
Chapter 1 Introduction
Welcome to Mathematica!  This tutorial manual is  intended as a supplement to Rogawski's  Calculus  textbook and aimed at
students looking to quickly learn Mathematica through examples.  It also includes a brief summary of each calculus topic to
emphasize important concepts.  Students should refer to their textbook for a further explanation of each topic.

ü 1.1  Getting Started

Mathematica is a powerful computer algebra system (CAS) whose capabilities and features can be overwhelming for new users.
Thus, to make your first experience in using Mathematica as easy as possible, we recommend that you read this introductory
chapter very carefully.  We will discuss basic syntax and frequently used commands.

NOTE: You may need to obtain a computer account on your school's computer network in order to access the Mathematica
software package available on campus computers.  Check with your instructor or your school's IT office.

ü 1.1.1  First-Time Users of Mathematica 7

Launch the program Mathematica  7 on your computer.  Mathematica will automatically create a new Notebook (see typical
startup screen below).

 

ü 1.1.2  Entering and Evaluating Input Commands

Just start typing to input commands (a cell formatted as an input box will be automatically created).  For example, type 3+7.  To
evaluate this command or any other command(s) contained inside an input box, simultaneously press SHIFT+ENTER, that is, the
keys SHIFT and ENTER at the same time.  Be sure your mouse's cursor is positioned inside the input box or else select the input
box(es) that you want to evaluate.  The kernel application, which does all the computations, will load at the first evaluation.  This
is a one-time procedure whenever Mathematica is launched and may take a few seconds depending on the speed of your com-
puter, so be patient.



As can be seen from the screen shot above, a cell formatted as an output box and containing the value 10 is generated as a result
of the evaluation.  To create another input box (cell), just start typing again and an input box will be inserted at the position of the
cursor (use the mouse to position the cursor where you would like to insert the new input box).  

ü 1.1.3  Documentation Center (Help Menu)

Mathematica provides an online help menu to answer many of your questions about the program.  One can search for a particular
command expression in the Documentation Center under this menu or else just position the cursor next to the expression (for

example, Plot) and select Find Selected Function (F1) under the Help menu (see screen shot that follows). 

 

Mathematica will then display a description of Plot, including examples on how to use it (see screen shot below). 
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For only a brief description of Plot (or any other expression expr), just evaluate ?Plot (or ?expr).

In[1]:= ? Plot

Plot f , x, xmin, xmax generates a plot of f as a function of x from xmin to xmax.

Plot f1, f2, …, x, xmin, xmax plots several functions fi.  à

ü 1.2  Mathematica's Conventions for Inputting Commands

ü 1.2.1  Naming

Built-in Mathematica commands, functions, constants, and other expressions begin with capital letters and are (for the most part)
one or more full-length English words (each word is capitalized).  Furthermore, Mathematica is case sensitive; a common cause

of error is the failure to capitalize command names.  For example, Plot, Integrate, and FindRoot are valid function names.  Sin,

Exp, Det, GCD, and Max are some of the standard mathematical abbreviations that are exceptions to the full-length English
word(s) rule.

User-defined functions and variables can be any mixture of uppercase and lowercase letters and numbers.  However, a name

cannot begin with a number.  User-defined functions may begin with a lowercase letter, but this is not required.  For example, f,

g1, myPlot, r12, sOLution, and Method1 are permissible function names.

ü 1.2.2.  Parenthesis,  Brackets, and Braces

Mathematica interprets various types of delimiters (brackets) differently.  Using an incorrect type of delimiter is another common
source of error.  Mathematica's bracketing conventions are as follows:

1) Parentheses, ( ), are used only for grouping expressions.  For example, (x-y)^2, 1/(a+b) and (x^3-y)/(x+3y^2) demonstrate

proper use of parentheses.  Users should realize that Mathematica understands f(2) as f  multiplied with 2 and not as the function
f x evaluated at x = 2.

2) Square brackets, [ ], are used to enclose function arguments.  For example, Sqrt[346], Sin[Pi], and Simplify[(x^3-y^3)/(x-y)]

are valid uses of square brackets.  Therefore, to evaluate a function f x at x = 2, we can type f[2].

3) Braces or curly brackets, { }, are used for defining lists, ranges and iterators.  In all cases, list elements are separated by
commas.  Here are some typical uses of braces:
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{1, 4, 9, 16, 25, 36}: This lists the square of the first six positive integers.

Plot[f[x],{x,-5,5}]: The list {x,-5,5} here specifies the range of values for x in plotting f .

Table[m^3,{m,1,100}]: The list {m,1,100} here specifies the values of the iterator m in generating a table of cube powers of the
first 100 whole numbers.

ü 1.2.3.  Lists

A list (or string) of elements can be defined in Mathematica as List[e1, e2,...,en] or {e1, e2,...,en}.  For example, the following
command defines S = 1, 3, 5, 7, 9 to be the list (set) of the first five odd positive integers.

In[2]:= S  List1, 3, 5, 7, 9
Out[2]= 1, 3, 5, 7, 9

To refer to the kth element in a list named expr, just evaluate expr[[k]].  For example, to refer to the fourth element in S, we
evaluate

In[3]:= S4
Out[3]= 7

It is also possible to define nested lists whose elements are themselves lists, called sublists.  Each sublist contains subelements.
For example, the list T = 1, 3, 5, 7, 9, 2, 4, 6, 8, 10 contains two elements, each of which is a list (first five odd and even
positive integers).

In[4]:= T  1, 3, 5, 7, 9, 2, 4, 6, 8, 10
Out[4]= 1, 3, 5, 7, 9, 2, 4, 6, 8, 10

To refer to the kth subelement in the jth sublist of expr, just evaluate expr[[j,k]].  For example, to refer to the third subelement
in the second sublist of T  (or 6), we evaluate

In[5]:= T2, 3
Out[5]= 6

A detailed description of how to manipulate lists (e.g., to append elements to a list or delete elements from a list) can be found in

Mathematica's Documentation Center (under the Help menu).  Search for the entry List.

ü 1.2.4.  Equal Signs

Here are Mathematica's rules regarding the use of equal signs:

1) A single equal sign (=) assigns a value to a variable.  Thus, entering q = 3 means that q will be assigned the value 3.

In[6]:= q  3

Out[6]= 3

If we then evaluate 10+q^3, Mathematica will return 37.

In[7]:= 10  q^3

Out[7]= 37

As another example, suppose the expression y = x^2-x-1 is entered.  
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In[8]:= y  x^2  x  1

Out[8]= 1  x  x2

If we then assign a value for x, say x = 3, then in any future input containing y, Mathematica will use this value of x to calculate
y, which would be 5 in our case.

In[9]:= x  3

y

Out[9]= 3

Out[10]= 5

2) A colon-equal sign (:=) creates a delayed statement for an expression and can be used to define a function.  For example,

typing f[x_]: = x^2-x-1 tells Mathematica to delay the assignnment of f x as a function until f  is evaluated at a particular value
of x.

In[11]:= fx_ : x^2  x  1

f3
Out[12]= 5

We will say more about defining functions in section 1.3 below.

3) A double-equal sign (= =) is a test of equality between two expressions.  Since we previously set x = 3, then evaluating x = = 3

returns True, whereas evaluating x = = -3 returns False.

In[13]:= x  3
x  3

Out[13]= True

Out[14]= False

Another common usage of the double equal sign (= =) is to solve equations, such as the command Solve[x^2-x-1= = 0, x] (see
Section 1.5).  Be sure to clear the variable x beforehand.

In[15]:= Clearx
Solvex^2  x  1  0, x

Out[16]= x 
1

2
1  5 , x 

1

2
1  5 

ü 1.2.5.  Referring to Previous Results

Mathematica saves all input and output in a session.  Type In[k] (or Out[k]) to refer to input (or output) line numbered k.   One

can also refer to previous output by using the percent sign %.  A single % refers to Mathematica's last output, %% refers to the

next-to-last ouput, and so forth.  The command %k refers to the output line numbered k.  For example, %12 refers to output line
number 12.

In[17]:= Out12
Out[17]= 5

Mathematica saves all input and output in a session.  Type In[k] (or Out[k]) to refer to input (or output) line numbered k.   One

can also refer to previous output by using the percent sign %.  A single % refers to Mathematica's last output, %% refers to the
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next-to-last ouput, and so forth.  The command %k refers to the output line numbered k.  For example, %12 refers to output line
number 12.

In[18]:= 12

Out[18]= 5

NOTE: CTRL+L reproduces the last input and CTRL+SHIFT+L reproduces the last output.

ü 1.2.6.  Commenting

One can insert comments on any input line.  The comments should be enclosed between the delimiters (* and *).  For example,

In[19]:=  This command plots the graph of two functions in different colors. 
PlotSinx, Cosx, x, 0, 2 Pi, PlotStyle  Red, Blue

Out[19]=
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

NOTE: One can also insert comments by creating a text box.  First, create an input box.  Then select it and format it as Text using
the drop-down window menu.

ü 1.3  Basic Calculator Operations

Mathematica  uses  the  standard  symbols  +,  -,  *,  /,  ^,  !  for  addition,  subtraction,  multiplication,  division,  raising  powers
(exponents), and factorials, respectively.  Multiplication can also be performed by leaving a blank space between factors.  Powers
can also be entered by using the palette menu to generate a superscript box (or else press CTRL+6) and fractions can be entered
by generating a fraction box (from palette menu or pressing CTRL+/ ).  

To generate numerical output in decimal form, use the command N[expr] or N[expr,d].  In most cases, N[expr] returns six digits

of expr by default and may be in the form n.abcde *10m  (scientific notation), whereas N[expr,d] attempts to return d  digits of
expr.  

NOTE: Mathematica can perform calculations to arbitrary precision and handle numbers that are arbitrarily large or small.

Here are some examples:

In[20]:= Pi

Out[20]= 

In[21]:= NPi
Out[21]= 3.14159
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In[22]:= NPi, 200
Out[22]= 3.141592653589793238462643383279502884197169399375105820974944592307816406286208

9986280348253421170679821480865132823066470938446095505822317253594081284811174
502841027019385211055596446229489549303820

In[23]:= 65
4

Out[23]= 2210708544304025665789890545869282983189550730342026817054484706923451 
925215263872221875601412877526055033568150952983731997599172762855409 
042386638455130114567918179610415056135043685865981465821197678998054 
981600364232459680450883986513397952866100532961319277446513221836325 
497685382494082501890188075860096650899943982604939901346570765022869 
199395889789728382946141484842179531904056612897175359078633987736867 
003878781857613656893578474392372463398376238316805554810164724551909376

In[24]:= 1  300
Out[24]= 1 

306057512216440636035370461297268629388588804173576999416776741259476 
533176716867465515291422477573349939147888701726368864263907759003154 
226842927906974559841225476930271954604008012215776252176854255965356
903506788725264321896264299365204576448830388909753943489625436053225 
980776521270822437639449120128678675368305712293681943649956460498166
450227716500185176546469340112226034729724066333258583506870150169794 
168850353752137554910289126407157154830282284937952636580145235233156 
936482233436799254594095276820608062232812387383880817049600000000000
000000000000000000000000000000000000000000000000000000000000000

In[25]:=  This command returns a decimal answer of the last output 
N

Out[25]= 3.267359761105326  10615

Example 1.1.  How close is ‰ 163 p to being an integer?

Solution: 

In[26]:= E^Pi  Sqrt163
Out[26]=  163 

In[27]:= N, 40
Out[27]= 2.625374126407687439999999999992500725972  1017

We can rewrite this output in non-scientific notation by moving the decimal point 17 places to the right.  This shows that e 163 p

is very close to being an integer.  Another option is to use the command Mod[n,m], which returns the remainder of n when

divided by m, to obtain the fractional part of e 163 p:

In[28]:= Mod, 1
Out[28]= 0.9999999999992500725972
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In[29]:= 1  

Out[29]= 7.499274028  1013

ü 1.4  Functions

There are two different ways to represent functions in Mathematica,  depending on how they are to be used.   Consider the
following example:

Example 1.2.  Enter the function f x = x2+x+2

x+1
 into Mathematica.

Solution: 

Method 1:  Simply assign f  the expression x2+x+2

x+1
, for example,

In[30]:= Clearf, x  This clears the arguments f and x 
In[31]:= f  x^2  x  2  x  1

Out[31]=
2  x  x2

1  x

To evaluate f x at x = 10, we use the substitution command . (slash-period) as follows:

In[32]:= f . x  10

Out[32]=
112

11

Warning: Recall that Mathematica reads f(x) as f multiplied by x; commas are considered delimiters.  

In[33]:= f 10

Out[33]=

10 2  x  x2
1  x

Method 2: An alternative way to explicitly represent f as a function of the argument x is to enter

In[34]:= Clearf
fx_ : x^2  x  2  x  1

Evaluating the command f[10] now tells Mathematica to compute f  at x = 10. 

In[36]:= f10

Out[36]=
112

11

More generally, the command f[{a,b,c,...}] evaluates f x for every value of x in the list {a,b,c,...}:
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In[37]:= f3, 2, 1, 0, 1, 2, 3

Power::infy : Infinite expression 
1

0
 encountered. à

Out[37]= 4, 4, ComplexInfinity, 2, 2,
8

3
,
7

2


Here,  Mathematica  is  warning us that  it  has  encountered the  undefined expression 
1

0
 in  evaluating f -1  by  returning the

message ComplexInfinity.

Remark:  If  there  is  no  need  to  attach  a  label  to  the  expression  x2+x+2

x+1
,  then  we  can  directly  enter  this  expression  into

Mathematica:

In[38]:=
x2  x  2

x  1
. x  10

Out[38]=
112

11

In[39]:=
x2  x  2

x  1
. x  3, 2, 1, 0, 1, 2, 3

Power::infy : Infinite expression 
1

0
 encountered. à

Out[39]= 4, 4, ComplexInfinity, 2, 2,
8

3
,
7

2


Piece-wise functions can be defined using the  command Ifcond, p, q,  which evaluates  p  if  cond  is  true;  otherwise,  q  is
evaluated.

Example 1.3.  Enter the following piece-wise function into Mathematica:

f x =  tan p x

4
, if x < 1;

x, if x ¥ 1.

Solution: 

In[40]:= fx_ : IfAbsx  1, TanPi  x  4, x

ü 1.5  Palettes

Mathematica allows us to enter commonly used mathematical expressions and commands from six different palettes.  Palettes are
calculator pads containing buttons that can be clicked on to insert the desired expression or command into a command line.
These palettes can be found under the Palettes menu.  If the Basic Math Assistant Palette does not appear by default, then click
on Palettes from the menu and select it.  One can also select more advanced math typesetting palettes such as the Basic Math
Input and Algebraic Manipulate Palettes.  
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Example 1.4.  Enter 3

p4
into a notebook.

Solution: 

Here is one set of instructions for entering this expression using the Basic Math Assistant Palette:

a) Click on the palette button Ñ .

b) Click on Ñ
Ñ

.

c) Enter the number 3 into the highlighted top placeholder.

3



d) Press the TAB key to move the cursor to the bottom placeholder.
e) Click on ÑÑ.
f) To insert p  into the base position, click on the palette button for p.

3



g) Press the TAB key to move the cursor to the superscript placeholder.
h) Enter the number 4.

3

4

ü 1.6  Solving Equations

Mathematica  has a host of built-in commands to help the user solve equations and manipulate expressions.  The command

Solvelhs == rhs, var solves the equation lhs == rhs (recall Mathematica's use of the double-equal sign) for the variable var.
For example, the command below solves the quadratic equation x2 - 4 = 0 for x.  
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In[41]:= Solvex^2  4  0, x
Out[41]= x  2, x  2
A  system  of  m  equations  in  n  unknowns  can  also  be  solved  with  using  the  same  command,  but  formatted  as

Solvelhs1 == rhs1, lhs2 == rhs2, ..., lhsm == rhsm, x1, x2, ..., xn.  In situations where exact solutions cannot be obtained
(e.g.,  certain polynomial equations of degree 5 or higher),  numerical approximations can be obtained through the command

NSolvelhs == rhs, var.  Here are two examples:

In[42]:= Clearx, y
Solve2 x  y  3, x  4 y  2, x, y

Out[43]= x 
10

9
, y  

7

9


In[44]:= NSolvex^5  x  1  0, x
Out[44]= x  1.1673, x  0.181232  1.08395 , x  0.181232  1.08395 ,

x  0.764884  0.352472 , x  0.764884  0.352472 
There  are  many commands to  algebraically  manipulate expressions:  Expand,  Factor,  Together,  Apart,  Cancel,  Simplify,

FullSimplify, TrigExpand, TrigFactor, TrigReduce, ExpToTrig, PowerExpand, and ComplexExpand.  

In[45]:= Factorx^2  4 x  21
Out[45]= 3  x 7  x
NOTE: These commands can also be entered from the Algebraic Manipulation Palette; highlight the expression to be manipu-
lated and click on the button corresponding to the command to be inserted.  The screen shot below demonstrates how to select the

Factor command from the Algebraic Manipulate Palette to factor the highlighted expression x2 + 4 x - 21.

 

ü Exercises 

In Exercises 1 through 5, evaluate the expressions:

1. 103.41+20*76 2. 52+p

1+p
 3. 1

1+
1

1+
1

4!

 4. 2.06*109

0.99*10-8
5. What is the remainder of 1998 divided by 13?

In Exercises 6 through 8,  enter the functions into Mathematica and evaluate each at x = 1:
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6. f x = 2 x3 - 6 x2 + x - 5 7. gx = x2-1

x2+1
8. hx = x - 3

In Exercises  9 through 11, evaluate the functions at the given point using Mathematica:

9. f x = 1001 + x4 at x = 25 10. 1 + x + x
3

+ x
4

 at x = p 11. 1 + 1

2+
2 x+12

2+
4 x+12

2

 at x = 1

In Exercises 12 through 17, enter the expressions into Mathematica:

12. 80
3

13. 1024
5

2-3
14. 125

3

15. 10 a7 b
3

16. 
x-3 y4

5

-3
17. 

3 m
1
6 n

1
3

4 n
-2

3

2

In Exercises 18 through 21, expand the expressions:

18. x + 1 x - 1 19. x + y - 2 2 x - 3 20. x2 + x + 1 x - 1 21. x3 + x2 + x + 1 x - 1
In Exercises 22 through 25, factor the expressions:

22. x3 - 2 x2 - 3 x 23. 4 x23 + 8 x13 + 3.6 24. 6 + 2 x - 3 x3 - x4 25. x5 - 1

In Exercises 26 through 29, simplify the expressions using both of the commands Simplify and FullSimplify (the latter uses a
wider variety of methods to simplify expressions).

26. x2+4 x-12

3 x-6
27. 

2
x
-3

1- 1
x-1

28. x1 - 2 x-32 + 1 - 2 x-12 29. x5-1

x-1

In Exercises 30 through 33, solve the equations for x (compare outputs using both the Solve and NSolve commands):

30. x2 - x + 1 = 0 31. x1 - 2 x-32 + 1 - 2 x-12 = 0 32. x3 - 1 = 0 33. 1 + x + x2 = 5
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Chapter 2 Graphs of Functions,  Limits, and 
Continuity

ü 2.1 Plotting Graphs

Students should read Chapter 1 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

ü 2.1.1  Basic Plot

In this section, we will discuss how to plot graphs of functions using Mathematica and how to utilize its various plot options.  We
will discuss in detail several options that will be useful in our study of calculus.  The basic syntax for plotting the graph of a

function y = f x with x ranging in value from a to b is Plot f , x, a, b. On the other hand, Plot f1, f2, ..., fN, x, a, b
plots the graphs of f1, f2, ..., fN  on the same set of axes.

Example 2.1.  Plot the graph of f x = x2 - 3 x + 1 along the interval -2, 5.
Solution: 

In[46]:= Plotx2  3 x  1, x, 2, 5

Out[46]=

-2 -1 1 2 3 4 5

2

4

6

8

10

Example 2.2.  Plot the graph of y = cos 3 x along the interval -4, 4.
Solution: 
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In[47]:= PlotCos3 x, x, 4, 4

Out[47]=
-4 -2 2 4

-1.0

-0.5

0.5

1.0

Example 2.3.  Plot the graphs of the two functions given in Examples 2.1 and 2.2 prior on the same set of axes to show their
points of intersection.

Solution: 

In[48]:= Plot x2  3 x  1, Cosx, x, 3, 6

Out[48]=

-2 2 4 6

5

10

15

Example 2.4.  Plot the graphs of f x = x2+x+1

x+1
and gx = sin 4 x

4
 on the same set of axes.

Solution: 

In[49]:= Plotx^2  x  2  x  1, Sin4 x  4, x, 4, 4

Out[49]=
-4 -2 2 4

-10

-5

5

10
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Note that the graph of y = sin 4 x 4 is displayed poorly in output above since its range (from -1 to 1) is too small compared to

the  range  of  y = x2 + x + 2x + 1.   We  can  zoom  in  using  the  PlotRange  option.  The  syntax  for  PlotRange  is

PlotRange Æ c, d  (the arrow is generated by entering a minus sign (-) followed by greater than sign) where c, d  is the
interval on the y-axis to be displayed.  More generally, PlotRange -> a, b, c, d specifies the interval a, b on the x-axis
while c, d specifies the interval on the y-axis. 

