 −3
0 0 5 10 0 15
2 6 0 8 4 18

.
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THEOREM
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THEOREM

If a matrix R is in row echelon form, then the row vectors with the
leading l’s (the nonzero row vectors) form a basis for the row space
of R, and the column vectors with the leading 1s of the row
vectors form a basis for the column space of R.

Example Find a basis for the row space of

A =


1 −3 4 −2 5 4
2 −6 9 −1 8 2
2 −6 9 −1 9 7

−1 3 −4 2 −5 −4

.

Apply REF to get R =


1 −3 4 −2 5 4
0 0 1 3 −2 −6
0 0 0 0 1 5
0 0 0 0 0 0

.
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Rank and Nullity

THEOREM The row space and column space of a matrix A have
the same dimension.

DEFINITION The common dimension of the row space and
column space matrix A is called the rank of A and is denoted by
rank(A)

The dimension of the null space of A is called the nullity of A
and is denoted by nullity(A).

THEOREM If A is a matrix with n columns, then

rank(A) + nullity(A) = n.
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7.7 Determinants and Cramer’s Rule

DEFINITION 1) Let A =

[
a b
c d

]
. The we define the

determinant of A by

det(A) = |A| =
∣∣∣∣ a b

c d

∣∣∣∣ = ad − bc .

2) If A = [aij ] is a square matrix, then the minor of entry aij is
denoted by Mij and is defined to be the determinant of the
submatrix that remains after the ith row and jth column are
deleted from A.

3) The number (−1)i+jMij is denoted by Cij and is called the
cofactor of entry aij .
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Example

Find the minors and cofactors of the matrix

A =

 1 2 0
3 0 -1
2 1 2


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Definition of a General Determinant

THEOREM If A is an n × n matrix, then regardless of which row
or column of A is chosen, the number obtained by multiplying the
entries in that row or column by the corresponding cofactors and
adding the resulting products is always the same.
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DEFINITION The sum in the above theorem is called the
determinant of A and is refered to as the cofactor expansions of
the determinant of A.

IfA = [aij ], then expansion along the jth column is gvien by

det(A) =
n∑

k=1

akjCkj , for any j .

The expansion along the ith row is given by

det(A) =
n∑

k=1

aikCik , for any i .
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Determinant of a Triangular Matrix

THEOREM If A is an n × n triangular matrix (upper triangular,
lower triangular, or diagonal), then

det(A) = a11a22 · · · ann.
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Evaluating Determinants by Row Reduction

THEOREM Let A be a square matrix. If A has a row of zeros or
a column of zeros, then

det(A) = 0.

For example,

∣∣∣∣∣∣
a b 0
c d 0
e f 0

∣∣∣∣∣∣ = 0.

THEOREM Let A be a square matrix. Then

det(A) = det
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Elementary Row Operations

THEOREM (a) Let A be an n × n matrix and if B is the matrix
that results when a single row or single column of A is multiplied
by a scalar k , then det(B) = kdet(A). That is
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Elementary Row Operations
THEOREM (b) Let A be an n × n matrix and if B is the matrix
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Elementary Row Operations

THEOREM Let A be an n × n matrix.

(c) If B is the matrix that results when a multiple of one row of
A is added to another row or when a multiple of one column is
added to another column, then

det(B) = det(A).

Find
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Elementary Row Operations

THEOREM If A is a square matrix with two proportional rows or
two proportional columns, then det(A) = 0.

Example If
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Properties of Determinants

THEOREM If B is an n × n matrix and E is an n × n elementary
matrix, then

det(EB) = det(E )det(B).

Example If A =

 a b c
d e f
g h i

 and E1 =

 k 0 0
0 1 0
0 0 1

,

E2 =

 0 0 1
0 1 0
1 0 0

 , and E3 =

 1 0 0
0 1 5
0 0 1

 ,

then find E1A, E2A, E3A and their determinants.
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Properties of Determinants

THEOREM A square matrix A is invertible if and only if

det(A) 6= 0.

Example Is A =

 1 2 3
1 0 1
2 4 6

 invertible?
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Properties of Determinants

THEOREM If A and B are square matrices of the same size, then

det(AB) = det(A) det(B).

Example Let A =

 1 2 3
1 1 0
0 0 1

 and B =

 2 1 3
0 1 1
1 1 0


compute AB and the determinants of A, B, and AB.
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Properties of Determinants

THEOREM 2.3.5 If A is invertible, then

det
(
A−1

)
=

1

det(A)
.
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Cramer’s Rule

If AX = b is a system of n linear equations inn unknowns such
that det(A) 6= 0, then the system has a unique solution. This
solution is given by

x1 = det(A1)

det(A)
x2 = det(A2)

det(A)
· · · xn = det(An)

det(A)

where Aj is the matrix obtained by replacing the entries in the jth
column of A by the entries in the matrix b.
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7.8. Inverse of a Matrix

Given

A =

[
0 1
0 3

]
B =

[
-6 2
0 0

]
,

find AB.
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Identity Matrices

A square matrix with 1’s on the main diagonal and zeros elsewhere
is called an identity matrix

An n × n identity matrix is denoted by In.