In[50]:= Plotx^2  x  1  x  1, Sin4 x  4, x, 4, 4, PlotRange  4, 4

Out[50]=
-4 -2 2 4

-4

-2

2

4

Example 2.5.    Plot the graphs of the following functions.

a)   f x = x2

x2-4
b) f x = sin x + cos x c) f x = x ex + ln x d) f x = x2

x2+4

Solution: We recall that the natural base ‰ is entered as E or ‰ (from the Basic Math Assistant Palette) and that ln x is Logx.
Note also that sin x and cos x are to be entered as Sinx and Cosx (see Chapter 1 of this text for a discussion of Mathematica's
notation).  We leave it to the reader to experiment with different intervals for the domain of each graph so as to capture its salient
features. 

a)

In[51]:= Plot x2

4  x2
, x, 5, 5

Out[51]= -4 -2 2 4

-4

-2

2

4

b)
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In[52]:= PlotSinx  Cosx, x, 2 Pi, 2 Pi

Out[52]=
-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

c)

In[53]:= Plotx Ex  Logx, x, 3, 3

Out[53]=

-3 -2 -1 1 2 3

10

20

30

40

50

60

NOTE:  The above graph needs to be read carefully. First of all, it is clear from the graph above that f x = x ex - ln x tends to ¶
as x tends to 0.  It is also clear from the graph that f x tends to ¶ as x tends to ¶.  Note, however, that the graph suggests

(incorrectly) that the domain is 0, ¶.  If we zoom in on the graph near x = 0, then we see that the domain does NOT include the
point x = 0. 
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In[54]:= Plot x2

x2  4
, x, 5, 5 

Out[54]=

-4 -2 2 4

0.2

0.4

0.6

0.8

ü 2.1.2  Plot Options

Next, we will introduce various options that can be specified within the Plot command.  To begin with, evaluating the command

Options[Plot] displays the following options:

In[55]:= OptionsPlot

Out[55]= AlignmentPoint  Center, AspectRatio 
1

GoldenRatio
, Axes  True,

AxesLabel  None, AxesOrigin  Automatic, AxesStyle  , Background  None,
BaselinePosition  Automatic, BaseStyle  , ClippingStyle  None,
ColorFunction  Automatic, ColorFunctionScaling  True, ColorOutput  Automatic,
ContentSelectable  Automatic, CoordinatesToolOptions  Automatic,
DisplayFunction  $DisplayFunction, Epilog  , Evaluated  Automatic,
EvaluationMonitor  None, Exclusions  Automatic, ExclusionsStyle  None,
Filling  None, FillingStyle  Automatic, FormatType  TraditionalForm,
Frame  False, FrameLabel  None, FrameStyle  , FrameTicks  Automatic,
FrameTicksStyle  , GridLines  None, GridLinesStyle  ,
ImageMargins  0., ImagePadding  All, ImageSize  Automatic,
ImageSizeRaw  Automatic, LabelStyle  , MaxRecursion  Automatic,
Mesh  None, MeshFunctions  1 &, MeshShading  None, MeshStyle  Automatic,
Method  Automatic, PerformanceGoal  $PerformanceGoal,
PlotLabel  None, PlotPoints  Automatic, PlotRange  Full, Automatic,
PlotRangeClipping  True, PlotRangePadding  Automatic, PlotRegion  Automatic,
PlotStyle  Automatic, PreserveImageOptions  Automatic, Prolog  ,
RegionFunction  True &, RotateLabel  True, Ticks  Automatic,

TicksStyle  , WorkingPrecision  MachinePrecision

ü PlotStyle

PlotStyle is an option for Plot that specifies the style of lines or points to be plotted. Among other things, one can use this option

to specify a color of the graph and the thickness of  the curve.  PlotStyle  should be followed by an arrow and then the option:

PlotStyle Æ {option}. For example, if we want to plot a graph colored in red, we evaluate  
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In[56]:= Plotx2, x, 3, 3, PlotStyle  Red

Out[56]=

-3 -2 -1 1 2 3

2

4

6

8

The next example shows how to use PlotStyle to specify two styles: a color and thickness.

In[57]:= Plotx2, x, 3, 3, PlotStyle   Blue, Thickness0.02

Out[57]=

-3 -2 -1 1 2 3

2

4

6

8

PlotStyle can also be used to specify options for two or more graphs.  Here are two examples to demonstrate this:

In[58]:= Plotx2, x3  x  1, x, 3, 3, PlotStyle  Green, Yellow 

Out[58]=

-3 -2 -1 1 2 3

-10

-5

5

10

15

20
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In[59]:= Plotx2, x3  x  1, x, 3, 3, PlotStyle  Magenta, Thickness0.01,
Cyan, Thickness0.001, Dashing0.01, 0.01, 0.01

Out[59]=

-3 -2 -1 1 2 3

-10

-5

5

10

15

20

ü PlotRange

We have already used the PlotRange option in Section 2.1 of this text (see Example 2.4 prior).  This option specifies the range of
y-values on the graph that should be plotted. As observed in the same example in Section 2.1, some points of a graph may not be

plotted unless we specify the y-range of the plot.  The option PlotRange Æ  All   includes all  y-values corresponding to the
specified values of x.  Here is an example. 

In[60]:= Plotx5  2 x  1, x, 5, 5

Out[60]=
-4 -2 2 4

-1000

-500

500

1000

In[61]:= Plotx5  2 x  1 , x, 5, 5, PlotRange  All

Out[61]=
-4 -2 2 4

-3000

-2000

-1000

1000

2000

3000
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ü Axes 

There are several options regarding axes of plots. We consider four of them.

1. Axes:    The specification Axes Æ True  draws both axes, whereas  Axes Æ False  draws no axes and AxesØ{True,False}
draws the x-axis only. An example of the last case  is given below.

In[62]:= Plot x Sin3 x, x, 10, 10, Axes  True, False

Out[62]= -5 0 5 10

2. AxesLabel: The default specification AxesLabel Æ None leaves the axes unlabeled.  On the other hand, AxesLabel Æ expr 

will only label the y-axis as expr and AxesLabel Æ { "expr1", "expr2" } labels both the x-axis and y-axis as expr1 and expr2,
respectively.  Examples of both cases are given below.

In[63]:= Plotx Cosx,  x, 10, 10, AxesLabel  y

Out[63]=

-10 -5 5 10

-5

5

y
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In[64]:= Plotx Cosx,  x, 10, 10, AxesLabel  "x", "y"

Out[64]=

-10 -5 5 10
x

-5

5

y

3.  AxisOrigin:  The option AxesOrigin  specifies the location where the two axes should intersect. The default value given by

AxesOrigin Æ Automatic chooses the intersection point of the axes based on an internal (Mathematica) algorithm. It usually

chooses (0,0). The option AxesOrigin Æ {a,b}  allows the user to specify the intersection point as (a,b).

4.  AxesStyle:  This option specifies the style of the axes. Here is an example where we specify the thickness of the x-axis and

color (blue) of the y-axis. We also use the AxesOrigin option.

In[65]:= Plotx Cosx,  x, 10, 10, AxesOrigin  10, 10,
AxesStyle   Blue, Thickness0.01,
AxesLabel  "x", "y"

Out[65]=

-5 0 5 10
x

-5

0

5

y

ü Frame

There are several options regarding the frame (border) of a plot. We show these options in the following examples:
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In[66]:= Plotx Cosx,  x, 10, 10, Frame  True 

Out[66]=

-10 -5 0 5 10

-5

0

5

In[67]:= Plotx Cosx,  x, 10, 10, Frame  True,
FrameLabel  "The graph of y  x cos x", "yaxis", None, None

Out[67]=

-10 -5 0 5 10

-5

0

5

The graph of y = x cos x

y-
ax

is

In[68]:= Plotx Cosx ,  x, 10, 10, PlotStyle  Red, Frame  True,

FrameLabel  "The graph of y  x cos x", "yaxis", None, None,
FrameStyle  Blue, Thickness0.005,

Yellow, Thickness0.005, Green, Thickness0.013, Orange 

Out[68]=

-10 -5 0 5 10

-5

0

5

The graph of y = x cos x

y-
ax

is
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We encourage the reader to experiment with this example by changing the color specifications to see which option controls
which edge color of the frame.

ü Show

The command Show[graphics, options]  displays graphics (consisting of possibly many different graphics objects) using the

options specified by options. Also Show[ plot1,plot2, ....] displays the graphics plot1, plot2, ... on one coordinate system. 

In[69]:= plot1  PlotSinx, x, Pi, Pi ;
In[70]:= plot2  ListPlot 0, 0, Pi  2, 1, Pi, 0, PlotStyle  Red, PointSize.02;
In[71]:= Showplot1, plot2

Out[71]=
-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

Here is an option we can use to identify the sine curve by inserting the expression y = sin x near its graph. 

In[72]:= Showplot1, plot2,
Epilog  Text"ysin x", 2.7, 1, 0, 1

Out[72]=
-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0
y=sin x

ü Animation

Animateexpr, t, a, b generates an animation of expr in which the parameter t varies from a to b. 

Animateexpr, t, a, b, dt generates an animation of expr in which t varies from a to b in steps of dt. 

Animateexpr, t, a1, a2, a3, ... , an  generates  an  animation  of  expr  in  which  t  takes  on  the  discrete  set  of  values

a1, a2, a3, ..., an. 

Animateexpr, t, a, b, s, c, d, ....  generates an animation of expr in which t  varies from a to b,  s varies from c to d,
and so on. 
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Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-

tions generated from the Animate command in this chapter.  If you are reading the electronic version of this publication format-

ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation.  Just click on the
arrow button to start the animation.  To control the animation just click at various points on the sliding bar or else manually drag
the bar.

Example 2.6.  Analyze the effect of the shift f x + a, f x + a,  f b x , and b f x for various values of a and b for the fucntion
f x = cos x.

Solution: 

In[73]:= fx_ : Cosx
In[74]:= AnimatePlotCosx, Cosx  a, x, 2 Pi, 2 Pi,

PlotStyle  Black , Red, PlotRange  2, 2, a, 0, 8 

Out[74]=

a

-6 -4 -2 2 4 6

-2

-1

1

2

Next, we will animate the graphs of f x + a in red and f x + a in blue :

24   Mathematica for Rogawski's Calculus 2nd Editiion.nb



In[75]:= AnimatePlotCosx, Cosx  a, Cosx  a, x, 2 Pi, 2 Pi,
PlotStyle  Black, Red, Blue, PlotRange  1, 5, a, 0, 6 

Out[75]=

a

-6 -4 -2 2 4 6

-1

1

2

3

4

5

Here is the animation for the graphs of f b x and b f x.
In[76]:= AnimatePlotCosx, Cosb  x, b  Cosx,

x, 2 Pi, 2 Pi, PlotStyle  Black , Red, Blue, b, 0, 8 

Out[76]=

b

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

Here is an animation that shows all four shifts at once. We can fix as many parameters as we want (just click on their pause
buttons) and analyze the behavior due to the remaining parameters. 
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In[77]:= AnimatePlotCos x , Cosx  a, Cosx  b, Cosc x, d  Cosx , x, 0, 10,
PlotStyle  Black, Red, Blue, Green, Brown, Yellow, PlotRange  5, 5,

a, 0, 5, b, 0, 5, c, 0, 5, d, 0, 5

Out[77]=

a

b

c

d

2 4 6 8 10

-4

-2

2

4

Example 2.7.  Here is an animated example of a graph that shows the behavior of a general quadratic polynomial as we vary its
coefficients.  

Solution: 
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In[78]:= AnimatePlota x2  b x  c, x, 3, 3, PlotRange  10, 10,
a, 3, 3, b, 3, 3, c, 3, 3

Out[78]=

a

b

c

-3 -2 -1 1 2 3

-10

-5

5

10

We suggest that you pause two of the parameters and vary the third one manually to see the change in the location of the zeros,
the vertex, the regions of concavity,  and the regions on which the graph increases and decreases. Then make the necessary
changes to redo this problem for polynomials of higher degree.    

ü Contour Plot

To end our discussion on graphics, we now consider plotting graphs of equations in two variables.  Among such equations are the
famous family of elliptic curves that arise in number theory: y2 = x3 + a x + b, where a and b are parameters. The command for

graphing equations implicitly in two variables x and y is ContourPloteqn, x, a, b, y, c, d, which displays the graph of eqn
for which x varies from a to b and y varies from c to d. 

Example 2.8. Plot the graphs of curves given by the equation y2 = x3 + a x + b for various values of a and b. 

Solution: First, we define a function f x, a, b to represent the right-hand side of the equation y2 = x3 + a x + b so that f  is a

function of x as well as a and b. We then plot the equation y2 = f x, a, b, where we consider three different sets of values:

a = 1, b = 1; a = -4, b = 0; and a = -3, b = 3.  

In[79]:= fx_, a_, b_ : x3  a x  b
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In[80]:= ContourPlot y2  fx, 1, 1, x, 10, 10, y, 10, 10, Axes  True, Frame  False

Out[80]=
-10 -5 5 10

-10

-5

5

10

In[81]:= ContourPlot y2  fx, 4, 0, x, 10, 10, y, 10, 10, Axes  True, Frame  False

Out[81]=
-10 -5 5 10

-10

-5

5

10

In[82]:= ContourPlot y2  fx, 3, 3, x, 10, 10, y, 10, 10, Axes  True, Frame  False

Out[82]=
-10 -5 5 10

-10

-5

5

10

Discovery Exercise: Evaluate the following table and discuss which pararemeters produce curves that are familiar. Make sure to
delete the semicolon at the end of the command. 

In[83]:= TableContourPlot y2  fx, a, b, x, 10, 10,
y, 10, 10, Axes  True, Frame  False , a, 4, 4, b, 3, 3;

ü Exercises 

 In Exercises 1 through 8, plot the graphs of the given functions on the specified interval:

1. f x = x2 + 1 on -5, 5 2. gx = 1

x-2
 on 0, 4
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3. hx = sin x

x
 on -p, p 4.  f x = x3 - 5 x2 + 10 on  -5, 5

5. f x = 32 - 2 x2  on  -4, 4 6. f x = x + 1

x
  for -10, 10

7. f x = x3 - x + 1 on -3, 3 8. gx = 1-cos x

x
 on -p, p

9.  Plot the graphs of f x = xx - 3 x + 3 and gx = cos 2 x  together on the same set of axes and over the interval -20, 20.
Use the PlotRange option to adjust the range of the viewing window so that their points of intersection are visible.

 In Exercises 10 through 13,  plot the graphs of the given functions using at least one plot option discussed in this section.

NOTE: ln x is one of the built-in Mathematica functions and is entered as Log[x].   The logarithmic function log a x is entered as

Log[a,x].  For the natural base e you either type E or you can obtain ‰ from the Basic Math Assistant Palette.
10. f x = x4 + 2 x3 + 1 for   -3 § x § 3 11. f x = x ln x  for   0 § x § 4 

12. f x = 1 - 1

x3
+ 1

x
      for  -20 § x § 20 13. f x = x ex for -4 § x § 4

 In Exercises 14 through 18, plot the graphs of the given pairs of functions on the same axes. Use the PlotStyle option to distin-
guish the graphs.

14. f x = ‰x and gx = ln x  15. f x = 2 x

x-5
 and gx = x-5

2 x
   

16. f x = x2 - sin x   and   gx = x4 + 1 - x2 + 1

17. f x = 3 x + 1 and gx = x-1

3
     18. f x = x + 1

3

and gx = x - 13  
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19. Let f x = x2 - 123
. 

a) Define f  in Mathematica  as it appears above and plot its graph.

b) Rewrite f  as f x = x2 - 12
3 plots its graph as it appears here. 

c) Explain why the graphs are not identical. Generalize this remark to general functions with rational exponents.  

20. Let f x = 2 c x-x2

c2
, c > 0. 

a)  Graph f  for various values of c.  (You may use the Animate command.)
b)  Use the graph in part a) to sketch the curve traced out by the vertices of the highest point as c varies. Can you guess what this
curve is?  

21.  Use the Animate command to plot the graph of f x  by varying the parameters a, b, c, d, and e for each of the following
functions.   Discuss how each parameter affects the shape of the graph.
a)  f x = a x3 + b x2 + c x + d
b)  f x = a x4 + b x3 + c x2 + d x + e

22. a) Use ContourPlot to plot the graph of the curve defined by the equation y y2 - c y - d = x x - a x - b for various

values of a, b, c, d.  (Hint: You may want to define g[y,c,d] as the left hand side and f[x,a,b] as the right hand side and then use

the command ContourPlot[f[x, a, b] ä g[y, c, d], {x, -5, 5}, {y, -5, 5}, Frame Æ False, Axes Æ True].)
b)  For the parameters you selected in part a, at how many points is the slope of this curve equal to zero?  Estimate the x-coordi-
nates of these points.
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ü 2.2 Limits

Students should read Chapter 2 of Rogawski's Calculus  [1] for a detailed discussion of the material presented in this
section.

ü 2.2.1  Evaluating Limits 

Limit f , x -> a, Direction -> 1 computes the limit as x as approaches a from the left (i.e., x increases to a).

Limit f , x -> a, Direction -> -1 computes the limit as x approaches a from the right (i.e., x decreases to a).

Limit f , x -> a finds the limiting value of f  as x approaches a.

NOTE: Mathematica will use the right-hand limit when evaluating Limit.  If the limit does not exist, then Mathematica will
attempt to explain why or else return the limit expression unevaluated if it has insufficient information about the function.

Example 2.9.  Evaluate lim
xØ1

x2+x+2

x+1
.

Solution: Here is a table of values of the function f x = x2+x+2

x+1
 when x is sufficiently close to 1. 

In[84]:= fx_ :
x2  x  2

x  1

In[85]:= From the left
Tablex, fx, x, 0.8, 0.99, 0.01  TableForm

Out[85]//TableForm=

0.8 1.91111
0.81 1.91497
0.82 1.9189
0.83 1.9229
0.84 1.92696
0.85 1.93108
0.86 1.93527
0.87 1.93952
0.88 1.94383
0.89 1.9482
0.9 1.95263
0.91 1.95712
0.92 1.96167
0.93 1.96627
0.94 1.97093
0.95 1.97564
0.96 1.98041
0.97 1.98523
0.98 1.9901
0.99 1.99503
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In[86]:= From the right
Tablex, fx, x, 1.2, 1.01, 0.01  TableForm

Out[86]//TableForm=

1.2 2.10909
1.19 2.10324
1.18 2.09743
1.17 2.09166
1.16 2.08593
1.15 2.08023
1.14 2.07458
1.13 2.06897
1.12 2.0634
1.11 2.05787
1.1 2.05238
1.09 2.04694
1.08 2.04154
1.07 2.03618
1.06 2.03087
1.05 2.02561
1.04 2.02039
1.03 2.01522
1.02 2.0101
1.01 2.00502

From the tables, it is reasonable to expect that the limit is 2. Here is the graph of the function together with the point 1, 2).   

In[87]:= plot1  Plotx^2  x  2  x  1, x, 1, 2, PlotRange  0, 3;
plot2  GraphicsGreen, PointSizeLarge, Point1, 2  ;
plot3  GraphicsRed, Line1, 0, 1, 2, 0, 2;
Showplot1, plot2, plot3

Out[90]=

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

2.5

3.0

Evaluating the limit confirms this: 

In[91]:= Limitx^2  x  2  x  1, x  1
Out[91]= 2

Example 2.10.  The height of a projectile, fired in the air with initial velocity 32 ft/s, is given by yt = -16 t2 + 64 t + 3. Find the
average velocity of the projectile over the interval 1, t for various values of t.  Then find the instantaneous velocity at t = 1. 

Solution: We define
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In[92]:= yt_  16 t2  64 t  3

vt_ 
yt  y1

t  1

Out[92]= 3  64 t  16 t2

Out[93]=
48  64 t  16 t2

1  t

In[94]:= tt  2, 1.5, 1.01, 1.001, 1.0001, 1.00001;
Tablettk, vttk, k, 1, Lengthtt  TableForm

Out[95]//TableForm=

2 16
1.5 24.
1.01 31.84
1.001 31.984
1.0001 31.9984
1.00001 31.9998

Here tt is the list of values for t and tt[[k]] refers to the kth element in the list tt (see Chapter 1 of this text for an explanation of

lists).  Also, Length[t] gives the number of elements in the list tt, which is 6 for our example. 

The above table clearly suggests that the instantaneous velocity at t = 1 is 32 ft/s. The graph below also verifies this.

In[96]:=

plot1  Plotvt, t, 0, 2, PlotRange  0, 50;
y  Simplifyvt . t  1;
plot2  Graphics PointSizeLarge, Point1, y  ;
plot3  GraphicsRed, Line1, 0, 1, y, 0, y;

Showplot1, plot2, plot3

Out[100]=

0.0 0.5 1.0 1.5 2.0

10

20

30

40

50

Example 2.11.  Show that f x = cos1  x does not have a limiting value as x approaches 0. 

Solution: We define

In[101]:= fx_ : Cos1  x
f0.1, .05, 0.001, .0001, .000001

Out[102]= 0.839072, 0.408082, 0.562379, 0.952155, 0.936752
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These values suggest that the limit does NOT exist. To make this clear, we consider the following two tables.  The first table uses
values of the form x = 2  2 n + 1 p, where n is a positive integer, while the second table uses x = 1  2 n + 1 p.  Each of these
sets of values for x approach 0 as nØ¶.

In[103]:= t1  Table 2.

Pi 2 n  1 , n, 1, 100, 10;
ft1

Out[104]= 1.83697  1016, 3.1847  1015, 4.40935  1015, 1.47143  1015, 2.10695  1014,

1.3233  1014, 9.30793  1015, 3.42715  1015, 2.59681  1014, 2.00873  1014

In[105]:= t2  Table 1.

Pi 2 n  1 , n, 1, 100, 10;
ft2

Out[106]= 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.
The first table indicates that the values of f x approach 0, while the second table indicates the values approach -1.  Recall that if
the limit exists, then it must be unique.  Thus, our limit does not exist because the values of f  do not converge to a single value.
Next, we analyze the graph of the function.

In[107]:= Plotfx, x, 1, 1

Out[107]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

This indicates that there is too much oscillation around x = 0.  Let us try zooming in around this point.

In[108]:= PlotCos1  x, x, 0.1, 0.1

Out[108]=
-0.10 -0.05 0.05 0.10

-1.0

-0.5

0.5

1.0

 Note how zooming in on this graph does not help. This indicates that the limit does not exist.  
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Example 2.12. Consider the function f x = 21x-2-1x

21x+2-1x .  Find limxØ0 f x.

Solution:

In[109]:= Limit 2
1x  21x

21x  21x
, x  0

Out[109]=
1

2

It may appear that the limit is 1

2
, but the simplified form of f x (using the Simplify command) shows this not to be the case.

Instead we shall consider one-sided limits.

In[110]:= Simplify 2
1x  21x

21x  21x


Out[110]=
1

2
1  41x

In[111]:= Limit 2
1x  21x

21x  21x
, x  0, Direction  1

Limit 2
1x  21x

21x  21x
, x  0, Direction  1

Out[111]= 

Out[112]=
1

2

Since the left- and right-hand limits are not the same, we conclude that the limit does not exist. 

In[113]:= Plot 2
1x  21x

21x  21x
, x, 1, 1, PlotRange  30, 1

Out[113]=

-1.0 -0.5 0.5 1.0

-30

-25

-20

-15

-10

-5

NOTE: One needs to be careful when using Mathematica to find limits. If you are not certain that the limit exists, use one-sided
limits:

Example 2.13.  Evaluate lim
xØ5+

x-5

x-5
.
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Solution: 

In[114]:= LimitAbsx  5  x  5, x  5, Direction  1
Out[114]= 1

Note that Mathematica's convention for right-hand limits is "going in the negative direction." Thus, the standard notation lim
xØ5+

should be evaluated as Limit f x, x Æ 5, Direction Æ -1.  A similar remark applies to the left-hand limit. 

Again, we can check the answer by plotting the graph of the function:

In[115]:= PlotAbsx  5  x  5, x, 3, 7

Out[115]=
4 5 6 7

-1.0

-0.5

0.5

1.0

Warning: This plot does not show the true graph of f x near x = 5.  It may appear that f  is continuous at x = 5 because of the
vertical line there but this is not the case since f  is undefined at x = 5 and its one-sided limits do not agree:

In[116]:= Absx  5  x  5 . x  5
LimitAbsx  5  x  5, x  5, Direction  1
LimitAbsx  5  x  5, x  5, Direction  1

Power::infy : Infinite expression 
1

0
 encountered. à

Infinity::indet : Indeterminate expression 0 ComplexInfinity encountered. à

Out[116]= Indeterminate

Out[117]= 1

Out[118]= 1

Below is the true graph of f , which shows the (non-removable) discontinuity at x = 5.
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ü 2.2.2  Limits Involving Trigonometric Functions  

For trigonometric functions, Mathematica uses the same traditional notation in calculus except that the first letter of the trigono-

metric function must be capitalized. Thus, Sin[x] is Mathematica's notation for sin x (see Appendix A of this text for a descrip-
tion of notational differences).

Example 2.14.  Evaluate lim
xØ0

sin 4 x
x

.

Solution: 

In[119]:= LimitSin4 x  x, x  0
Out[119]= 4

Let us check the answer by graphing the function up close in the neighborhood of x = 0:

In[120]:= PlotSin4 x  x, x, 1, 1

Out[120]=

-1.0 -0.5 0.5 1.0

1

2

3

4

Example 2.15.  Evaluate lim
tØ0

sin t

t
.

Solution: We will consider both the left- and right-hand limits.

In[121]:= Limit Sint
Abst , t  0, Direction  1

Out[121]= 1

In[122]:= Limit Sint
Abst , t  0, Direction  1

Out[122]= 1

Thus, the limit does not exist. This can be clearly seen from the graph of the function below. 
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In[123]:= Plot Sinx
Absx , x, 2 Pi, 2 Pi

Out[123]=
-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

Example 2.16. Find

a)  limxØ0
cos x-1

sin x
 b) limxØ0 tan x cossin 1  x

Solution: 

In[124]:= a  LimitCosx  1  Sinx, x  0
Out[124]= 0

In[125]:= b  LimitTanx CosSin1  x, x  0
Out[125]= 0

NOTE: In your textbook, it is proven that limxØ0
cos x-1

x
= 0 and limxØ0

sin x

x
= 1. Writing cos x-1

sin x
=  cos x-1

x
 sin x

x
, we see that the

answer  for  part  a)  is  valid  by  applying  the  quotient  rule  for  limits.  For  the  second  limit  in  part  b),  we  note  that
-1 § cos sin1  x § 1and hence - tan x § tan x cos sin 1 x § tan x .  Since limxØ0 tan x = limxØ0 -tan x = 0 we call upon
the Squeeze Theorem to conclude that limxØ0 tan x cos sin 1  x = 0.

The following graphs verify both answers.

In[126]:= Plot Cosx  1
Sinx , x, 2 Pi, 2 Pi

Out[126]=
-6 -4 -2 2 4 6

-6

-4

-2

2

4

6
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In[127]:= PlotTanx  CosSin1  x, x, 2 Pi, 2 Pi

Out[127]=
-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

Example 2.17.  Find  limxØc
cos x-cos c

x-c
 for  values of c = 0, p 6, p 4, p 3, p 2.

Solution: We  will use the substitution command /. to evaluate the limit for different values of c. 

In[128]:= Limit Cosx  Cosc
x  c

, x  c . c  0, Pi  6, Pi  4, Pi  3, Pi  2

Out[128]= 0, 
1

2
, 

1

2
, 

3

2
, 1

Can you guess a general formula for the answer in terms of c?  (Hint: What trigonometric function takes on these values?)

Example 2.18. Find  limxØ0
cos m x-1

x2
for various values of m.  Then make a general statement about this limit and prove your

assertion.  

Solution: Here is a table of limits for integer values of m ranging from 1 to 10.

In[129]:= TableLimitCosm x  1
x2

, x  0, m, 1, 10

Out[129]=  1
2
, 2, 

9

2
, 8, 

25

2
, 18, 

49

2
, 32, 

81

2
, 50

A reasonable guess at a general formula for the answer would be limxØ0 cos m x - 1x2 = -m2 2.  We can check this with

values of m ranging from 10 to 20.  

In[130]:= TableLimitCosm x  1
x2

, x  0, m^2  2, m, 10, 20

Out[130]= 50, 50,  121
2

, 
121

2
, 72, 72,  169

2
, 

169

2
, 98, 98,  225

2
, 

225

2
,

128, 128,  289
2

, 
289

2
, 162, 162,  361

2
, 

361

2
, 200, 200

For a mathematical proof, first take m = 1 and plot the graph
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In[131]:= Plot Cosx  1
x2

, x, Pi, Pi, AxesOrigin  0, 0

Out[131]=

-3 -2 -1 1 2 3

-0.5

-0.4

-0.3

-0.2

-0.1

The graph above confirms that the limit is -1 2.

For the general case, let t =m x so that x2 = t2

m2
.  Then note that xØ 0  if and only if t Ø 0.  Thus, the limit can be evaluated in

terms of t as 

limxØ0
cos m x-1

x2
= limtØ0

cos t-1

t2m2
=m2 limtØ0

cos t-1

t2
= -m2

2
.  

ü 2.2.3 Limits Involving Infinity

Example 2.19.  Evaluate lim
xØ¶

3 x - 2 2 x2 + 1  and  lim
xØ-¶

3 x - 2 2 x2 + 1 .

Solution: 

In[132]:= Limit3 x  2  Sqrt2 x^2  1, x  Infinity

Out[132]=
3

2

In[133]:= N
Out[133]= 2.12132

In[134]:= Limit3 x  2  Sqrt2 x^2  1, x  Infinity

Out[134]= 
3

2

Observe how the two limits differ. The following graph confirms this. 
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In[135]:= Plot3 x  2  Sqrt2 x^2  1, x, 30, 30

Out[135]=
-30 -20 -10 10 20 30

-3

-2

-1

1

2

NOTE: Can you explain the cusp on the graph near x = 0?

Example 2.20.  Evaluate lim
xØ2-

4-x2

x-2
.

Solution: 

In[136]:= LimitSqrt4  x^2  x  2, x  2, Direction  1
Out[136]= 

We plot the function over two different ranges to visually understand why the answer is -¶.  Notice how the first range fails to
show this.

In[137]:= Plot Sqrt4  x^2
x  2

, x, 1, 3

Out[137]=

1.5 2.0 2.5 3.0

-8

-7

-6

-5

-4

-3

-2
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In[138]:= Plot Sqrt4  x^2
x  2

, x, 1, 3, PlotRange  100, 10

Out[138]=

1.5 2.0 2.5 3.0

-100

-80

-60

-40

-20

NOTE: The plot domain is specified to be 1, 3, but observe that this function is undefined for values of x greater than 2 because
this results in taking the square root of a negative number.

Example 2.21.  Evaluate lim
xØ¶

sin x.

Solution: 

In[139]:= LimitSinx, x  Infinity
Out[139]= Interval1, 1
Here, Mathematica is telling us that the limit does not exist by returning the range of values for sin x as x approaches infinity.

Example 2.22. Find  limxØ¶
sin x

x
 .

Solution: 

In[140]:= Limit Sinx
x

, x  Infinity
Out[140]= 0

We can verify this limit by using the Squeeze Theorem.  In our case, we take f x = -1  x , gx = sin x

x
and hx = 1  x .  Then

f x § gx § hx (recall that -1 § sin x § 1 for all x).

In[141]:= Plot1  Absx, Sinx  x, 1  Absx,
x, 0, 30, PlotStyle  Red, Green, Blue

Out[141]=
5 10 15 20 25 30

-0.3

-0.2

-0.1

0.1

0.2

0.3

Since 1  x  and -1  x  both approach 0 as xØ¶, we conclude that sin x x approaches zero as well. 
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Example 2.23. Evaluate limxØ¶  ex

xn , where n is any integer.

Solution: 

In[142]:= TableLimit^x  xn, x  Infinity, n, 1, 200, 10
Out[142]= , , , , , , , , , , , , , , , , , , , 
This table suggests that the limit is infinity. We confirm this with Mathematica:

In[143]:= Limit 
x

xn
, x  

Out[143]= ComplexInfinity

NOTE: This example reveals that exponential functions grow more quickly than polynomial functions. 

Example 2.24.  Evaluate limxØ1+ 1

ln x
- 1

x-1
.

Solution: 

In[144]:= Limit[(1/Log[x])-(1/(x-1)),x->1,Direction->1]

Out[144]=
1

2

Again, we can graph the function near  x = 1 to visually understand why the answer is 1 2 (we leave this to the student).  Note,
however, that this example shows that 1  ln x and 1  x - 1 both grow to ¶ at the same rate as xØ 1+.

Example 2.25. Let  f x = xn-1

xm-1
.  Evaluate limitxØ1 f x by substituting in various values of m and n.

Solution: 

In[145]:= TableLimitxn  1  xm  1, x  1, m, 1, 10, n, 1, 10  TableForm

Out[145]//TableForm=

1 2 3 4 5 6 7 8 9 10
1
2

1 3
2

2 5
2

3 7
2

4 9
2

5

1
3

2
3

1 4
3

5
3

2 7
3

8
3

3 10
3

1
4

1
2

3
4

1 5
4

3
2

7
4

2 9
4

5
2

1
5

2
5

3
5

4
5

1 6
5

7
5

8
5

9
5

2

1
6

1
3

1
2

2
3

5
6

1 7
6

4
3

3
2

5
3

1
7

2
7

3
7

4
7

5
7

6
7

1 8
7

9
7

10
7

1
8

1
4

3
8

1
2

5
8

3
4

7
8

1 9
8

5
4

1
9

2
9

1
3

4
9

5
9

2
3

7
9

8
9

1 10
9

1
10

1
5

3
10

2
5

1
2

3
5

7
10

4
5

9
10

1

Can you guess a formula for limitxØ1 f x in terms of m and n?  Enter the command Limitxn - 1  xm - 1, x Æ 1 into an
input box and evaluate it to verify your conjecture.  

Let us end this section with an example where the Limit command is used to evaluate the derivative of a function (in anticipation
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of commands introduced in the next chapter for computing derivatives).

By definition, the derivative of a function f  at x (i.e., the slope of its tangent line at x) is 

f ' x = lim
D xØ0

f x+D x- f x
D x

.

Example 2.26.  Find the derivative of f x = 1

x
 according to the limit definition.

Solution: We first examine the derivative by tabulating values of the difference quotient, 
f x+D x- f x

D x
,  for  some arbitrarily

chosen values of D x:

In[146]:= fx_ : 1  x
delta  0.1, 0.01, .0001, .00001, .000001, .00000001;
Tabledeltak, Simplify fx  deltak  fx

deltak ,

k, 1, Lengthdelta  TableForm

Out[148]//TableForm=

0.1  1.
0.1 xx2

0.01  1.
0.01 xx2

0.0001  1.
0.0001 xx2

0.00001  1.
0.00001 xx2

1.  106  1.

1.106 xx2

1.  108  1.

1.108 xx2

This table suggests that f ' x = -1 x2 in the limit as D xØ 0.  We confirm this with Mathematica:

In[149]:= Limitfx  Deltax  fx  Deltax, Deltax  0

Out[149]= 
1

x2

ü Exercises 

 In Exercises 1 through 8, compute the limits:

1. lim
xØ1

x2-1

x-1
2. lim

xØ-5

100

x+5
3. lim

xØ¶

1+x+x2

x10-x
3

4. lim
xØ0

sin x

x

5. lim
xØ0

sin 5 x

3 x
  6. lim

xØ0

1-cos x

4 x
  7. lim

xØ3

x3-27

x2-9
  8.  lim

xØ-¶

x3-27

x2-6

 In Exercises 9 through 13,  evaluate each of the limits. Verify your answers by plotting the graph of each function in the neighbor-
hood of the limit point. 

9. limxØ 2  2 x-1

4-3 x
 10. limxØ0+  1-ln x

e1x  11. limxØ0+  1

x
- ln x 

12. lim
xØ p

2
-  sec 3 x cos 5 x 13.limxØ 0  sin x cos  1

x


14. Use various values of a to find the following limits.  Confirm your answers by plotting the graph of each function correspond-
ing to your chosen values for a.  Make a conjecture for a general formula.  Then verify your conjecture by using Mathematica to
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evaluate the limits but keeping the constant a  unassigned.

a)  lim
xØa

x3-a3

x-a
b)   lim

xØ1

x3-a x2+a x-1

x-1

15. Consider the quadratic function f x = a x2 - x + 1.  Plot the graph of f  using small values of a.  What do you observe about
the  roots  of  f ?  What  is  the  limit  of  the  roots  of  f  as  aØ 0?   Hint:  Use  the  command

AnimatePlota x2 - x + 1, x, 0, 50, PlotRange Æ -50, 50, a, 0, .1, .01   to  help  you  analyze  the  root  and  then

change the values of a as well as the plot domain. Then use the quadratic formula to prove your assertion.  NOTE: One can also

use the Solve or Roots commands to determine the roots of f.

ü 2.3 Continuity

Students should read Section 2.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Recall that a function is continuous at x = a if and only if limxØa f x = f a.  Graphically, this means that there is no break (or
jump) in the graph of f  at the point a, f a. It is not possible to indicate this discontinuity using computer graphics for the
situation where the limit exists and the function is defined at a but the limit is not equal to f a.  For other cases of discontinuity,
computer graphics are very helpful.    

To verify if a given function is continuous at a point, we evaluate its limit there and check if this limit is equal to the value of the
function.  

Example 2.27. Show that the function f x = x3 - 1 is continuous everywhere.

Solution: We could draw the graph and observe this fact. On the other hand, we can get Mathematica to check continuity:

In[150]:= fx_ : x3  1

Limitfx, x  c  fc
Out[151]= True

This means that limxØ c f x = f c and hence f  is continuous everywhere.

Example 2.28.  Find points of discontinuity for each of the following functions:

a) Let  f x = 
x2-1

x-1
, if x ∫ 1

2, if x = 1.
.

b) Let  gx = 
x2-1

x-1
, if x ∫ 1

6, if x = 1.
.

Solution: The command If[cond, true, false] evaluates true if cond is satisfied and gives false if cond  is not satisfied. This
command can be used to define piece-wise functions such as those in this example.

a) We first check continuity of f  at x = 1.

In[152]:= fx_ : Ifx  1,
x2  1

x  1
, 2

In[153]:= Limitfx, x  1  f1
Out[153]= True
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Hence, the function is continuous at x = 1.  For continuity at other points, we observe that the rational function x2- 1

x-1
 simplifies to

x + 1 in this case (factor the numerator!)  and thus is continuous at any point except x = 1.  Thus, f  is continuous everywhere. We
can also confirm this by examining the graph of f  below.

In[154]:= Plotfx, x, 6, 6

Out[154]=

-6 -4 -2 2 4 6

-4

-2

2

4

6

b) As in part a, we first consider continuity of g at x = 1.  

In[155]:= gx_ : Ifx  1,
x2  1

x  1
, 6

In[156]:= Limitgx, x  1  g1
Out[156]= False

Thus, g is NOT continuous at x = 1. For continuity at other points, we again observe that the rational function 
x2- 1

x-1
= x + 1 and

thus is continuous for x ∫ 1. 

Caution: The plot of the graph of g  given below indicates (incorrectly) that g  is continuous everywhere! Care must be taken
when examining Mathematica plots to draw conclusions about continuity. 

In[157]:= Plotgx, x, 6, 6

Out[157]=

-6 -4 -2 2 4 6

-4

-2

2

4

6

Example 2.29.  Let  f x =  2 x + c, if x ¥ 2

x2 + c x - 1, if x < 2.
  

For what values of c is f  continuous over its entire domain?

Solution: For x > 2, we have f x = 2 x + c. Hence, f  is continuous on the interval 2, ¶ since the interval is open.  For x < 2,
f x = x2 + c x - 1 . Thus, f  is continuous on -¶, 2  for the same reason.  For f  to be continuous at x = 2, we must have
limxØ2 f x = f 2.  But the limit exists if and only if 
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limxØ2- f x = limxØ2+ f x
Note that limxØ2+ f x = 4 + c = f 2. Thus, it suffices to find all values of c for which the left-hand limit and the right-hand limit

are equal. This can be done using Mathematica's Solve command.

In[158]:= Clearc, f
fx_ : Ifx  2, x2  c x  1, 2 x  c

In[160]:= lhs  Limitfx, x  2, Direction  1
rhs  Limitfx, x  2, Direction  1

Out[160]= 3  2 c

Out[161]= 4  c

In[162]:= Solvelhs  rhs , c
Out[162]= c  1
Thus, f  is continuous if c = 1. We confirm this by plotting the graph of f  corresponding to this c value.

In[163]:= Plotfx . c  1, x, 5, 7

Out[163]=

-4 -2 2 4 6

5

10

15

Example 2.30. Let  f x =  sin 1

x
, if x ∫ 0

0, if x = 0
.  Prove that for any number k between -1 and 1 there exists a value for c such that

f c = k.

NOTE: Observe that f  is not continuous at x = 0 so the converse of the Intermediate Value Theorem does not hold.   

Solution: For k = 0, we choose c = 0 so that f 0 = 0.  For any nonzero k between -1 and 1, define y = sin-1 k (using the princi-
pal domain of the sine function) and let c = 1  y. Then f c = sin 1 c = sin y = k. The  graph of f  following shows that there are
in fact infinitely many choices for c.  
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In[164]:= fx_ : Sin1  x
Plotfx, x, Pi, Pi

Out[165]=
-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

ü Exercises 

1.   Let   f x =  ex, if x § 0

ln x, if x > 0
.

a)  Graph the above function and discuss the type of discontiniuty at x = 0.

b)   Repeat part a. for the function 

f x =  cos p x

2
, if x § 1

x - 1 , if x > 1
.

2. Find values for c in which f  (defined below) is continuous over its entire domain:

f x =  x2 + c, x < 1,

c ex, x ¥ 1

Plot the graph of f  corresponding to these c values.

3. Let

f x =  x + 1, if x § 2

x2 - c, if x > 2
.

a)  For what value(s) of c is the function  continuous at x = 2? With this choice of c does f  have a discontinuity at any other
point? Plot the graph of the function.

b)  For what value(s) of c is the function  continuous at x = -2? With this choice of c does f  have a discontinuity at any other
point? Plot the graph of the function.                                                                                                                                               

4. Find values of a and b such that the function f  is continuous everywhere where f x = 
2 a x + b, x < -5

6 b, -5 § x < 1

3, x ¥ 1

  .  HINT: Solve

first for b by equating the second and third expressions for f.
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Chapter 3 Differentiation

ü 3.1   The Derivative

Students should read Sections 3.1-3.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

ü 3.1.1  Slope of Tangent

The derivative is one of the most fundamental concepts in calculus.  Its pointwise definition is given by

f £ a = lim
hØ0

f h + a - f a
h

where geometrically f ' a is the slope of the line tangent to the graph of f x at x = a (provided the limit exists).  We can view
this graphically in the illustration below, where the tangent line (shown in blue) is viewed as a limit of secant lines (one shown in
red) as hØ 0.

a a+h

Example 3.1. Calculate the derivative of f x = x2

3
 at x = 1 using the pointwise definition of a derivative.

Solution: We first use the Table command to tabulate slopes of secant lines passing through the points at  a = 1 and a + h = 1 + h
by choosing arbitrarily small values for h (taken as reciprocal powers of 10):

In[166]:= fx_  x^2  3;
a  1;
h  10^n;
TableFormNTableh, fa  h  fa

h
, n, 1, 5

Out[169]//TableForm=

0.1 0.7
0.01 0.67
0.001 0.667
0.0001 0.6667
0.00001 0.66667

Note our use of the TableForm command, which displays a list as an array of rectangular cells.  From the table output, we  infer

that f ' 1 = 2 3.  A more rigorous approach is to algebraically simplify the difference quotient,
f a+h- f a

h
:
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In[170]:= Clearh
Simplify fa  h  fa

h


Out[171]=
2  h

3

It is now clear  that 
f a+h- f a

h
Ø 2

3
as hØ 0.  This can be checked using Mathematica's Limit command:

In[172]:= Limit fa  h  fa
h

, h  0

Out[172]=
2

3

Below is a plot of the graph of f x (in black) and its corresponding tangent line (in blue), which also confirms our answer:

In[173]:= Plotfx, f'a x  a  fa, x, 2, 2, PlotStyle  Black, Blue

Out[173]= -2 -1 1 2

-1.5

-1.0

-0.5

0.5

1.0

NOTE: Recall that the tangent line of f x at x = a is given by the equation y = f ' a x - a + f a.
ANIMATION: Evaluate the following inputs to see animations of the secant lines approach the tangent line (from the right and
left).

Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-

tions generated from the Animate command in this chapter.  If you are reading the electronic version of this publication format-

ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation.  Just click on the
arrow button to start the animation.  To control the animation just click at various points on the sliding bar or else manually drag
the bar.
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In[174]:=  From the right 
fa1x_ : x^2  3;
a1  1;
AnimatePlot

fa1x, fa1'a1 x  a1  fa1a1, fa1a1  h  fa1a1  h  x  a1  fa1a1,
x, 0, 2, PlotStyle  Black, Blue, Red, h, 1.5, 0.1, 0.05

Out[176]=

h

0.5 1.0 1.5 2.0

-0.5

0.5

1.0

In[177]:=  From the left 
fa1x_ : x^2  3; a1  1;

AnimatePlot
fa1x, fa1'a1 x  a1  fa1a1, fa1a1  h  fa1a1  h  x  a1  fa1a1,
x, 0, 2, PlotStyle  Black, Blue, Red, h, 1.0, 0.1, 0.05

Out[178]=

h

0.5 1.0 1.5 2.0

0.5

1.0
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ü 3.1.2  Derivative as a Function

The derivative is best thought of as a slope function, one that gives the slope of the tangent line at any point on the graph of f x
where this slope exists:

f £ x = lim
hØ0

f x + h - f x
h

.

Example 3.2. Compute the derivative of f x = sin x using the limit definition.

Solution: We first simplify the corresponding difference quotient to obtain

In[179]:= Clearh
fx_  Sinx;
Simplifyfx  h  fx  h

Out[181]=
Sinx  Sinh  x

h

Here, it is not clear what the limit of the difference quotient is as hØ 0.  To anticipate the answer for the derivative without
algebraic manipulation, we first note that since sin x is periodic, so should its derivative be.  A plot of the difference quotient (as a
function of x) for several arbitrarily small values of h reveals the derivative to be cos x.  Students should recognize from trigonom-
etry that the graph of cos x is merely a left horizontal translation of sin x by 

p

2
.

In[182]:= plot1  Plotfx, Cosx, x, Pi, Pi, PlotStyle  Black, Blue

Out[182]=
-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

In[183]:= Clearh
plot2  PlotEvaluateTablefx  h  fx  h, h, 0.1, 0.7, 0.3,

x, Pi, Pi, PlotStyle  Red

Out[184]=
-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0
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In[185]:= Showplot1, plot2

Out[185]=
-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

Of course, there are a number of methods to compute the derivative directly in Mathematica.   One method is to evaluate the

command D f , x  for a function f  defined with respect to the variable x.  A second method is to merely evaluate the expression

f'[x] using the traditional prime (apostrophe symbol) notation.  A third method is to use the command  ∑Ñ Ñ.  We shall only
discuss the first two methods since the third method is usually reserved for derivatives of functions depending on more than one
variable, a topic that is treated in the third volume of this publication.

Example 3.3. Compute the derivative of sin x2 and evaluate it at x = p

4
.

Solution:

Method 1:

In[186]:= DSinx^2, x
DSinx^2, x . x  SqrtPi  4

Out[186]= 2 x Cosx2

Out[187]=


2

NOTE: Recall the substitution command . x -> a was discussed in an earlier section.

Method 2:

In[188]:= fx_  Sinx^2
f'x
f'SqrtPi  4

Out[188]= Sinx2
Out[189]= 2 x Cosx2

Out[190]=


2

Warning: Observe that the derivative of sin x2 is NOT cos x2 but 2 x cos x2.  This is because sin x2 is a composite funct-

sion.  A rule for differentiating composite functions, known as as the Chain Rule,  is discussed in ection 3.7 of Rogawski's
Calculus.
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Example 3.4. Compute the derivative of f x = 
sin x

x
if x ∫ 0

0 if x = 0
.

Solution: To define functions described by two different formulas over separate domains, we employ Mathematica's If[expr, p,

q] command:

In[191]:= fx_  Ifx  0, Sinx  x, 0

Out[191]= Ifx  0,
Sinx

x
, 0

In[192]:= f'x

Out[192]= Ifx  0, 
Sinx

x2

Cosx

x
, 0

NOTE: It is clear for x ∫ 0 that the derivative is - sin x

x2
+ cos x

x
 as a result of the Quotient Rule.  For x = 0, Mathematica's answer

that f ' 0 = 0 is actually incorrect!  Note that the fact that f 0 = 0 does not mean that f  is a constant. One cannot differentiate a
formula that is valid at only a single point; it is also necessary to understand how the function behaves in a neighborhood of this
point.

A plot of the graph of f x reveals that it is discontinuous at x = 0, that is, limxØ0 f x ∫ f 0, and thus not differentiable there.  

In[193]:= Plotfx, x, 3 Pi, 3 Pi

Out[193]=

-5 5

-0.2

0.2

0.4

0.6

0.8

1.0

Observe that  the point f 0 = 0 is not distinguished in the Mathematica  plot above so that the (removable) discontinuity is
detected only by examining the behavior of f  around x = 0 (the true graph of f  is shown following).
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In particular, f xØ 1 as xØ 0.  We confirm this with Mathematica.

In[194]:= Limitfx, x  0
Out[194]= 1

Of course, it is also possible to compute f ' 0 directly from the limit definition.  Here, the difference quotient behaves as 
sin h

h2
 as

the output below shows.  Since its limit does not exist as hØ 0, we conclude that f ' 0 is undefined.

In[195]:= Simplifyf0  h  f0  h
Limitf0  h  f0  h, h  0

Out[195]=

Sinh
h2

h  0

0 True

Out[196]= 

NOTE: The discontinuity of f  at x = 0 can be removed by redefining it there to be f 0 = 1.  What is f ' 0 in this case?

Example 3.5  Find the equation of the tangent line to the graph of f(x) = x + 1  at  x = 2.

Solution:  Remember that the tangent line to a function f(x) at x = a  is L(x) = f(a) + f '(a) (x-- a). Hear  a = 2:

In[197]:=

Clearf, L
fx_  x  1

Lx_  f2  f'2 x  2
Out[198]= 1  x

Out[199]= 3 
2  x

2 3

To see that L(x) is indeed the desired tangent line, we will plot f and L together.
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In[200]:= Plotfx, Lx, x, 0, 4

Out[200]=

1 2 3 4

1.2

1.4

1.6

1.8

2.0

2.2

Example 3.6. Find an equation of the line passing through the point P2, -3 and tangent to the graph of f x = x2 + 1.

Solution: Let us refer to Qa, f a as the point of tangency for our desired tangent line.  To determine Q, we compute the slope
of our desired tangent line from two different perspectives: 

1. Slope of line segment  PQ:

In[201]:= Cleara
fx_  x^2  1

m  fa  3  a  2
Out[202]= 1  x2

Out[203]=
4  a2

2  a

2. Derivative of f x at x = a:

In[204]:= fx_  x^2  1

f'a
Out[204]= 1  x2

Out[205]= 2 a

Equating the two formulas for slope above and solving for a yields

In[206]:= Solvem  f'a, a
N

Out[206]= a  2 1  2 , a  2 1  2 
Out[207]= a  0.828427, a  4.82843
Since there are two valid solutions for a, we  have in fact found two such tangent lines.  Their equations are given by
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In[208]:= Cleary1, y2
y1x_  Simplifyf'a x  a  fa . a  2 1  2 

y2x_  Simplifyf'a x  a  fa . a  2 1  2 

Out[209]= 11  8 2  4 1  2  x
Out[210]= 11  8 2  4 1  2  x
Plotting these tangent lines together with the graph of f x confirms that our solution is correct:

In[211]:= Plotfx, y1x, y2x, x, 6, 6,
PlotRange  10, 40, PlotStyle  Black, Blue, Blue

Out[211]=

-6 -4 -2 2 4 6

-10

10

20

30

40

NOTE: How would the solution change if we move the given point in the problem to P2, 5?  Or P2, 10?

ü Exercises 

 In Exercises 1 through 3, compute the derivatives of the given functions:

1.  f x = 3 x2 + 1   2.  gx = 1

x3
3.  hx = sin x

cos x

 In Exercises 4 and 5, evaluate the derivatives of the given functions at the specified values of x:

4.  f x = x - 1 x + 1 at x = 1 5.  gx = x +1

x -1
 at x = 9

In Exercises 6 and 7, compute the derivatives of the given functions:
6.  f x = x + 3  7.  gx = x2 - 4  

Hint:  Recall the absolute value function: x =  x if x ¥ 0

-x if x < 0
.  Use the If command to define these absolute functions (see

Example 3.4).  Note that Mathematica does have a built-in Absx command for defining the absolute value of x, but Mathemat-
ica treats Absx as a complex function; thus its derivative Abs 'x is NOT defined.  The real derivative of Absx for real values

of x can still be found using the numerical derivative ND command but we shall not discuss it here. 

8.  Find an equation of the line tangent to the graph of x - y2 = 0 at the point P9, -3.
9.  Find an equation of the line passing through the point P2, -3 and tangent to the graph of y = x2.

ü 3.2. Higher-Order Derivatives
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Students should read Section 3.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Suppose one is interested in securing higher order derivatives of a function.  Reasons for doing so include applications to maxi-
mum and minimum values, points of inflection, and physical applications such as velocity and acceleration and jerk, which all fit
into such a context.

Example 3.6. Compute the first eight derivatives of f x = sin x.  What is the 255th derivative of f ?

Solution: Here are the first eight derivative of f :

In[212]:= fx_  Sinx;
TableFormTablen, Dfx, x, n, n, 1, 8

Out[213]//TableForm=

1 Cosx
2 Sinx
3 Cosx
4 Sinx
5 Cosx
6 Sinx
7 Cosx
8 Sinx

We observe from the output that the higher-order derivatives of f  are periodic modulo 4, which means they repeat every four
derivatives. Since 255 has remainder 3 when divided by 4, it follows that f 255x = f 3x = -cos x.  Of course, Mathematica
can compute this derivative directly (see  output below), but the pattern above gives us a more in-depth understanding of the
higher-order derivatives of sin x.

In[214]:= Dfx, x, 255
Out[214]= Cosx
Example 3.7. Compute the first three derivatives of f x = x cos x .

Solution: We use the command D f , x, n to compute the nth derivative of f.  Here, we set n = 1, 2, 3.

In[215]:= fx_  x  Cosx
Out[215]= x Cosx
In[216]:= Dfx, x
Out[216]= Cosx  x Sinx
In[217]:= Dfx, x, 2
Out[217]= x Cosx  2 Sinx
In[218]:= Dfx, x, 3
Out[218]= 3 Cosx  x Sinx
A quicker way to generate a list of higher-order derivatives is to use the Table command.  For example, here is a list of the first
five derivatives of f :
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In[219]:= TableDfx, x, n, n, 1, 5
Out[219]= Cosx  x Sinx, x Cosx  2 Sinx,

3 Cosx  x Sinx, x Cosx  4 Sinx, 5 Cosx  x Sinx
Discovery Exercise: Find a formula for the nth derivative of f  based on the pattern above.   Can you prove your claim using
mathematical induction?  What is the 100th derivative of f in this case?   Check your answer using Mathematica.

ü Exercises 

1. Let f x = 1  x.
a) Compute the first five higher-order derivatives of f .
b) What is the 10th derivative of f ?
c) Obtain a general formula for the nth derivative based on the pattern.  Then use the principle of mathematical induction to
justify your claim. 

2.  Consider f x = x sin x.  Determine the first eight derivatives of f  and obtain a pattern. Justify your contention.

In Exercises 3 and 4, compute f k(x)  for k = 1,2,3,4.

3.   f x = 1 + x2
6

5

4 . f x = 
1-x2

1-3 x+2 x3

ü 3.3 Chain Rule and Implicit Differentiation

Students should read Sections 3.7 and 3.10 of Rogawski's Calculus [1] for a detailed discussion of the material presented
in this section.

In this section, we demonstrate not only how Mathematica uses the Chain Rule to differentiate composite functions but also to
compute derivatives of functions defined implicitly by equations where solving for the dependent variable is not feasible.

Example 3.8. Find all horizontal tangents of f x = x4-x+1

x4+x+1
 .

Solution: We first compute the derivative of f , which requires the Chain Rule.

In[220]:= fx_ :
x4  x  1

x4  x  1
;

Simplifyf'x

Out[221]=
1  3 x4

1xx4

1xx4
1  x  x42

Horizontal tangents have zero slope and so it suffices to solve f ' x = 0 for x.

In[222]:= Solvef'x  0, x

Out[222]= x  
1

314
, x  



314
, x 



314
, x 

1

314
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Observe that the solutions above are nothing more than the zeros of the numerator of f ' x.  We ignore the second and third

solutions listed above, which are imaginary.  Hence, x = 1 3
4

 º  0.76  and x = - 1 3
4

.  A plot of the graph of f  below
confirms our solution.

In[223]:= Plotfx, x, 2, 2

Out[223]=

-2 -1 1 2

0.8

1.0

1.2

1.4

1.6

1.8

Example 3.9.  Find all horizontal tangents of the lemniscate described by 2 x2 + y22 = 25 x2 - y2.

Solution: Implicit differentiation is required here to compute 
d y

d x
, which involves first differentiating the lemniscate equation and

then solving for our derivative.  Observe that we make the substitution yØ yx, which makes explicit our assumption that y
depends on x.

In[224]:= Clearx, y
eq  2 x^2  y^2^2  25 x^2  y^2

Out[225]= 2 x2  y22  25 x2  y2

In[226]:= 2 x2  y22  25 x2  y2
Out[226]= 2 x2  y22  25 x2  y2
In[227]:= deq  Deq . y  yx, x
Out[227]= 4 x2  yx2 2 x  2 yx yx  25 2 x  2 yx yx
In[228]:= Solvedeq, y'x

Out[228]= yx 
25 x  4 x3  4 x yx2

yx 25  4 x2  4 yx2


To find horizontal tangents, it suffices to find where the numerator of y ' x  vanishes (since the denominator never vanishes

except when y = 0).  Thus, we solve the system of equations 25 x - 4 x3 - 4 x y2 = 0 and 2 x2 + y22 = 25 x2 - y2  since the

solutions must also lie on the lemniscate.

In[229]:= Solveeq, 25 x  4 x^3  4 x  y^2  0, x, y

Out[229]= x  0, y  0, x  0, y  
5 

2
, x  0, y 

5 

2
, x  

5 3

4
, y  

5

4
,

x  
5 3

4
, y 

5

4
, x 

5 3

4
, y  

5

4
, x 

5 3

4
, y 

5

4
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From  the  output,  we  see  that  there  are  four  valid  solutions  at  5 3 4, 5 4 º 2.17, 1.25,  -5 3 4, 5 4,
5 3 4, -5 4, and -5 3 4, -5 4, which can be confirmed by inspecting the graph of the lemniscate below.  Observe

the symmetry in the solutions.

In[230]:= N5  Sqrt3  4
Out[230]= 2.16506

In[231]:= ContourPlot2 x^2  y^2^2  25 x^2  y^2, x, 4, 4, y, 2, 2

Out[231]=

-4 -2 0 2 4
-2

-1

0

1

2

ü Exercises 

1. Find all horizontal tangents of  gx =  x2

x+1
7

.

2. Find all tangents along the curve  hx = x + x  whose slope equals 1/2.

3. Find all vertical tangents of the cardioid described by x2 + y2 = 2 x2 + 2 y2 - x2
.

4. Compute the first and second derivatives of

f x =  x cos
1

x
if x ∫ 0

0 if x = 0
.

5. Compute the first and second derivatives of

gx =  x2 cos
1

x
if x ∫ 0

0 if x = 0
.

How do these derivatives at the origin compare with those in the previous exercise?

6. Based on your investigations of the previous two exercises, explain the behavior of higher-order derivatives of

hx =  xn cos
1

x
if x ∫ 0

0 if x = 0
 

at the origin for positive integer values of n.

7.  Calculate the implicit derivative of y with respect to x of:  xy2 + x2 y4-- x3 = 5.
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8.  Plot x2 + y22 = x2 - y2+2  for -4 § x § 4  and  -4 § y § 4.  Then determine how many horizontal tangent lines the

curve appears to have and find the points where these occur.

ü 3.4 Derivatives of Inverse, Exponential, and Logarithmic Functions

Students should read Sections 3.8-3.9 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Exponential functions arise naturally. For example, mathematical models for the growth of a population or the decay of a radioac-
tive substance involve exponential functions. In this section, we will explore exponential functions and their inverses, called
logarithmic functions, using Mathematica.  We begin with a review of inverse functions in general.

ü 3.4.1.  Inverse of a Function

Recall that a function gx is the inverse of a given function f x if f gx = g f x = x.  The inverse of f x is denoted by 
f -1x. We note that a necessary and sufficient condition for a function to have an inverse is that it must be one-to-one. On the 
other hand, a function is one-to-one if it is strictly increasing or strictly decreasing throughout its domain. 

Example 3.13.  Determine if the function f x = x2 - x + 1 has an inverse on the domain -¶, ¶. If it exists, then find the
inverse.

Solution: We note that f 0 = f 1 = 1. Thus, f  is not one-to-one. We can also plot the graph of f  and note that it fails the
Horizontal Line Test since  it is not increasing on its domain.   

In[232]:= Clearf, g
In[233]:= fx_  x^2  x  1;

Plotfx, x, 1, 2

Out[234]=

-1.0 -0.5 0.5 1.0 1.5 2.0

1.5

2.0

2.5

3.0

However, observe that if we restrict the domain of f  to an interval where f  is either increasing or decreasing, say 0.5, ¶, then
its inverse exists (see plot below).  
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In[235]:= plotf  Plotfx, x, 0.5, 5

Out[235]=

2 3 4 5

5

10

15

20

To find the inverse on this restricted domain, we set y = f -1x.   Then f y = x. Thus, we solve for y from the equation f y = x.

In[236]:= sol  Solvefy  x, y

Out[236]= y 
1

2
1  3  4 x , y 

1

2
1  3  4 x 

Note that Mathematica gives two solutions. Only the second one is valid, having range 0.5, ¶, which agrees with the domain of
f .  Thus,

f -1x = 1

2
1 + -3 + 4 x .

To extract this solution from the above output, we use the syntax below and denote the inverse function in Mathematica by gx
(Mathematica interprets the notation f -1x as 1

f x , the reciprocal of f ).

In[237]:= gx_  sol2, 1, 2

Out[237]=
1

2
1  3  4 x 

To verify that  f gx = x, we use the Simplify command. 

In[238]:= Simplifyfgx  x
Out[238]= True

NOTE: One can also attempt to verify g f x = x.   However,  Mathematica  cannot confirm this identity (see output below)
because it is unable to simplify the radical, which it treats as a complex square root.  Students are encouraged to algebraically
check this identity on their own.

In[239]:= Simplifygfx  x

Out[239]= 1  1  2 x2  2 x

Lastly, a plot of the graphs of f x and gx (in black and blue, respectively) shows their expected symmetry about the diagonal
line y = x (in red).  Observe that the domain of g is 3 4, ¶, which is the range of f .
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In[240]:= plotg  Plotgx, x, 3  4, 5, PlotStyle  Red, AspectRatio  Automatic

Out[240]=

2 3 4 5

1.0

1.5

2.0

2.5

In[241]:= Showplotf, plotg, GraphicsDashing0.05, 0.05, Line0, 0, 5, 5,
PlotRange  0, 5, AspectRatio  Automatic

Out[241]=

0 2 3 4 5

1

2

3

4

5

Example 3.14.  Determine if the function f x = x3 + x has an inverse. If it exists, then compute  f -1 ' 2.
Solution: Since f ' x = 3 x2 + 1 > 0 for all x, we see that f  is increasing on its domain. Thus, it has an inverse. Again, we can
solve for this inverse as in the previous example:    
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In[242]:= Clearf, g, x, sol
fx_ : x^3  x

sol  Solvefy  x, y

Out[244]= y  
 2
3
13

9 x  3 4  27 x2
13 

9 x  3 4  27 x2
13

213 323
,

y 
1   3

223 313 9 x  3 4  27 x2
13 

1   3  9 x  3 4  27 x2
13

 2  213 323,

y 
1   3

223 313 9 x  3 4  27 x2
13 

1   3  9 x  3 4  27 x2
13

 2  213 323

Only the first solution listed above is valid, being real valued.  Thus,

f -1x = -
 2

3
13

9 x+ 3 4+27 x2
13 +

9 x+ 3 4+27 x2
13

213 323 .

Again we denote our inverse by gx:
In[245]:= gx_  sol1, 1, 2

Out[245]= 
 2
3
13

9 x  3 4  27 x2
13 

9 x  3 4  27 x2
13

213 323

 Lastly, we compute g ' 2.  
In[246]:= Simplifyg'2

N
Out[246]= 313 14  3 21  313  9  2 21 23  28 9  2 21 43
Out[247]= 0.25

NOTE: The easier approach in computing g ' 2  without having to explicitly differentiate gx  is to instead use the relation
 f -1 ' x = 1  f '  f -1x, which shows that the derivative of f  at a point a, b on its graph and the derivative of f -1 (or g in our

case) at the corresponding inverse point b, a on its graph are reciprocal.  In particular, since f 1 = 2 and f -12 = 1, we have
 f -1 ' 2 = 1  f '  f -12 = 1  f ' 1 = 1 4.
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In[248]:= 1  f'g2
N

Out[248]= 1  1  3 
2

3 18  4 21 

13

 1
2
18  4 21 13

323

2

Out[249]= 0.25

NOTE: The plot below illustrates how the slopes of the two tangent lines, that of f  at 1, 2 and that of g at 2, 1 (both in blue),
are reciprocal. 

In[250]:= Plotfx, gx, f'1 x  1  f1, g'2 x  2  g2, x, 1, 5,
PlotRange  1, 5, PlotStyle  Black, Red, Blue, Blue, AspectRatio  Automatic

Out[250]=

-1 1 2 3 4 5

-1

1

2

3

4

5

ü 3.4.2.  Exponential and Logarithmic Functions

One of the most important functions in mathematics and its applications is the exponential function. In particular, the natural
exponential function f x = ex, where 

e = limxØ0 1 + x1x º 2.718.