THEOREM If R is the reduced row echelon form of an n × n
matrix A, then either R has a row of zeros or R is the identity
matrix In.
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Inverse of a Matrix

DEFINITION If A is a square matrix, and if a matrix B of the
same size can be found such that

AB = In = BA

then A is said to be invertible (or nonsingular) and B is called an
inverse of A.

The inverse of A is denoted by A−1.

If no such matrix B can be found, then A is said to be singular (or
non-invertible).
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Which of these matrices have inverses?

A =

[
1 2
1 3

]
B =

 -6 2 0
1 3 0
3 4 0


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Properties of Inverses

THEOREM If B and C are both inverses of the matrix A, then
B = C .

THEOREM 1 The matrix A =

[
a b
c d

]
is nonsingular if and

only if
ad − bc 6= 0

and if this is the case, then

A−1 =
1

ad − bc

[
d -b
-c a

]
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Properties of Inverses

THEOREM If A and B are invertible matrices with the same
size, then AB is invertible and

(AB)−1 = B−1A−1.

: Chapter Seven: Linear Algebra: Matrices, Vectors, and Linear Systems



7.1 Matrices and Systems of Linear Equations 7.2 Matrices and Matrix Operations 7.3 Linear Systems of Equations: Gauss Elimination 7.4 Linear Independence and Rank of a Matrix 7.7 Determinants and Cramer’s Rule 7.8 Inverse of a Matrix

Properties of Inverses

THEOREM If A and B are invertible matrices with the same
size, then AB is invertible and
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Inversion Algorithm

To find the inverse of an invertible matrix A, find a sequence of
elementary row operations that reduces A to the identity and then
perform that same sequence of operations on In to obtain A−1.

Example Find the inverse of A =

 1 2 3
2 5 3
1 0 8


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More on Linear Systems and Invertible Matrices

THEOREM A system of linear equations has zero, one, or
infinitely many solutions. There are no other possibilities.

THEOREM If A is an invertible n× n matrix, then for each n× 1
matrix b,the system of equations AX = b has exactly one
solution,namely,

X = A−1b.

EXAMPLE Find the solution of

x + 3y + z = 4
2x + 2y + z = −1
2x + 3y + z = 3

: Chapter Seven: Linear Algebra: Matrices, Vectors, and Linear Systems



7.1 Matrices and Systems of Linear Equations 7.2 Matrices and Matrix Operations 7.3 Linear Systems of Equations: Gauss Elimination 7.4 Linear Independence and Rank of a Matrix 7.7 Determinants and Cramer’s Rule 7.8 Inverse of a Matrix

More on Linear Systems and Invertible Matrices

THEOREM A system of linear equations has zero, one, or
infinitely many solutions. There are no other possibilities.

THEOREM If A is an invertible n× n matrix, then for each n× 1
matrix b,the system of equations AX = b has exactly one
solution,namely,

X = A−1b.

EXAMPLE Find the solution of

x + 3y + z = 4
2x + 2y + z = −1
2x + 3y + z = 3

: Chapter Seven: Linear Algebra: Matrices, Vectors, and Linear Systems



7.1 Matrices and Systems of Linear Equations 7.2 Matrices and Matrix Operations 7.3 Linear Systems of Equations: Gauss Elimination 7.4 Linear Independence and Rank of a Matrix 7.7 Determinants and Cramer’s Rule 7.8 Inverse of a Matrix

More on Linear Systems and Invertible Matrices

THEOREM A system of linear equations has zero, one, or
infinitely many solutions. There are no other possibilities.

THEOREM If A is an invertible n× n matrix, then for each n× 1
matrix b,the system of equations AX = b has exactly one
solution,namely,

X = A−1b.

EXAMPLE Find the solution of

x + 3y + z = 4
2x + 2y + z = −1
2x + 3y + z = 3

: Chapter Seven: Linear Algebra: Matrices, Vectors, and Linear Systems



7.1 Matrices and Systems of Linear Equations 7.2 Matrices and Matrix Operations 7.3 Linear Systems of Equations: Gauss Elimination 7.4 Linear Independence and Rank of a Matrix 7.7 Determinants and Cramer’s Rule 7.8 Inverse of a Matrix

EXAMPLE Find the solution of the systems
−x + 4y + z = 0
x + 9y − 2z = 1

6x + 4y − 8z = 0
and


−x + 4y + z = −3
x + 9y − 2z = 4

6x + 4y − 8z = −5
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