In Mathematica, we use the capital letter E or blackboard bold letter ‰ from the Basic Math Input submenu of the Palettes menu
to denote the Euler number.   

In[251]:= Limit1  x^1  x, x  0
Out[251]= 

Every exponential function f x = ax, a ∫ 1, a > 0, where a ∫ 1 and a > 0, has domain -¶, ¶ and range 0, ¶. It is also one-
to-one on its domain. Hence, it has an inverse.  The inverse of an exponential function f x = ax is called the logarithm function
and is denoted by gx = loga x. The inverse of the natural exponential function is denoted by gx = ln x and is called the natural

logarithm. In Mathematica, we use Log[a,x] for loga x and Log[x] for ln x.  Below is a plot of the graphs of ex and ln x in black

and red, respectively.  Observe their symmetry about the dashed line y = x.
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-2 -1 1 2 3 4 5

-2

-1

1

2

3

4

5

Please refer to  Section 3.9 of  Rogawski's  Calculus  textbook for  derivative formulas of  general exponential  and logarithmic
functions.

Example 3.15.  Compute derivatives of the following functions.
a) f x = 2x b) f x = 6 x2 + 4 ex c) f x = log10 x2 d) f x = lncose3 x
Solution: We will input the functions directly and use the command D to find each derivative. Thus, for a) we will evaluate
D2x, x.  Again, note that Log[2] should be read as ln 2.  

a)

In[252]:= D2^x, x
Out[252]= 2x Log2
b)

In[253]:= D6 x2  4 Ex, x
Out[253]= 4 x  12 x

c)

In[254]:= DLog10, x^2, x

Out[254]=
2

x Log10
d)

In[255]:= f  DLogCosE3 x, x
Out[255]= 3 3 x Tan3 x
Example 3.16.  Find points on the graph of f x = x2 e3 x+5 + 3 x where  the tangent lines are parallel to the line y = 3 x - 1. 

Solution: Since the slope of the given line equals 3 it suffices to solve f ' x = 3 for x to locate these point(s).
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In[256]:= Clearf, sol
fx_  x2 E3 x5  3 x

sol  Solvef'x  3, x
Out[257]= 3 x  53 x x2

Out[258]= x  
2

3
, x  0

Thus there are two solutions: -2 3, -2 + 4 e3 9 and 0, 0.
In[259]:= x0  sol1, 1, 2

x1  sol2, 1, 2
fx0
fx1

Out[259]= 
2

3

Out[260]= 0

Out[261]= 2 
4 3

9

Out[262]= 0

The plot that follows on the next page confirms that the two corresponding tangent lines (in blue) are indeed parallel to the given
line (in red).

In[263]:= y1  fx0  f'x0 x  x0
y2  fx1  f'x1 x  x1
Plotfx, y1, y2, 3 x  2, x, 1, 1,
PlotRange  5, 15, PlotStyle  Black, Blue, Blue, Red

Out[263]= 2 
4 3

9
 3

2

3
 x

Out[264]= 3 x

Out[265]=

-1.0 -0.5 0.5 1.0

-5

5

10

15
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NOTE: One would expect the tangent line at the origin to be horizontal based on a visual inspection of the graph of f , but this
demonstrates the pitfall of using a graphing approach.

ü Exercises 

 In Exercises 1 through 4, compute derivatives of the given functions.

1.  f x = x2 ex3-4 x 2.  f x = xa + ax

3.  f x = ln x - 1 + lnx + 14.  f x = log10x x3-3 x+1

x2-2 x-3
32

5.  Find the second and third derivatives of f x = ex ln x.

6.  Let f x = cos x + ln x.  Plot the graphs of f  and f ' on the same set of axes.

7.  Find an equation of the line tangent to the graph of f x = ln x

x2
 that is parallel to the x-axis. 

8.  Discovery Exercise: Define sinh x = ex - e-x 2 and cosh x = ex + e-x 2. These functions are called the hyperbolic sine and
hyperbolic cosine of x, respectively.

a) Determine the initial eight derivatives of each of these two hyperbolic functions.

b)  Determine general formulas for the nth derivatives of these functions based on the pattern and verify your contentions via
mathematical induction.

c) How do the higher-order derivatives of sinh x and cosh x compare with those of the trigonometric functions sin x and cos x?
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Chapter 4 Applications of the Derivative
We have seen how the derivative of a function is itself a function. This idea leads to many possible applications, some of which
we will now explore with Mathematica to demonstrate its ability to manipulate and calculate complicated or tedious expressions.

ü 4.1   Related Rates

Students should read Section 3.11 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Example 4.1.  Let us assume a rubber ball is sitting out in the sun and that the heat causes its surface area to increase at the rate
of 1.5 square centimeters per hour.  How fast is the radius increasing when the radius is 2 centimeters? 

Solution: To solve this problem, we will need the formula for the surface area of a sphere: S = 4pr2.  Here, the surface area S and
the radius r are expressed as functions of t (time). 

In[266]:= ClearS
sa  St  4  rt^2

Out[267]= St  4  rt2
In[268]:= dsa  Dsa, t
Out[268]= St  8  rt rt
Now differentiate this formula and solve for r ' t:
In[269]:= sol  Solvedsa, r't

Out[269]= rt 
St

8  rt 

Since the output above is a nested list (each set of curly braces denotes a list; see Chapter 1 of this manual for a description of

nested lists) and our solution, S' t
8 p rt , represents the second element of the first (inner) list, we can extract it in order to define r ' t

as follows:

In[270]:= r't  sol1, 1, 2

Out[270]=
St

8  rt
Since we are given that S ' t = 1.5 and rt = 2, we substitute these into the formula for r ' t:
In[271]:= r't . S't  1.5, rt  2
Out[271]= 0.0298416

Therefore, when the radius is 2 cm, it is increasing at the rate of about .0298 cm per hour.

ü Exercises 

1.  If the volume of a cube is increasing at the rate of 2 cubic inches per minute, how fast is the length of one of its sides increas-
ing when that side is 8 inches?
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2.  A particle is moving along a parabola y = 2 x2 + 3 x - 1 in such a way that the rate of change of its x-coordinate is constant,
namely x ' t = 3.  Find the rate of change of its y-coordinate when the position of the particle is (1,4).

3.  The radius r and height h of a circular cone change at a rate of 2 cm/s.  How fast is the volume of the cone increasing when r =
10 and h = 20? (Recall that the volume of a cone is pr2h/3.)

ü 4.2  Extrema

Students should read Section 4.2 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Next,  let  us consider finding critical points and inflection points to determine extrema.  Remember that  critical points of  a
function  are  those  for  which  f ' x = 0 or  for  which  f ' x  does  not  exist.  Similarly,  inflection  points  occur  where  either
f '' x = 0 or where f '' x does not exist.  Extrema occur at critical points, but not all critical points are extrema (consult your
calculus  text).   An  inflection  point  is  a  point  c, f c  where  concavity  changes;  this  occurs  where  f '' c = 0  or  where
f '' x does not exist, and like critical points, not all points where f '' x = 0 (or where f '' x does not exist) are inflection points.

Example 4.2.  Find all local extrema and inflection points of f x = 1x2 + 3.
Solution: We first define f  in Mathematica:

In[272]:= Clear f, x
In[273]:= fx_ : 1  x^2  3
In[274]:= Plot fx, x, 4, 4

Out[274]=

-4 -2 2 4

0.10

0.15

0.20

0.25

0.30

To find extrema of f , we locate its critical points, that is, those points where f ' x = 0 or f ' x is undefined.  We can solve the
first case using Mathematica:

In[275]:= f'x
Solvef'x  0, x

Out[275]= 
2 x

3  x22

Out[276]= x  0
Since f ' x is defined everywhere, it follows that there is exactly one critical point at x = 0, and at that point, there is a maxi-
mum, as can be seen from the graph above.  We could also have used the second derivative test to confirm this:
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In[277]:= f''0

Out[277]= 
2

9

Since the second derivative is negative at x = 0, the curve is concave down there. This, of course, means that we have a local
maximum at x = 0.

To find the points of inflection, we locate zeros of the second derivative:

In[278]:= Solvef''x  0, x
Out[278]= x  1, x  1
To determine if these solutions are indeed inflection points, we need to check if there is a sign change in f '' x  on either side of
each (at x = -1 and x = 1):

In[279]:= Plotf''x, x, 2, 2

Out[279]=

-2 -1 1 2

-0.20

-0.15

-0.10

-0.05

0.05

Notice from the graph above that f '' x changes from positive to negative at x = -1 and from negative to positive at x = 1. Thus
both points -1, f -1 and 1, f 1 are inflection points.

ü Exercises 

In Exercises 1through 5, find all critical points and inflection points for:
1. f x = x3 - 3 x2 + 1 2. f x = x2 - 3 ‰x 3. f x = sin x on [0, 2p]

4. f x = 2 x5 - 5 x4 + 5 5. f x = x2+4

x

6. Consider the function f x = xn where n is a positive integer. For what values of n do we have 
a) a relative minimum but not a point of inflection at the origin?
b)  a point of inflection at the origin but not a relative minimum?
Sketch the graph of several power functions to support your reasoning.

ü 4.3   Optimization

Students should read Section 4.7 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Extreme values of a function occur where f ' x = 0 or where f ' x does not exist.  This idea allows us to find maxima and
minima, concepts that are crucial in many applications.  For instance, in business, one wants to minimize costs or maximize
profits.  In government, one wants to track the flow of money in an economy, and when that flow is a minimum or a maximum.
In engineering design, we may want to know what shape of a conduit will generate  maximum flow.  Similar problems exist in
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many other fields.  We will now look at some of these applications.

ü 4.3.1  Traffic Flow

Example 4.3.   Traffic flow along a major highway in Boston between 6 AM and 10 AM can be modeled by the function

f t = 20 t - 40 t + 50 (in miles per hour),  where t = 0 corresponds to 6 AM.  Determine when the minimum traffic flow
occurs.

Solution: Let us first plot the graph of f t.
In[280]:= Clearf, t
In[281]:= ft_ : 20 t  40 t  50

In[282]:= Plotft, t, 0, 4

Out[282]=

1 2 3 4

35

40

45

50

Note from the plot above that the average speed is decreasing between 6 AM and 7 AM and increasing after 7 AM.

At 6 AM the average speed is

In[283]:= f0
Out[283]= 50

or 50 mph. At 6:30 AM the average speed is 

In[284]:= f.5
Out[284]= 31.7157

or 31.7 mph. To see how the average speed varies throughout the day we make a table of these values at each half hour from 6
AM to 10 AM:

In[285]:= TableForm Tablet, ft, t, 0, 4, .5
Out[285]//TableForm=

0. 50.
0.5 31.7157
1. 30.
1.5 31.0102
2. 33.4315
2.5 36.7544
3. 40.718
3.5 45.1669
4. 50.

You can see from the table that the average speed quickly drops from 50 mph to 30 mph in the first hour and then gradually
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increases back up to 50 mph during the next 3 hours.  If we want to verify that the minimum occurs at 7 AM (or t = 1), we can
use calculus. Since extrema occur where the derivative is 0, we set the derivative equal to zero and solve for t:   

In[286]:= Solvef't  0, t
Out[286]= t  1
Therefore the minimum does occur when t = 1 (7 AM) and from the table we see that the minimum average speed at this time is
30 mph.

ü 4.3.2  Minimum Cost

Example 4.4.  A friend of one of the authors owns some land on Long Island off the coast of Portland, Maine.  He wants to build
a house there, but there is no electricity.  He is considering laying an underwater cable to connect up with the mainland.  After a
while I convince him of the ridiculousness of that idea.  The cost is far more than he can afford, but it does get me thinking about
mathematics.  What would be the cheapest way of hooking up a cable to the municipal electrical system?   Let us consider the
following scenario:

Imagine the island connection point at 0, 3000 and the mainline connection point at 10 000, 0 where the units are in meters.
Assume it costs $36 per meter to lay cable underwater and $24 per meter to lay cable on land.  You can lay cable underwater
from 0, 3000 to x, 0  and then lay cable on land from x, 0 to 10 000, 0.  The variable x can vary between 0 and 10000.
What value of x would minimize the cost for laying this cable and what would that minimum cost be?

Solution: First, we need to determine the cost.  There are two parts: the underwater part and the overland part.  The cost of the
underwater part is just $36 times the distance D1 from 0, 3000 to x, 0.  We will call that cost c1:

In[287]:= c1x_ : 36  30002  x2

The overland cost is $24 times the distance D2 from x, 0 to 10 000, 0.  We will call that cost c2:

In[288]:= c2x_ : 24  10000  x
The total cost is then

In[289]:= costx_  c1x  c2x

Out[289]= 24 10000  x  36 9000000  x2
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We need to minimize this cost function.  First, we graph it to see if it has a minimum:

In[290]:= Plotcostx, x, 0, 10000

Out[290]=

2000 4000 6000 8000 10 000

330 000

340 000

350 000

360 000

370 000

Notice that this cost function has its minimum somewhere between 2000 and 4000.  Also, you will note that as x gets close to that
minimum the tangent lines of cost x) are getting close to horizontal. In other words, the minimum will occur at a point x for
which the derivative is zero or horizontal (i.e., the derivative at a point gives the slope of the tangent line at that point). This is a
calculus problem that we can solve.

In[291]:= Solvecost'x  0, x
Out[291]= x  1200 5 

In[292]:= Ncost1200 5 
Out[292]= 320498.

Therefore, the minimum occurs  at x = 1200 5 º 2683.28 meters and the minimum cost is approximately $320,498.

NOTE: Another method in finding the minimum is to use the command FindMinimum. We will start our search near x = 2000:

In[293]:= FindMinimumcostx, x, 2000, WorkingPrecision  8
Out[293]= 320498.45, x  2683.2816
Again, we get an answer that corroborates the previous answer.

ü 4.3.3  Packaging (Minimum Surface Area)

Example 4.5.  A major concern in business is to minimize the cost of packaging.  This cost is related to the surface area of the
package.  If we can minimize that surface area, then we can minimize the cost.  Let us assume that a company has a certain
product that needs to be packaged in a rectangular box having a square base.  If the volume of the box is required to be 1 cubic
meter, then find the dimensions of the box that will minimize its surface area.

Solution: If the length of the sides of the square base is x and the height of the box is y, then the volume of the box is given by
x2 y and must equal 1 cubic meter (this is our constraint):

In[294]:= Clearx, y, S
In[295]:= constraint  x^2  y  1

Out[295]= x2 y  1

The surface area of our package (box) is S = 4 x y + 2 x2 and is the quantity that must be minimized (recall that the top and

bottom sides each have area x2 and the 4 sides each have area x y).  Using our volume constraint, x2y = 1, we can solve for y in
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terms of x:

y = 1

x2

In[296]:= sol  Solveconstraint, y

Out[296]= y 
1

x2


The surface area function can then be expressed as a function of x only:

S x = 4 x y + 2 x2 = 4 x 1x2 + 2 x2 = 4 x + 2 x2

In[297]:= Sx_  4 x  y  2 x^2 . y  sol1, 1, 2

Out[297]=
4

x
 2 x2

Using the idea again that extrema occur at points where the derivative is zero, we calculate:

In[298]:= SolveS'x  0, x
Out[298]= x  1, x  113, x  123
This equation has 1 real and 2 imaginary solutions. We need only the real solution of x = 1. To see that this corresponds to an
actual minimum, we plot the curve:

In[299]:= PlotSx, x, 0 , 5

Out[299]=

1 2 3 4 5

20

30

40

50

60

70

80

Alternatively, we could have used the second derivative test to show that a minimum occurs at x = 1:

In[300]:= S''1
Out[300]= 12

Since f '' 1 > 0, we know that the graph is concave up at x = 1 and hence must have a minimum there.  Since y = 1 when x = 1,
we conclude that the box with minimum surface area is a cube with sides of 1 meter.

ü 4.3.4  Maximize Revenue

The following application concerns optimizing group fares for charter flights. 

Example 4.6.  Suppose a travel agency charges $600 per person for a charter flight if exactly 100 people sign up.  However, if
more than 100 people sign up, then the fare is reduced by $2 per person for each additional person over the initial 100.  The travel
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agency wants to know how many people they should book to maximize revenue.  Also, determine what that maximum revenue is
and what the corresponding fare is for each person.

We let x denote the number of passengers above 100.  Keep in mind that revenue is the product of the number of people multi-
plied by the cost (fare) per person.  If R x is defined as the revenue function, then R x = 100 + x 600 - 2 x.  To determine
the maximum value of R x for x ¥ 0, let us first examine its graph:

In[301]:= Rx_ : 100  x 600  2 x
In[302]:= PlotRx, x, 0, 200

Out[302]=

50 100 150 200

65 000

70 000

75 000

80 000

From the plot above, we see that a maximum occurs at about x = 100.  To confirm this, we first solve for the critical points:

In[303]:= SolveR'x  0, x
Out[303]= x  100
Therefore the maximum does indeed occur at x = 100, and the maximum revenue is

In[304]:= R100
Out[304]= 80000

or  $80,000.  Since 100 + x represents the number of customers, this occurs when 200 customers sign up for the flight.  In this
case, the cost per person is

In[305]:= 600  2 x . x  100

Out[305]= 400

or $400 per person.

ü Exercises 

1. Assume traffic flow is given by a speed function f t = 25 t - 45 t + 55.  Analyze speed changes between 6 AM and 10
AM and calculate when traffic flow is minimized.  What is that minimum speed?

2. Find the minimum value of f x = 3 x4 + 4 x3.

3. Assume that the average cost of producing compact discs is given by  c x = -.0002 x + 3 + 2000  x.  Show that the average
cost is always decreasing for x between 0 and 4000.

4. Suppose the population of a city is modeled by

p t = 4456 t3 + 8939 t2 + 23 463 t + 25 528
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where t is measured in years from 1990 to 2000.

a)  Show that the population was always increasing in this decade.

b)  Show that the population was increasing at its slowest rate in August of 1990.  Hint:  The population is increasing at its
slowest rate when p '' t = 0.

5.   Given  that  the  total  cost  for  manufacturing  x  units  of  a  particular  product  is  described  by  the  function
Cx = 0.0025 x2 + 80 x + 10 000, find the level of production that minimizes the total cost of manufacturing.

6. The total population of the planet is forecast by the function Pt = 0.00074 t3 - 0.07 t2 + 0.89 t + 6.04 where t is measured in
decades,  t = 0 corresponds to the year 2000, and Pt is measured in billions of people.  In what year will the population peak
over the next 200 years?

7. A book designer has decided that the pages of a book are to have 1.5 inch margins top and bottom and 1 inch margins on each
side.  If each page is to have an area of 100 square inches, what are the dimensions of this page if its printed area is to be a
maximum?

8. The owner of a farm wants to enclose a rectangular region with 3000 m of fencing while dividing the region into two parts,
each of which is rectangular, by using part of the fencing to subdivide it and running a fence parallel to the sides (see figure that
follows).   What should be the dimensions of the region in order to maximize its area?

9. The owner of a cruise ship charges groups as follows:  For a group of 40 people, the charge is $1,000 per person per day.  If
more than 40 people sign up, the fare is reduced by $8 for each addtional person.  

a) Assuming at least 40 people sign up, determine the number necessary to maximize revenue.

b) What is the maximum revenue?

c) What would be the cost per person in this case?

ü 4.4   Newton's Method

Students should read Section 4.7 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

ü 4.4.1  Programming Newton's Method

Newton's Method is a technique for calculating zeros of a function based on the direction of its tangent lines.  It is a recursive
routine that is rather tedious to do by hand or even with a calculator, but simple with Mathematica. To start the procedure one
should have an idea about the general location of each zero.  This is because an initial approximation x0 for that zero, say at x = r,
is needed to start the recursion.  For example, one can specify x0 by examining the graph of the function to see where the zeros
are approximately.   Then the next approximation x1 can be found by the recursive formula x1 = x0 - f x0  f ' x0.   This process
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can be iterated using the general formula

 xn+1 = xn - f xn  f ' xn
Under suitable conditions, the sequence of approximations x0, x1, x2, ... (called the Newton sequence) will converge to r. 

Example 4.7. Approximate the zeros of the function f x = ln9 - x2 - x.

In[306]:= fx_ : Log9  x2  x
In[307]:= Plotfx, x, 0, 3

Out[307]=

0.5 1.0 1.5 2.0 2.5 3.0

-4

-2

2

Clearly, there is one zero between 1.5 and 2 based on the plot above.  To approximate this zero, we define a function newtn to
perform the recursion:

In[308]:= newtnx_ : x  fx  f'x
To generate the corresponding Newton sequence, we compute 8 iterates of this function starting with an initial guess of x = 1.6.

This iteration can be performed efficiently using the NestList[f,x,n] function, which is a recursive routine that outputs a list with

x as its first value, followed by f[x], f[f[x]], f[f[f[x]]], etc., up to n iterates as shown in the example below:

In[309]:= approx  NestListnewtn, 1.6, 8
Out[309]= 1.6, 1.77538, 1.76961, 1.7696, 1.7696, 1.7696, 1.7696, 1.7696, 1.7696
From this we see that the root, accurate to 4 decimal places, is 1.7696.  If greater accuracy is desired, say 12 decimal places, we

can redisplay the values of approx if it is already accurate to 12 decimal places or else recalculate it using a higher number of
iterations if necessary.

In[310]:= NumberFormapprox  TableForm, 13
Out[310]//NumberForm=

1.6
1.775382136758
1.769608467699
1.769601100211
1.769601100199
1.769601100199
1.769601100199
1.769601100199
1.769601100199

Discovery Exercise: The function f x = ln9 - x2 - x discussed above has a second zero.  Locate it on the graph of f x and

use Newton's method to approximate it to 12 decimal places.  Hint: First, plot the graph over a wide interval to locate the zero,
and then zoom in to obtain an initial approximation.  
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Warning: Be sure that your initial approximation is sufficiently close to your zero; otherwise the Newton sequence may diverge
or converge to another zero.

ü 4.4.2  Divergence

One interesting point about Newton's Method is that it does not always work. For instance, the function y = x13 clearly has a
root at x = 0:

In[311]:= Plot x
3

, x, 0, 1

Out[311]=

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Yet, Newton's Method fails for any guess x ∫ 0:

In[312]:= Clearf
fx_ : x

3

In[314]:= NestListnewtn, 0.6, 6
Out[314]= 0.6, 1.2, 2.4  8.24861  1016 , 4.8  1.64972  1015 ,

9.6  3.16674  1015 , 19.2  6.33348  1015 , 38.4  4.98733  1015 
NOTE: The extremely small imaginary values that appear in the answers earlier should be ignored (or treated as zero) since we
expect our answers to be entirely real.  This is due to Mathematica's default algorithm for computing radicals in the domain of
complex numbers,  which may introduce extremely small numerical errors.   To eliminate these imaginary parts,  we use the

Re[expr] command to extract the real part of expr.

In[315]:= ReNestListnewtn, 0.6, 6
Out[315]= 0.6, 1.2, 2.4, 4.8, 9.6, 19.2, 38.4
Question: Can you explain why Newton's Method fails in the above example?

ü  4.4.3  Slow Convergence

Even when Newton's  Method works,  sometimes the  Newton sequence converges very  slowly  to the answer.   Consider  the
following function: 

In[316]:= Clear f
fx_ : x3  x  1
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In[318]:= Plotfx, x, 3, 2

Out[318]=

-3 -2 -1 1 2

-25

-20

-15

-10

-5

5

Clearly, there is a root between 1.2 and 1.4.  If  we use the newtn function with our guess as x = 1, we get quick convergence to
the root:

In[319]:= NestListnewtn, 1.0, 6
Out[319]= 1., 1.5, 1.34783, 1.3252, 1.32472, 1.32472, 1.32472
But if we choose our initial guess near 0.6, the convergence is much slower as discussed in the following exercises.

ü Exercises 

1.  Compare the convergence in the above example (Section 4.4.3) for initial guesses of 0.5 and 0.6.  Why does Newton's Method
converge so slowly for these values?  (Hint: Consider the tangent lines to the curve f x.) 
2.  Synthesizing the discussion in Sections 4.4.1 and 4.4.2 on the flaws in Newton's Method, can you come up with any general
criteria that will tell us when Newton's Method will converge or diverge?

3. Use Newton's Method to find the postive zero of f x = x2 - 2 accurate to 5 decimal places.   Note: This demonstrates how

Newton's Method can be used to approximate 2 .  

4. Consider the polynomial function px = x4 - 8 x2 + 15.
a) Find all the roots of this function.
b) Graph this function over the interval -5, 5.
c) Explain why at x = 2 is not a good starting approximation for the root in the interval
d) Use Newton’s Method to approximate the other three roots in the appropriate intervals.
e) Which other values of are not good seed (starting) values and why? (Hint : Consider points of horizontal tangency.)

5. Use Newton's Method to find a solution (accurate to 5 decimal places) to the following equations:

a)  sin x = cos 2 x in the interval [0, p/2] (Hint: Define f x = sin x - cos2 x.) b)  ‰x = 5 x c)   cos x = x
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Chapter 5 Integration

ü 5.1  Antiderivatives (Indefinite Integral)

Students should read Section 4.8 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Integrate f , x gives the indefinite integral (or antiderivative) of f  with respect to x.  The command Integrate can evaluate all
rational functions and a host of transcendental functions, including exponential, logarithmic, trigonometric, and inverse trigono-

metric functions.  One can also use the palette button  Ñ „Ñ (BasicMathInput Palette) to evaluate integrals. 

Example 5.1.  Evaluate   x2 - 2 x + 1 „ x.

Solution:  

Method 1: (Palette buttons)

In[320]:=  x2  2 x  1 x

Out[320]= x  x2 
x3

3

NOTE: Mathematica does not explicitly include the constant of integration C  in its answers for indefinite integrals; the user
should always assume that this is implicitly part of the answer.

Method 2: (Integrate command)

In[321]:= Integratex^2  2 x  1, x

Out[321]= x  x2 
x3

3

Example 5.2.  Evaluate   xx2 + 12 „ x.

Solution:  

Method 1: (Palette buttons)

In[322]:=  x x2  12 x

Out[322]=
x2

2

x4

2

x6

6

NOTE:  Observe  that  if  the  substitution  u = x2 + 1  is  used  to  transform  this  integral,  then  the  answer  becomes

 xx2 + 12 „ x = 1

2  u2 „u = 1

6
1 + x23

.  How does one reconcile this answer with the one obtained in the output above?

The following are examples of integrals that can be evaluated in a routine manner using the substitution method.  The reader
should perform the integration by hand to check answers.

Example 5.3.   Evaluate  x

x+1
„ x.

82   Mathematica for Rogawski's Calculus 2nd Editiion.nb



Solution:  

In[323]:= 
x

x  1
x

Out[323]=
2

3
2  x 1  x

Example 5.4.  Evaluate  x2 sinx3 „ x.

Solution:  

In[324]:=  x2 Sinx3 x

Out[324]= 
1

3
Cosx3

Note: Mathematica can certainly integrate much more complicated functions, including those that may require using any of the
integration techniques discussed in your calculus textbook. We will consider some of these in Section 5.4.   

ü Exercises 

In Exercises 1 through 6, evaluate the integrals. Simplify your answers.

1.  x2 + 2 „ x 2.  cos 3 x „ x 3.  1 - x2 „ x

4.  sin 2 x „ x 5. 3 x5+6 x4-x+1

x3
d x 6.   1

1+ sin2 x
d x

In Exercises 7 and 8, evaluate the integrals by first using Mathematica to decompose the integrand as a sum of partial fractions

(using the Apart[expr] command to perform this decomposition).

7.  x2+2 x-1

2 x3+3 x2-2 x
„ x 8. 1

xx+1 2 x+3 „ x

ü 5.2  Riemann Sums and the Definite Integral

Students should read Sections 5.1 and 5.2 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

There are two basic integration commands in Mathematica to evaluate definite integrals. Integrate f , x, a, b calculates the

definite integral (area under the curve) of f  on the interval a, b using analytic methods. NIntegrate f , x, a, b calculates a
numerical approximation of the definite integral of f  on a, b using numerical methods.

Review of Riemann Sums: A partition of a closed interval a, b is a set P = x0, x1, x2, .... , xn of points of a, b such that 

a = x0 < x1 < x2 < ... .. < xn = b.

Given a function f  on a closed interval a, b and a partition P = x0, x1, .... , xn of the interval a, b,  recall that a Riemann
sum of f  over a, b relative to P is a sum of the form 

i=1
n f xi

*D xi, 
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where  D xi = xi - xi-1  and  xi
*is  an  arbitrary  point  in  the  ith  subinterval  xi-1, xi.   For  simplicity,  we  shall  assume  that

D xi = D x = b-a

n
 for all i.  A Riemann sum is therefore an approximation to the (signed) area of the region between the graph of f

and the x-axis along the interval a, b.  The exact area is given by the definite integral of f  over a, b, which is defined to be the

limit of its Riemann sums as nØ¶ and is denoted by a

b
f x „ x. In other words, 

a
b

f x „ x = limnØ¶i=1
n f xi

*D x.

This definite integral exists provided the limit exists.  For a continuous function f , it can be shown that a
b

f x „ x exists.

ü 5.2.1  Riemann Sums Using Left Endpoints

A Riemann sum of f  relative to a partition P  can be obtained by considering rectangles whose heights are based on the left
endpoint of  each subinterval of  P.    This is  achieved by setting xi

* = xi = a + ib - a n  for i = 0, 1, .... n - 1,  so that the
corresponding height of each rectangle is given by f xi.  This leads to the following formula for a Riemann sum using left

endpoints, which we denote by LRSUM. To use this function, we need to specify the values of a, b, and n as well as define f
using Mathematica's format.  

In[325]:= Clearf
LRSUMa_, b_, n_ : Sumfa  i  b  a  n  b  a  n, i, 0, n  1

Example 5.4. Let f x = x2 on [0,1] and let P = 0, 1 n, 2 n, 3 n, ....,  n - 1 n, 1 be a partition of 0, 1. 
a) Approximate 0

1
f x „ x by computing the Riemann sum relative to P using the left endpoint method.

b) Plot the graph of f  and the rectangles corresponding to the Riemann sum in part (a). 
c) Find the limit of the Riemann sum obtained in part a) by letting nØ¶.

Solution: a) We define f x = x2 in Mathematica and evaluate LRSUM using a = 0, b = 1, and various values for n. In the table
below, the first column gives the value of n and the second column gives the corresponding Riemann sum.   

In[327]:= fx_ : x2

TableFormTablen, NLRSUM0, 1, n, n, 10, 100, 10,
TableHeadings  , "n", "Riemann Sum"

Out[328]//TableForm=

n Riemann Sum

10 0.285
20 0.30875
30 0.316852
40 0.320938
50 0.3234
60 0.325046
70 0.326224
80 0.327109
90 0.327798
100 0.32835

Thus, 0

1
x2 „ x º 0.30875 for n = 20 (rectangles). We leave it to the reader to use large values of n to investigate more accurate

approximations using left endpoints.

b) The following program gives a plot of the rectangles corresponding to the Riemann sum in part (a) using left endpoints.
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In[329]:= LEPTf_, a_, b_, n_ : Module
dx, k, xstar, lrect, plot,
dx  Nb  a  n;
xstar  Tablea  i  dx, i, 0, n;
lrect  TableLinexstari, 0, xstari, fxstari ,

xstari  1, fxstari , xstari  1, 0, i, 1, n;
plot  Plotfx, x, a, b, Filling  Axis;
Showplot, GraphicsGreen, lrect

To demonstrate this for our example, we evaluate LEPT by specifying f x = x2,  a = 0, b = 1 and n = 20. 

In[330]:= f1x_ : x^2

LEPTf1, 0, 1, 20

Out[331]=

Here is a graphics animation of the plot above as n (number of rectangles) increases from 1 to 50.

Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-

tions generated from the Animate command in this chapter.  If you are reading the electronic version of this publication format-

ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation.  Just click on the
arrow button to start the animation.  To control the animation just click at various points on the sliding bar or else manually drag
the bar.
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In[332]:= AnimateLEPTf1, 0, 1, a , a, 1, 50, 5 

Out[332]=

a

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

NOTE: The underestimation given by LRSUM in this example can be explained from the above graph: The sum of the area of
the rectangles is less than the area of the region under the graph of f  since the rectangles are contained inside the same region.
This is due to the fact that f  is increasing on 0, 1. 
c)  We evaluate LRSUM in the limit as nØ ¶.

In[333]:= LimitLRSUM0, 1, n, n  Infinity

Out[333]=
1

3

Thus, 0

1
x2 „ x=1/3=0.33....

ü 5.2.2  Riemann Sums Using Right Endpoints

We can similarly define a Riemann sum of f  relative to a partition P by considering rectangles whose heights are based on the
right endpoint of each subinterval of P.    This is achieved by setting xi

* = xi = a + ib - a n  for i = 1, 2, .... n,   so that the
corresponding height of each rectangle is given by f xi.  Note that i ranges from 1 to n in this case (as opposed to 0 to n - 1 for
the left endpoint method).  This leads to the following formula for the Riemann sum using right endpoints, which we denote by

RRSUM:  

In[334]:= Clearf
RRSUMa_, b_, n_ : Sumfa  i  b  a  n  b  a  n, i, 1, n

Example 5.5. Let f x = x2 on [0,1] and let P = 0, 1 n, 2 n, 3 n, ....,  n - 1 n, 1 be a partition of 0, 1. 
a) Approximate 0

1
f x „ x by computing the Riemann sum relative to P using the right endpoint method.

b) Plot the graph of f  and the rectangles corresponding to the Riemann sum in part (a). 
c) Find the limit of the Riemann sum obtainded in part a) by letting nØ¶.

Solution:  a) We evaluate
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In[336]:= fx_ : x2

TableFormTablen, NRRSUM0, 1, n, n, 10, 100, 10,
TableHeadings  , "n", "Riemann Sum"

Out[337]//TableForm=

n Riemann Sum

10 0.385
20 0.35875
30 0.350185
40 0.345938
50 0.3434
60 0.341713
70 0.34051
80 0.339609
90 0.338909
100 0.33835

b) Similarly, we can write a program that gives a plot of the rectangles corresponding to the Riemann sum in part (a) using right
endpoints.

In[338]:= REPTf_, a_, b_, n_ : Module
dx, i, xstar, rrect, plot,
dx  Nb  a  n;
xstar  Tablea  i  dx, i, 0, n;
rrect  TableLinexstari, 0, xstari, fxstari  1,

xstari  1, fxstari  1, xstari  1, 0, i, 1, n;
plot  Plotfx, x, a, b, Filling  Axis;
Showplot, GraphicsBlue, rrect

For our example, we have: 

In[339]:= f2x_ : x^2

REPTf2, 0, 1, 20

Out[340]=

Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-

tions generated from the Animate command in this chapter.  If you are reading the electronic version of this publication format-

ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation.  Just click on the
arrow button to start the animation.  To control the animation just click at various points on the sliding bar or else manually drag
the bar.

Mathematica for Rogawski's Calculus 2nd Editiion.nb  87



In[341]:= AnimateREPTf2, 0, 1, a , a, 1, 50, 5 

Out[341]=

a

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

NOTE: The overestimation of the RRSUM can be explained analogously as with the underestimation obtained from LRSUM. 

c) We evaluate RRSUM in the limit as nØ¶: 

In[342]:= LimitRRSUM0, 1, n, n  Infinity

Out[342]=
1

3

NOTE: Here is a comparison between the two plots of the left-endpoint and right-endpoint rectangles:

In[343]:= LREPTf_, a_, b_, n_ : Module
dx, i, xstar, lrect, rrect, plot,
dx  Nb  a  n;
xstar  Tablea  i  dx, i, 0, n;
lrect  TableLinexstari, 0, xstari, fxstari ,

xstari  1, fxstari , xstari  1, 0, i, 1, n;
rrect  TableLinexstari, 0, xstari, fxstari  1,

xstari  1, fxstari  1, xstari  1, 0, i, 1, n;
plot  Plotfx, x, a, b, Filling  Axis;
Showplot, GraphicsBlue, rrect, GraphicsGreen, lrect 
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In[344]:= fx_ : x2

LREPTf, 0, 1, 20

Out[345]=

In[346]:= f3x_ : x2

AnimateLREPTf3, 0, 1, a , a, 1, 100, 5 

Out[347]=

a

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

ü 5.2.3  Riemann Sums Using Midpoints

The Riemann sum using the midpoints of each subinterval is given by the following formula. (We leave it to the student to verify

that the midpoint of ith subinterval is given by  a + i + 1

2
  b- a

n
 for i = 1, ..., n.)

In[348]:= Clearf
MRSUMa_, b_, n_ : Sumfa  i  1  2  b  a  n  b  a  n, i, 1, n

Example 5.6. Let f x = x2 on [0,1] and let P = 0, 1 n, 2 n, 3 n, ....,  n - 1 n, 1 be a partition of 0, 1. 
a) Approximate 0

1
f x „ x by computing the Riemann sum relative to P using the midpoint method.

b) Plot the graph of f  and the rectangles corresponding to the Riemann sum in part (a). 
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c) Find the limit of the Riemann sum obtainded in part a) by letting nØ¶.

Solution:  a) We evaluate 

In[350]:= fx_ : x2

TableFormTablen, NMRSUM0, 1, n, n, 10, 100, 10,
TableHeadings  , "n", "Riemann Sum"

Out[351]//TableForm=

n Riemann Sum

10 0.4425
20 0.385625
30 0.367685
40 0.358906
50 0.3537
60 0.350255
70 0.347806
80 0.345977
90 0.344558
100 0.343425

In[352]:= OptionsTableForm
Out[352]= TableAlignments  Automatic, TableDepth  ,

TableDirections  Column, TableHeadings  None, TableSpacing  Automatic
b) Again,  we can write  a  program that  gives  a  plot  of  the  rectangles corresponding to the  Riemann sum in part  (a)  using
midpoints.

In[353]:= MIDPTf_, a_, b_, n_ : Module
dx, i, xstar, mrect, plot,
dx  Nb  a  n;
xstar  Tablea  i  dx, i, 0, n;
mrect 

TableLinexstari, 0, xstari, fxstari  xstari  1  2,
xstari  1, fxstari  xstari  1  2,
xstari  1, 0, i, 1, n;

plot  Plotfx, x, a, b, Filling  Axis;
Showplot, GraphicsRed, mrect
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In[354]:= fx_ : x2

MIDPTf, 0, 1, 10

Out[355]=

Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-

tions generated from the Animate command in this chapter.  If you are reading the electronic version of this publication format-

ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation.  Just click on the
arrow button to start the animation.  To control the animation just click at various points on the sliding bar or else manually drag
the bar.

In[356]:= f4x_ : x2

AnimateMIDPTf4, 0, 1, a , a, 1, 100, 5 

Out[357]=

a

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

c) The limit of the Riemann sum using the midpoints is given by 

In[358]:= LimitMRSUM0, 1, n, n  Infinity

Out[358]=
1

3
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NOTE: Here is a visual comparison of all three Riemann sums in terms of rectangles:

In[359]:= ALLf_, a_, b_, n_ : Module
dx, i, xstar, lrect, rrect, mrect, plot,
dx  Nb  a  n;
xstar  Tablea  i  dx, i, 0, n;
lrect  TableLinexstari, 0, xstari, fxstari ,

xstari  1, fxstari , xstari  1, 0, i, 1, n;
rrect  TableLinexstari, 0, xstari, fxstari  1,

xstari  1, fxstari  1, xstari  1, 0, i, 1, n;
mrect  TableLinexstari, 0, xstari,

fxstari  xstari  1  2, xstari  1,
fxstari  xstari  1  2, xstari  1, 0, i, 1, n;

plot  Plotfx, x, a, b, Filling  Axis;
Showplot, GraphicsBlue, rrect,
GraphicsGreen, lrect, Graphics Red, mrect


In[360]:=

f5x_ : x2

ALLf5, 0, 1, 10

Out[361]=

Here is how all three Riemann sums behave when we increase the number of rectangles.
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In[362]:= f5x_ : x2

AnimateALLf5, 0, 1, a , a, 1, 100, 5 

Out[363]=

a

NOTE: All three limits from the left-endpoint, right-endpoint, and midpoint methods are equal. This is not surprising since each

is equal to 0

1
x2 „ x (remember that the existence of a definite integral requires that all Riemann sums converge to the same limit).

However, the midpoint method tends to converge faster to the limit than the other two methods (discussed in your calculus text).

Example 5.7.  Let f x = x3 + x2 + 1 on 0, 1 and let P = 0, 1 n, 2 n, ...., n n = 1 be a partition of  0, 1.
a) Find the Riemann sum of f  relative to P using the left endpoints of the partition.
b) Find the Riemann sum of f  relative to P using the right endpoints of the partition.
c) Show that the difference between the two sums goes to 0 at nØ ¶.  
d) Find the limit of the Riemann sums in parts (a) and (b). Is this consistent with part (c)?
e) What do you conclude from part (d)?

Solution: a) The Riemann sum using left endpoints is given by 

In[364]:= Clearf
LRSUMa_, b_, n_ : Sumfa  i  b  a  n  Nb  a  n, i, 0, n  1

In[366]:= fx_ : x3  x2  1

LRSUM0, 1, n

Out[367]=
5  12 n  19 n2

12 n2

b) The Riemann sum using right endpoints is given by

In[368]:= Clearf
RRSUMa_, b_, n_ : Sumfa  i  b  a  n  Nb  a  n, i, 1, n
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In[370]:= fx_ : x3  x2  1

RRSUM0, 1, n

Out[371]=
5  12 n  19 n2

12 n2

c) We now evaluate and simplify the difference between the two Riemann sums: 

In[372]:= SimplifyRRSUM0, 1, n  LRSUM0, 1, n

Out[372]=
2

n

As n Ø¶, observe that this difference goes to zero. 

d) Next, we use the limit command to evaluate the limit of the two Riemann sums:

In[373]:= LimitLRSUM0, 1, n, n  Infinity

Out[373]=
19

12

In[374]:= LimitRRSUM0, 1, n, n  Infinity

Out[374]=
19

12

In light of (c), we should not be surprised that the two limits are the same. After all, their difference was seen to converge to zero!

e) By definition of a definite integral, we conclude from (d) that 0

1x3 + x2 + 1 „ x = 19 12. We confirm this by evaluating 

In[375]:= 
0

1

x3  x2  1 x

Out[375]=
19

12

ü Exercises 

1.  Let f x = x

x2+1
for 0 § x § 1 and let P = 0 n, 1 n, 2 n, ... , n n = 1 be a partition of 0, 1.

a)  Find the Riemann sum of f  using the left endpoints of P and plot the rectangles that approximate the integral of f  over 0, 1.
Also, use the Animate command to see if the total area of the rectangles converges to the area of the region under the graph of f
and above the x-axis.

b)  Repeat (a) using right endpoints of P.

c)  Repeat (a) using midpoints of P.

2.  Let f x = x sin x on 0, p.  Use a uniform partition P and repeat Exercise 1 (immediately above) for this function. 

ü 5.3  The Fundamental Theorem of Calculus

Students should read Sections 5.3 and 5.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.
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The crowning achievement in calculus is the Fundamental Theorem of Calculus (FTC), which reveals that integration and
antidifferentiation are equivalent.  This can be expressed in two parts:

FTC - Part I: Given a continuous function f x on a, b, we have

 a
b

f x „ x = Fb - Fa.
Here, Fx is any antiderivative of f x.
FTC - Part II: If Fx = a

x
f t „ t, then F ' x = f x.

NOTE: Physically the Fundamental Theorem of Calculus tells us that the area under a velocity curve of an object is the same as
the change in position of the object.

Mathematica naturally uses FTC to evaluate definite integrals whenever it is able to find an antiderivative.  Of course, there are
examples where it is not able to do this, as the latter examples following demonstrate.

Example 5.8.  Evaluate 1
5 x

2 x-1
„ x.

Solution:  

In[376]:= 
1

5 x

2 x  1
x

Out[376]=
16

3

Example 5.9.  Evaluate  3

2 x2-3

x
„ x.

Solution:  

In[377]:= IntegrateSqrtx^2  3  x, x, Sqrt3, 2

Out[377]= 1 


2 3

In[378]:= N
Out[378]= 0.0931003

Example 5.10.  Approximate 0

1
tan x2 „ x.

Solution:  Here is an example of an integral that Mathematica  cannot evaluate exactly but returns the integral unevaluated
because the precise answer is not expressible in terms of elementary functions.

In[379]:= IntegrateTanx^2, x, 0, 1

Out[379]= 
0

1

Tanx2 x

However, a numerical approximation is still possible through the command N.
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In[380]:= N
Out[380]= 0.398414

Or we could use the command NIntegrate to perform both steps at once:

In[381]:= NIntegrateTanx^2, x, 0, 1
Out[381]= 0.398414

Example  5.11.   Use  the  fact  that  if  m § f x §M  for  all  x œ a, b,  then  mb - a § a
b

f x „ x §M b - a  to  approximate

0

2
x3 + 1 „ x.

Solution: We note that the function f x = x3 + 1  is increasing on 0, 2.  This can be checked by finding f ' x and observing

that f ' x > 0 for all x (or by simply drawing the graph of f ).  Thus, 1 = f 0 § f x § f 2 = 3 and so

1 2 - 0 § 0
2

1 + x3 „ x § 3 2 - 0 
or

2 § 0

2
1 + x3 „ x § 6

We can confirm this by evaluating 

In[382]:= Integrate x3  1 , x, 0, 2

Out[382]= 2 Hypergeometric2F1 1
2
,
1

3
,
4

3
, 8

Since the function Hypergeometric2F1 is not known to us, we use 

In[383]:= NIntegrate x3  1 , x, 0, 2
Out[383]= 3.24131

Example 5.12.  Let f x = cosx2 on 0, 2 and define gx = 0

x
f t „ t = 0

x
cost2 „ t. 

a) Plot the graph of f .
b) Find the value(s) of x for which gx) starts to decrease.
c) Estimate gx for x = 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1, 4, 1.6, 1.8, 2.
d) Draw the graphs of gx and g ' x.
e) How do the graphs of f x and g ' x compare?

Solution: a) We plot the graph of f .
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In[384]:= Clearf
fx_  Cosx2
gx_  

0

x

ft t

Out[385]= Cosx2

Out[386]=


2
FresnelC 2


x

NOTE: The function FresnelC is called the Fresnel Cosine function and plays an important role in physics and engineering.  The
Fresnel Sine function is defined in the obvious manner.

In[387]:= Plotfx, x, 0, 2

Out[387]=
0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0

b) We note that the graph of f  is above the x-axis (positive area) for x between 0 and p 2  and below the x-axis for x between

p 2  and 2.  Thus, the graph of g starts to decrease after p 2 .  The following table of the Riemann sums of f  on 0, x (for x
varying from 0 to 2) shows this point.

In[388]:= fx_ : x2

TableFormTablen, NMRSUM0, 1, n, n, 10, 100, 10

Out[389]//TableForm=

10 0.4425
20 0.385625
30 0.367685
40 0.358906
50 0.3537
60 0.350255
70 0.347806
80 0.345977
90 0.344558
100 0.343425

In[390]:= LRSUMa_, b_, n_ : Sumfa  i  b  a  n  Nb  a  n, i, 0, n  1
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In[391]:= TableFormTablex, LRSUM 0, x, 100, x, 0, 2, 0.1,
TableHeadings  , "x", "Riemann Sum"

Out[391]//TableForm=

x Riemann Sum

0. 0.
0.1 0.00032835
0.2 0.0026268
0.3 0.00886545
0.4 0.0210144
0.5 0.0410438
0.6 0.0709236
0.7 0.112624
0.8 0.168115
0.9 0.239367
1. 0.32835
1.1 0.437034
1.2 0.567389
1.3 0.721385
1.4 0.900992
1.5 1.10818
1.6 1.34492
1.7 1.61318
1.8 1.91494
1.9 2.25215
2. 2.6268

NOTE: Since g is the integral, it should start to decrease at x = p 2 º 1.25.  We can confirm this by examining the values of g
in the neighborhood of this point:

In[392]:= Tablex, LRSUM 0, x, 100, x, 1.2, 1.3, 0.01  TableForm

Out[392]//TableForm=

1.2 0.567389
1.21 0.581692
1.22 0.596234
1.23 0.611016
1.24 0.62604
1.25 0.641309
1.26 0.656823
1.27 0.672587
1.28 0.6886
1.29 0.704865
1.3 0.721385

From the table above, we see that the function g does indeed start to decrease at approximately x = 1.25:

c) Here is the table of values for gx:
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In[393]:= TableFormTablex, gx, x, 0.2, 2, 0.2
Out[393]//TableForm=

0.2 0.199968
0.4 0.398977
0.6 0.592271
0.8 0.767848
1. 0.904524
1.2 0.973945
1.4 0.949779
1.6 0.825517
1.8 0.635365
2. 0.461461

d) The graphs of the function f x and g ' x are given below: 

In[394]:= Plotgx, g'x, x, 0, 2, PlotStyle  Red, Blue

Out[394]=
0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0

e) The graphs of the function f x and g ' x are given below: 

In[395]:= Plotfx, g'x, x, 0, 2, PlotStyle  Red, Blue

Out[395]=

0.5 1.0 1.5 2.0

-1

1

2

3

4

This means that the two graphs are the same.  In fact, from the Fundamental Theorem of Calculus, we know that g ' x = f x. 

ü Exercises 

 In Exercies 1 troough 11, evalaute the given integrals. 

1. 0
1x2 + 2 „ x 2. 0

p
cos 3 x „ x 3. 0

1
1 - x2 „ x 4. -pp sin 2 x „ x

5. 0

3x3 - 4 x2 + x d x6. 1

4 1

x
+ 2 x  d x 7. 0

p

4 sec x d x 8. 0

2

4 2

1-4 x2

d x

9. 0

3 1

x+1
d x 10. 1

4 1

x
+ 2 x2 d x 11. 0

p
ex sin x d x  
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12. Let Sx = 0

x
sin 1

2
p t2 „ t (Sx is called the Fresnel sine)

a)  Plot the graph of S and approximate the value of S as xØ¶.  Confirm your approximation by evaluating the limit as xØ ¶.

b)  Find S ' x and use it to find the interval(s) on whcih Sx increase and decrease.  Hint: Apply the Fundamental Theorem of
Calculus.

c)  On what intervals is S concave up? Concave down?

d)  Find the value of x for which Sx = 0.7.

13. Find an explicit formula for a continuous function f  such that 

0

x
f t „ t = x ex + 0

x f t
2 t2+1

„ t.

(Hint: First take the derivative of both sides and then solve for f x.)

ü 5.4  Integrals Involving Trigonometric, Exponential, and Logarithmic 
Functions

In your calculus text, you will learn how to evaluate integrals using different techniques.  In Mathematica, we do not need to
specify the technique.  It chooses the technique appropriate for the problem. However, there are some integrals that cannot be
evaluated in terms of elementary functions. In such cases, Mathematica will return the integal unevaluated or gives us a name for
the integral.       

Below, we will consider some examples of integrals that involve trigonometric functions, exponential, and logarithmic functions.
If done by hand, some of these integrals require integration by parts, partial fraction decompositions, or trigonometric substitu-
tions.       

Example 5.13.  Evaluate  x2

x3+12
„ x.

Solution: If done by hand, this integral involves using the substitution method.

In[396]:= Integratex^2  x^3  1^2, x

Out[396]= 
1

3 1  x3

Example 5.14.   Evaluate  x5+x2+x+2

x2-1
„ x.

Solution:  This integral involves long division and partial fraction decomposition.  

In[397]:= 
x5  x2  x  2

x2  1
x

Out[397]= x 
x2

2

x4

4

5

2
Log1  x  1

2
Log1  x

Example 5.15.   Evaluate  x4+x3+x+1

x2+12
„ x.
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Solution:  This integral involves long division, partial fraction decomposition, and inverse trigonometric functions.  

In[398]:= 
x4  x3  x  1

x2  12
x

Out[398]= x 
x

1  x2
 ArcTanx  1

2
Log1  x2

NOTE: All functions that appear as output are written in Mathematica's notation. To convert the output to a more familiar form

the command TraditionalForm can be used.  Here is the "traditional" form of the output below (note that log x means the same
as ln x in this case).  

In[399]:= 
x4  x3  x  1

x2  12
x  TraditionalForm

Out[399]//TraditionalForm=

x

x2 + 1
+

1

2
logx2 + 1 + x - tan-1x

Example 5.16.  Evaluate  x2 sin x „ x.

Solution:  This integral involves integration by parts (twice).  

In[400]:=  x2 Sinx x

Out[400]= 2  x2 Cosx  2 x Sinx

Example 5.17.  Evaluate  -1

1-x2

„ x.

Solution:  This integral involves trigonometric substitution.  

In[401]:= Integrate1  Sqrt1  x^2, x
Out[401]= ArcSinx
NOTE: Your calculus textbook may give arccos x for the answer, as opposed to -arcsin x as above. Can you explain how the
integration constant resolves the difference in these two answers?

Here are some examples of integrals that are important in applications but do not have an elementary antiderivative.

In[402]:=  Sinx2 x

Out[402]=


2
FresnelS 2


x

In[403]:=  Ex
2
x

Out[403]=
1

2
 Erfx

Mathematica for Rogawski's Calculus 2nd Editiion.nb  101



In[404]:= IntegrateSinx  x, x
Out[404]= SinIntegralx
We can use NIntegrate to evaluate these integrals over any finite interval. For example:

In[405]:= NIntegrateEx2, x, 0, 10
Out[405]= 0.886227

In[406]:= NIntegrateLogx  x, x, 2, 100
Out[406]= 10.3636

Example 5.18.  Let fnx = 1
x
tn „ t . Investigate the limit graphically by plotting fnx) for n = 0, –0 .3, –0 .6, and –0 .9 together

with gx = ln x on a single plot.

In[407]:= Clearf, g
gx_ : Logx
fx_, n_ : 

1

x

tn t

In[410]:= Plotfx, n . n  0, 0.3, .6, .9, gx, x, 0, 10, PlotStyle  Red, Blue

Out[410]=

2 4 6 8 10

-4

-2

2

4

6

8

ü Exercises 

In Exercises 1 though 5, evaluate the given integral.

1.  x 2 - x „ x 2.  x3 1 + x2 „ x 3.  tan2 x sec4 x „ x

4.  x2-2 x-1

x3+x
„ x 5.  x-1

x2+x-1

„ x

In Exercises 6 through 11, use various values of a, b, and n to evaluate the  given integral. Then make a conjecture for a general
formula and prove your conjecture. 

6.  1

x+a x+b „ x 7.  cos a x sinb x „ x 8.  xn ln x „ x

9.  xn ex „ x 10.  xn sinx „ x 11.  ea x cosb x „ x
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Chapter 6 Applications of the Integral
Evaluating integrals can be tedious and difficult.  Mathematica makes this work relatively easy.  For example, when computing
the area of a region the corresponding integral can be difficult to set up because the limits of integration are not known.  Mathemat-
ica, with its powerful plotting capability, can turn this job into a very doable one.  We will examine several applications that
demonstrate this.

ü 6.1  Area Between Curves

Students should read Section 6.1 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Let us consider the problem of finding the area between two curves.

Example 6.1. Determine the area of the region bounded between the curves f x = sin x and gx = csc2 x on p 4, 3 p 4.
Solution: To find the area here, we first plot the graphs of f  and g.

In[411]:= Clearf, g
In[412]:= fx_ : Sinx

gx_ : Cscx^2
In[414]:= Plotfx, gx, x,   4, 3   4,

PlotStyle  Red, Blue, PlotRange  .5, 2.5,
Filling  1   2

Out[414]=

Looking at the plot above and recalling that csc x is always greater than or equal to 1 on this interval, it follows that csc2 x is
always greater than or equal to sin x, which is less than or equal to 1 on the same interval.  Hence, calculating the area between
these two curves between x = p 4 and x = 3 p 4 is straightforward:

In[415]:= 
4

3 4
gx  fx x

Out[415]= 2  2

In[416]:= N
Out[416]= 0.585786

Example 6.2. Determine the area of the region enclosed between the curves f x = xx2 - 3 x + 3 and gx = x2.

Solution: To find the area between these two curves, we will need to see if they intersect and if so where by plotting their graphs.

Mathematica for Rogawski's Calculus 2nd Editiion.nb  103



In[417]:= Clearf, g, x
In[418]:= fx_ : x x2  3 x  3
In[419]:= gx_ : x2

In[420]:= Plotfx, gx, x, 2, 4,
PlotStyle  Red, Blue, PlotRange  2, 11,
Filling  1   2

Out[420]=

Notice that f x is graphed in red, while gx is graphed in blue.  Also, the "Filling" option in the Plot command fills in the
region between the two graphs (functions 1 and 2 in the Filling command) in gray.  The bounded region between the two curves
seems to lie between x = 0 and x = 3.  To ascertain this, we solve for the intersection points:

In[421]:= Solve fx  gx, x
Out[421]= x  0, x  1, x  3
Hence, the intersection points are at x = 0, 1, and 3.  Noting that f x is greater than gx on [0, 1] and gx is greater than f x
on [1, 3], we need two integrals to calculate the (physical) area between the two curves since areas are always calculated by

subtracting the smaller function from the larger one.  In particular, on 0, 1 the area is given by 0

1 f x - gx „ x and on 1, 3
the area is given by 1

3gx - f x „ x.

In[422]:= 
0

1

fx  gx x  
1

3

gx  fx x

Out[422]=
37

12

In[423]:= N
Out[423]= 3.08333

Example 6.3. Determine the area of the region bounded between the curves f x = x  and gx = cos x on -p 2, p 2.
Solution: To find the area here, we first plot the graphs of f  and g.

In[424]:= Clearf, g
In[425]:= fx_ : Absx

gx_ : Cosx
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In[427]:= Plotfx, gx, x,   2,   2,
PlotStyle  Red, Blue, PlotRange  1, 2,
Filling  1   2

Out[427]=

From the picture above, we will need to consider the total area as a sum of three separate regions.  To this end, we first find the

intersection points of these two curves in order to obtain the limits of integration. Make note of the fact that the Solve command

does not work here because it is only able to solve algebraic equations. Instead, we use the FindRoot command to solve the
equation f x - gx = 0 using an initial guess of x = 0.75 (based on the plot above):

In[428]:= FindRootfx  gx, x, 0.75
Out[428]= x  0.739085
Thus our root is approximately x = 0.739085.  By symmetry we see there is another root at x = -0.739085.  Hence, the area
between these two curves is the sum of the three integrals:  

In[429]:= 
2

0.739085

fx  gx x  
0.739085

0.739085

gx  fx x  
0.739085

2
fx  gx x

Out[429]= 2.06936

Hence the area of our bounded region is 2.06936. 

NOTE: Observe that our region is symmetric about the y-axis and thus the same answer could have been found by computing the
area of only half the region (the right half, say) and doubling the result.

ü  Exercises 

1.  Find the area between the curves y = sin x and y = sin 2 x between x = 0 and x = p.

2.  Find the area between the graphs of x = sin y and x = 1 - cos y between y = 0 and y = p 2.

3.  Find the area above y = 1 - x p and below y = sin x.

ü 6.2  Average Value

Students should read Sections 6.2 and 6.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

Remember that the average value of a function f x on a, b is defined as

fave =
1

b-a a

b
f x „ x.

Related to this notion is the Mean Value Theorem for Integrals (MVTI), which states that for any continuous function f x on
a, b there exists a value c œ a, b such that
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f c = fave.

Example 6.4. Let f x = 2 cos x - x.
a) Find the only positive root a of f .
b) Calculate the average value of f  on 0, a.
c) Determine a value c that satisfies the Mean Value Theorem for Integrals on 0, a.
Solution: 

a) To calculate a, we first plot the graph of f  and then use the FindRoot command with x = 1 as our initial guess:

In[430]:= Clearf
In[431]:= fx_ : 2 Cosx  x

In[432]:= Plotfx, x, , 

Out[432]=

-3 -2 -1 1 2 3

-5

-4

-3

-2

-1

1

2

In[433]:= root  FindRootfx, x, 1
Out[433]= x  1.02987
Therefore,  a = 1.02987 accurate to 5 decimal places.

b) We next calculate the average value of f  on 0, a:
In[434]:=   root1, 2
Out[434]= 1.02987

In[435]:= fave 
1

  0

0



fx x

Out[435]= 1.14981

Thus, the average value is approximately fave = 1.14981.  

c) By MVTI, there exists a value c œ 0, a such that f c = fave.  To find c, we solve this equation for c, or equivalently,

f c - fave = 0.

In[436]:= FindRootfc  fave, c, .5
Out[436]= c  0.55256

ü  Exercises 

1.  Which of f x = x sin2 x and gx = x2 sin2 x has a larger average value over 0, 2?  Over 2, 4?
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2.  Let fave denote the average value of f x = x3 + x2 + 5 on 0, 4.  Find a value for c inside 0, 4 such that f c = fave.

ü 6.3  Volume of Solids of Revolution

Students should read Sections 6.2-6.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

We recall that a definite integral can be evaluated by employing the definition

a

b
f x „ x = lim

nØ+¶
i=1

n f xi
*D xi.

Another application of the definite integral involves finding the volume of a solid of revolution,  that is, a solid obtained by
revolving a region in the plane about one of the coordinate axes.   

ü 6.3.1  The Method of Discs

Let S be a solid of revolution obtained by revolving the region bounded by the graphs of y = f x, y = 0, and the vertical lines
x = a and x = b, about the x-axis.  To obtain the volume of S, we can approximate S by discs, i.e., cylinders obtained by revolv-
ing each rectangle, constructed by a Riemann sum of f  relative to a partition P = x0, x1, x2, .... , xn of a, b, about the x-axis.
Using the fact that the volume of a cylinder with radius R and height h is given by

 V = p R2 h, 

it follows that the volume of the ith cylinder (corresponding to the ith rectangle) is Vi = p f xi
*2 D x.  Hence, an approximation

to the volume of S is given by the Riemann sum

VolS ºi=1
n Vi = pi=1

n  f xi
*2 D x.

In the limit as nØ¶, we obtain the exact volume of S:

VolS = p limnØ¶i=1
n  f xi

*2 D x = p a

b f x2 „ x. 

NOTE: If the region is revolved about the y-axis, then the volume of S is given by

 VolS = p c

d f y2 „ y.

Example 6.5. Find the volume of the solid of revolution obtained by rotating the region bounded by the graph of f x = x , the
x-axis, and the vertical line x = 3.

Solution: We define f x in Mathematica and illustrate both the region and rectangles that are rotated to obtain the solid and
discs, respectively.  For this, we recall our program from Chapter 5 of this manual that was used to draw these rectangles.  

In[437]:= LEPTf_, a_, b_, n_ : Module
dx, k, xstar, lrect, plot,
dx  Nb  a  n;
xstar  Tablea  i  dx, i, 0, n;
lrect  TableLinexstari, 0, xstari, fxstari ,

xstari  1, fxstari , xstari  1, 0, i, 1, n;
plot  Plotfx, x, a, b, Filling  Axis;
Showplot, GraphicsGreen, lrect
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In[438]:= fx_ : x

plot  LEPTf, 0, 3, 20

Out[439]=

The plot above shows our region shaded in gray and our rectangles outlined in green.  We now rotate this shaded region about

the x-axis  to  obtain  a  solid  of  revolution  called  a  paraboloid.   This  is  achieved  in  Mathematica  using  the  Revolution-

Plot3D[{f,x},{x,a,b}] command, which generates a surface of revolution having radius f at height x.  This means that the vertical
axis shown in the plot below is actually the x-axis.

In[440]:= S  RevolutionPlot3D x , x, x, 0, 3

Out[440]=

The exact volume of the paraboloid is then given by

In[441]:= V   
0

3

fx2 x

Out[441]=
9 

2

ü 6.3.2  The Method of Washers

For a solid of revolution S generated by revolving a region bounded between two curves f x and gx on a, b about the x-axis,
we employ washers (rings) instead of discs.  Refer to your calculus textbook for a detailed treatment.  The corresponding volume
of S is given by (let's assume gx ¥ f x)

VolS = p a

bgx2 -  f x2 „ x. 

Example 6.6. Find the volume of the solid generated by revolving about the x-axis the region enclosed by the parabola y = x2 + 1
and the straight line y = x + 3.
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Solution:   Our initial goal is to find the points of intersection and secure the limits of integration.

In[442]:= Clearf, g, x
fx_ : x2  1

gx_ : x  3

In[445]:= Plotfx, gx, x, 2, 4, PlotStyle  Red, Blue,
PlotRange  2, 8, Filling  1  2

Out[445]=

We notice that f x is graphed in red, while gx  is graphed in blue.  The following command solves for their intersection points: 

In[446]:= Solvefx  gx, x
Out[446]= x  1, x  2
One can easily verify that the intersection points are -1, 2 and 2, 5.  Thus, our limits of integration are x = -1 and x = 2.

Let P and Q denote the solids of revolution by revolving each of the regions lying under f  and g, respectively, along the interval
-1, 2.  Our solid S, obtained by rotating the region between f  and g  on -1, 2 about the x-axis, can then be viewed as the
difference of Q and P, i.e., the solid Q with the solid P removed from it.  Following are surface plots of the three solids P, Q, and
S. Again, note that the vertical axis shown in each of the plots below is actually the x-axis. 
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In[447]:= P  RevolutionPlot3Dfx, x, x, 1, 2, AspectRatio  Automatic
Q  RevolutionPlot3Dgx, x, x, 1, 2, AspectRatio  Automatic

Out[447]=

Out[448]=

In[449]:= S  ShowP, Q

Out[449]=

Since the curve y = f x = x + 3 is lower than the curve y = gx = x2 + 1, it follows that the volume of S is given by

In[450]:= V   
1

2

gx2  fx2 x

Out[450]=
117 

5

Observe that in the above discussion, the methods for calculating volumes of solids of revolution were via discs and washers.  In
other words, the element of volume is obtained by taking the rectangular element of area whose height is perpendicular to the
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axis of revolution and revolving it to construct a disc or washer.     

ü 6.3.3  The Method of Cylindrical Shells

Students should read Section 6.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Another approach to finding the volume of a solid of revolution is to approximate it using cylindrical shells in contrast to discs
(or washers).  Recall that a cylindrical shell element is one that is obtained by revolving a rectangular element of area whose
height is parallel to the axis of revolution.  

A cylindrical shell is by definition a solid contained between two concentric cylinders having the same axis of rotation.  Suppose
a cylindrical shell has inner radius r1, outer radius r2, and altitude h, then its volume V  is given by

V = p r2
2 h - p r1

2 h = 2 p h r2+r1

2
 r2 - r1 = 2 p r hD x,

where r = r2 + r1 2 is the average radius and D x =r2 - r1.  

Let S  denote denote the solid obtained by revolving the region bounded between a function f x, the x-axis, x = a, and x = b,
about the y-axis.  The volume of the ith shell corresponding to the ith rectangle is defined to be Vi = 2 p xi

* f xi
*D x, where

xi
* = xi + xi-1 2.  Hence, an approximation to the volume of S is given by the Riemann sum

VolS ºi=1
n Vi = 2 pi=1

n xi
* f xi

*D x.

In the limit as nØ¶, we obtain the exact volume of S:

VolS = 2 p limnØ¶i=1
n xi

* f xi
*D x = 2 p a

b
x f x „ x. 

NOTE: If the region is revolved about the x-axis using cylindrical shells, then the volume of S is given by

 VolS = 2 p c
d

y f y „ y.

Example 6.7.  Consider the region bounded by the curve y = x2, the x-axis, and the line x = 2.  Find the volume of the solid
generated by revolving this region about the y-axis using the method of cylindrical shells.   

Solution: Let us first plot the region bounded by the given curves (shaded in the plot below):

In[451]:= fx_  x^2;

Plotfx, x, 0, 2, Filling  Axis

Out[452]=

We then revolve this shaded region about the y-axis to obtain our solid S (parabolic bowl).  This can be seen in the three plots
following, which illustrate S as the difference of the solids Q (cylinder) and P (paraboloid), that is, Q with P removed from it.   
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In[453]:= P  RevolutionPlot3Dfx , x, 0, 2
Q  RevolutionPlot3D2, y , y, 0, 4

Out[453]=

Out[454]=

In[455]:= S  ShowP, Q

Out[455]=

The volume of S is given by

In[456]:= V  2  
0

2

x  fx x
Out[456]= 8 

NOTE: The volume in this example can also be calculated using the washer method.  However, one would first have to solve the

equation y = x2  for x, yielding x = y .  Moreover, the limits of integration (with respect to y) would have to be determined,
which in this case would be y = 0 and y = 4 corresponding to x = 0 and x = 2, respectively.  Hence, 

In[457]:= V   
0

4

22   y 
2

y

Out[457]= 8 
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 The two answers from both methods agree as they should.

Example 6.8.  Sketch the ellipse x2

a2
+

y2

b2
= 1 and find the volume of the solid obtained by revolving the region enclosed by the

ellipse about the x-axis.

Solution: We will use the ContourPlot command to plot the ellipse for a = 2 and b = 3.  The reader should experiment with
other values of a and b.  

In[458]:= a  2;
b  3;

ContourPlot x
2

a2

y2

b2
 1, x, a  1, a  1, y, b  1, b  1,

AspectRatio  Automatic, Axes  True, Frame  False

Out[460]=
-3 -2 -1 1 2 3

-4

-2

2

4

To plot the corresponding solid of revolution (ellipsoid), we first solve x2

a2
+

y2

b2
= 1 for y.

In[461]:= Cleara, b

sol  Solvex
2

a2

y2

b2
 1, y

Out[462]= y  
b a2  x2

a
, y 

b a2  x2

a


The positive and negative solutions above correspond to the upper half and lower half, respectively, of the ellipse.  We shall
consider the upper half in plotting the ellipsoid and computing its volume by defining

f x = b2 - b2 x2

a2
= b 1 - x2

a2
.

In[463]:= fx_  sol2, 1, 2

Out[463]=
b a2  x2

a

Here is a plot of S (rotated 90 degrees about the x-axis).
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In[464]:= a  2;

b  3;
RevolutionPlot3Dfx, x , x, a, a

Out[466]=

To find the volume of the ellipsoid, we can employ either method, disc or shell, but in this case the disc method is preferable

from a computational standard.  This is because the disc formula for volume contains the square term  f x2, which lets us avoid
having to deal with radical terms if the shell method were used.  Since the ellipsoid is defined along the integral -a, a, its
volume based on the disc method is therefore

In[467]:= V   
a

a

fx2 x
Out[467]= 24 

More generally, the volume of the ellipsoid for arbitrary positive values of a and b is given by

In[468]:= Cleara, b
V   

a

a

fx2 x

Out[469]=
4

3
a b2 

Thus, V = 4

3
p a b2. 

NOTE: If we let a = b, then the ellipsoid becomes a sphere and the formula above reduces to the classic formula V = 4

3
p a3,

where a is the radius of the sphere.

ü Exercises 

1.  Plot the solid of revolution obtained by rotating the region enclosed by the graphs about the given axis and calculate its
volume.

a)  y = 9

x2
, y = 10 - x2 about the x-axis

b) y = 16 - x4, y = 0, x = 2, x = 3 about the y -axis

2.  Plot the hypocycloid x23 + y23 = 1 and find the volume of the solid obtained by revolving the region enclosed by the hypocy-
cloid about the y-axis. Is the volume of the solid obtained by revolving the same region about the x-axis the same?  Justify your

answer.  (Hint: Use the ContourPlot command.)
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3. Use the Shell Method to find the volume of the solid obtained by rotating the region enclosed by the graphs in each part below
about the y-axis.
a)   y = x2, y = 8 - x2, and x = 0

b) y = 1

2
x2and y = sinx2

4. The solid generated by revolving the region between the two branches of the hyperbola y2 - x2 = 1 from x = -a to x = a about
the x-axis is called a hyperboloid.  Find the volume of the hyperboloid for a = 2 and then for any arbitrary value of a.
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Chapter 7 Techniques of Integration

ü 7.1  Numerical Integration

Students should read Section 7.1 of Rogawski’s Calculus [1] for a detailed discussion of the material presented in this
section.

Numerical integration is the process of approximating a definite integral using appropriate sums of function values.  We already

saw in  Chapter  5  of  this  text  formulas for  Right,  Left,  and Midpoint  Rules  and their  subroutines LRSUM,  RRSUM,  and

MRSUM, respectively.  In this section, we will develop two additional rules: the Trapezoidal Rule and Simpson’s Rule. 

ü 7.1.1  Trapezoidal Rule

The Trapezoidal Rule approximates the definite integral a

b
f x „ x by using areas of trapezoids and is given by the formula:

         Tn = .5 b - a n  y0 + 2 y1 + ... + 2 yn-1 + yn
where n is the number of trapezoids and yi = f a + i b - a n .  This formula can be found in your calculus text.  Here is a

Mathematica subroutine, called TRAP, for implementing the Trapezoidal Rule:

In[470]:= Clearf, a, b, n
In[471]:= TRAPa_, b_, n_ :

fa  2 Sumfa  i  b  a  n, i, 1, n  1  fb .5 b  a  n
Example 7.1.  Calculate the area under the function f x = x2 on 0, 1 using the Trapezoidal Rule for various values of n.

Solution: The following output gives a table of approximations of 0

1
x2 „ x based on the Trapezoidal Rule for n = 10, 20, ..., 100.

In[472]:= fx_ : x2

TableFormTablen, NTRAP0, 1, n, n, 10, 100, 10,
TableHeadings  , "n", " Tn"

Out[473]//TableForm=

n Tn

10 0.335
20 0.33375
30 0.333519
40 0.333438
50 0.3334
60 0.33338
70 0.333367
80 0.333359
90 0.333354
100 0.33335

It is clear that these values are converging to 1/3, which is the exact value of our definite integral:
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In[474]:= 
0

1

x2 x

Out[474]=
1

3

ü 7.1.2  Simpson’s Rule

One difference between Simpson’s Rule and all the other rules we have developed so far (TRAP,  LRSUM,  RRSUM,  and

MRSUM) is that the number of partition points, n, in this case, must be even.  The other difference is that Simpson’s Rule is a
quadratic approximation based on parabolas, whereas the other rules are linear approximations based on lines.  The formula for
Simpson’s Rule is given by (refer to your calculus text for details):

Sn = 1 3 y0 + 4 y1 + 2 y2 + 4 y3 + 2 y4 + ... + 4 yn-3 + 2 yn-2 + 4 yn-1 + yn b - a n
    = 1 3y0 + 4 y1 + y2 + y2 + 4 y3 + y4 + ... + yn-2 + 4 yn-1 + yn b - a n

where yi = f a + i b - a n.  Here is a Mathematica subroutine, called SIMP, for implementing Simpson’s Rule:

In[475]:= Cleara, b, n
In[476]:= SIMPa_, b_, n_ :

1  3 Sumfa  2 i  2 b  a  n  4 fa  2 i  1 b  a  n 

fa  2 i b  a  n, i, 1, n  2 b  a  n
Example 7.2.  Calculate the area under the function f x = x2 on 0, 1 using Simpson’s Rule for various values of n.

Solution: We use the same set of values of n as in the previous example.  This will allow us to compare Simpson’s Rule with the
Trapezoidal Rule.  

In[477]:= fx_ : x2

TableFormTablen, NSIMP0, 1, n, n, 10, 100, 10,
TableHeadings  , "n", " sn"

Out[478]//TableForm=

n sn

10 0.333333
20 0.333333
30 0.333333
40 0.333333
50 0.333333
60 0.333333
70 0.333333
80 0.333333
90 0.333333
100 0.333333

Notice how fast SIMP converges to the actual value of the integral (1/3) compared to TRAP.

Example 7.3.   Calculate the definite integral of f x = sin25 x2  on 0, 1  using Simpson’s Rule and approximate it  to five

decimal places.  What is the minimum number of partition points needed to obtain this level of accuracy?

Solution: We first evaluate SIMP using values for n in increments of 20.
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In[479]:= fx_ : Sin25 x2
TableFormTablen, NSIMP0, 1, n, n, 20, 200, 20,
TableHeadings  , "n", " sn"

Out[480]//TableForm=

n sn

20 0.0958943
40 0.10526
60 0.105526
80 0.105566
100 0.105576
120 0.10558
140 0.105582
160 0.105582
180 0.105583
200 0.105583

Based on the output our approximation, accurate to five decimal places, is 0.10558.  This first occurs between n = 100 to n = 120.
We evaluate SIMP inside this range to zoom in on the minimum number of partition points needed.

In[481]:= fx_ : Sin25 x2
TableFormTablen, NSIMP0, 1, n, n, 100, 120, 2,
TableHeadings  , "n", " sn"

Out[482]//TableForm=

n sn

100 0.105576
102 0.105577
104 0.105577
106 0.105578
108 0.105578
110 0.105579
112 0.105579
114 0.105579
116 0.10558
118 0.10558
120 0.10558

Thus, we see that the minimum number of points needed is n = 116.  How does this compare with the minimum number of points
needed by TRAP to obtain the same level of accuracy?

NOTE: Observe that SIMP does not converge as fast in this example as in the previous example.  This is because the function
f x = sin25 x2 is oscillatory as the following graph demonstrates:

In[483]:= Plotfx, x, 0, 1

Out[483]=
0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0
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Try increasing the frequency of this function, say to sin100 x2, to see how well SIMP performs. 

ü 7.1.3  Midpoint Rule

Since most calculus texts include again the Midpoint Rule in the section on numerical integration, for completeness, we will too.
The Riemann sum using the midpoints of each subinterval is given by the following formula:

In[484]:= Clearf
MRSUMa_, b_, n_ : Sumfa  i  1  2  b  a  n  b  a  n, i, 1, n

Example 7.4.  Calculate the area under the function f x = x2 on 0, 1 using the Midpoint Rule for various values of n.

Solution: 

In[486]:= fx_ : x2

TableFormTablen, NMRSUM0, 1, n, n, 10, 100, 10,
TableHeadings  , "n", "Midpoint rule"

Out[487]//TableForm=

n Midpoint rule

10 0.3325
20 0.333125
30 0.333241
40 0.333281
50 0.3333
60 0.33331
70 0.333316
80 0.33332
90 0.333323
100 0.333325

ü Exercises 

1. Consider the definite integral 1

2
lnx „ x.

a) Using the Trapezoidal Rule, Simpson's Rule, and Midpoint Rule, approximate this integral for n = 10, 20, ..., 100.

b) Compare how fast each subroutine (TRAP,  SIMP,  MRSUM) converges to a

b
lnx „ x and decide which of these rules is

"best." 

2. Repeat Exercise 1 for the following definite integrals:

a)  0

2 ex

x+1
„ x   b)  0

1
cosx2 „ x c)  0

1
ex2

„ x

Can you make any general conclusions about which rule (Trapezoidal, Simpson’s, Midpoint) is best?  

3.  For each of the functions given below, set up a definite integral for the volume of the solid of revolution obtained by revolving

the region under f x along the given interval and about the given axis.  Then use the subroutines TRAP, SIMP, and MRSUM
to approximate the volume of each solid accurate to two decimal places (use various values of n to obtain the desired accuracy).

a) f x = cos x;    0, p 2;    x-axis           b) f x = e-x2
;    0, 1;   y-axis c) f x = sin x,  0, p, x - axis

ü 7.2  Techniques of Integration

Students should read Sections 7.2 trhough 7.4 and 7.6 of Rogawski's Calculus [1] for a detailed discussion of the material
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g g
presented in this section.

All calculus texts have at least a chapter devoted to "Techniques of Integration."  When using Mathematica, these techniques are
usually not necessary since Mathematica automatically gives you the answer.  

ü 7.2.1 Substitution

On occasion, we do need to use techniques of integration, even when using Mathematica.

Example 7.5.  Evaluate the following integral:  2x 2x2 - 1 „ x.

Solution: We evaluate this integral in Mathematica:

In[488]:=  2x 2x2  1 x

Out[488]=

2x 1  4x  Log2x  1  4x 
Log4

To students in a first-year calculus course, this answer makes no sense.  There are many integrals that Mathematica  cannot
evaluate at all, or cannot evaluate in terms of elementary functions (such as the integral above).  Some of these integrals are
doable in terms we should understand, once we first use an appropriate technique of integration. In the above example, all we
need to do is first make the following substitution:  u = 2x  and d u = ln 2 2x d x, which transforms the integral to:

In[489]:=
1

Log2  u2  1 u

Out[489]=

1
2
u 1  u2  1

2
Logu  1  u2 

Log2
This is the correct answer.  All we need to do is substitute 2x for u, and add the arbitrary constant of integration, getting:

1

2 Log2 ( 2x -1 + 2x2  - Log[2x + -1 + 2x2 ] ) + C

Note that the Mathematica function Log[x] is equivalent to the standard form ln x.

ü 7.2.2 Trigonometric Substitution

Example 7.6.  Evaluate  1

x2 x2-9

„ x.

Solution:  By  hand,  the  integral   1

x2 x2-9

„ x  would  normally  be  evaluated with  a  trigonometric substitution of  the  form

x = 3 secq.  But with Mathematica, we can do this directly:

In[490]:= 
1

x2 x2 - 9

‚ x

Out[490]=
9  x2

9 x
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This, of course, is the correct answer, when we remember that Mathematica  does not add an arbitrary constant to indefinite
integrals.

ü 7.2.3 Method of Partial Fractions

Integrals of rational expressions often require the Method of Partial Fraction Decomposition to evaluate them (by hand).  For
example:

 3 x-3

x2+5 x+4
„ x =   5

x+4
- 2

x+1
 „ x = 5 ln x + 4 -2 ln x + 1 = ln x+45

x+12

On the other hand, Mathematica will give us essentially the same answer for this integral, but does its work behind the scenes
without revealing its technique:

In[491]:= Simplify
3 x  3

x2  5 x  4
x

Out[491]= 2 Log1  x  5 Log4  x

If we would like to see the partial fraction decomposition of the integrand, 
3 x-3

x2+5 x+4
, Mathematica will also do that for us without

strain by using the Apart command:

In[492]:= Apart 3 x  3

x2  5 x  4


Out[492]= 
2

1  x


5

4  x

Example 7.7.  Evaluate  2 x3+x2-2 x+2

x2+12 „ x.

Solution:  We simply evaluate this integral using Mathematica:

In[493]:= 
2 x3  x2  2 x  2

x2  12
x

Out[493]=
4  x

2 1  x2

3 ArcTanx

2
 Log1  x2

But again, if we would like to see the partial fraction decomposition of the integrand, 
2 x3+x2-2 x+2

x2+12
, then this is straightforward

with Mathematica:

In[494]:= Apart 2 x
3  x2  2 x  2

x2  12


Out[494]=
1  4 x

1  x22

1  2 x

1  x2

ü Exercises 
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1.  Evaluate  1 + lnx 1 + x ln x2 „ x with Mathematica. If it doesn't give an understandable answer, use a technique of

integration that changes the integral into one that Mathematica will evaluate.

In Exercises 2 through 5, use Mathematica to find the partial fraction decomposition of the given functions and then integrate
them:

2.  x2+3 x - 44

x-3 x+5 3 x-2      3.  3 x2-4 x+5

x-1 x2+1       4.  25

x x2+2 x+5  5.  10

xx2+2 x+52

In Exercises 6 through 10, use Mathematica to evaluate the given  integrals.

6.  x2

x2- 432 „ x 7.  x3 9 - x2 „ x 8.  1

25+x2

„ x

9.  sin5 x „ x 9.  tan-1 t

1+t2
„ t 10.  sinh3 x cosh x „ x

ü 7.3  Improper Integrals

Students should read Section 7.7 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Recall that there are two types of improper integrals.  

Type I: If we assume that f x is integrable over a, b for all b ¥ a, then the improper integral of f x over a, ¶ is defined as

a

¶
f x „ x = limtØ¶ a

t
f x „ x,

provided this limit exists.  Similarly, we define

-¶b f x „ x = limtØ-¶ t
b

f x „ x,

provided this limit exists.

Type II: If f x is continuous on a, b but discontinuous at x = b, we define

a
b

f x „ x = limtØ b- a
t
f x „ x ,

provided this limit exists.  Similarly, if f x is continuous on a, b but discontinuous at x = a,

a

b
f x „ x = limtØ a+ t

b
f x „ x,

provided this limit exists.  Finally, if f x is continuous for all x on a, b except at x = c, where a < c < b, we define

a

b
f x „ x = limtØc- a

t
f x „ x + limtØc+ t

b
f x „ x,

provided both of these limits exist.

By using the Limit command in Mathematica along with Integrate, Mathematica eliminates the drudgery of having to evaluate
these integrals by hand.

Example 7.8.  Evaluate the following improper integrals:

a)  20
¶ 1

y
„ y

b) 2
¶‰-2 x „ x

c) 0
1
x ln x „ x

d) -¶¶ 1

1+x2
„ x

Solution: 
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a)  We evaluate

In[495]:= 
20

 1

y
y

Integrate::idiv : Integral of 
1

y
 does not converge on 20,¶. à

Out[495]= 
20

 1

y
y

Thus, evaluating this integral directly using Mathematica tells us it does not exist.  Alternatively, we could have used the limit
definition:

In[496]:= Limit
20

t 1

y
y, t  

Out[496]= 

Observe the difference in the two outputs above.  Both correctly express the answer as divergent; however, the second answer is
better since it reveals the nature of the divergence (infinity), which is the answer we would expect if solving this problem by hand.

b)  We evaluate

In[497]:= 
2



2 x x

Out[497]=
1

2 4

Again, we obtain the same answer using the limit definition (as it should):

In[498]:= Limit
2

t

2 x x , t  

Out[498]=
1

2 4

Mathematica will similarly handle discontinuities. In the following example, the function has a discontinuity at x = 0. 

c) We evaluate

In[499]:= 
0

1

x Logx x

Out[499]= 
1

4

In[500]:= Limit
t

1

x Logx x, t  0, Direction  1

Out[500]= ConditionalExpression 1
4
, t  Reals  0  Ret  1  Ret  1 &&

t

1  t
 Reals  Re t

1  t
  0  Re t

1  t
  1 
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d)  We evaluate

In[501]:= 
-•

• 1

1 + x2
‚ x

Out[501]= 

Note that Mathematica does not require us to break the integral up into two integrals, which would be required according to its
definition, if evaluated by hand.  On the other hand, there is nothing wrong with dividing this integral into two in Mathematica:

In[502]:= 


0 1

1  x2
x  

0

 1

1  x2
x

Out[502]= 

NOTE: Observe that it does not matter where we divide the integral.  It is valid to express -¶a 1

1+x2
„ x + a

¶ 1

1+x2
„ x  for the

integral  -¶¶ 1

1+x2
„ x for any real value a as long as they are convergent.  However, evaluating this sum in Mathematica yields

different expressions for the answer, which depend on the sign of a and whether it is real or complex.  This is shown in the
following output: 

In[503]:= Cleara




a 1

1  x2
x  

a

 1

1  x2
x

Out[504]= ConditionalExpression
1

2
   Log1   a   ¶ ConjugateLog1   a Rea  0 && Ima  0

Log1   a True


1

2
   Log1   a   ¶ ConjugateLog1   a Rea  0 && Ima  0

Log1   a True
, 1 

Ima  1

If instead, a is given a fixed value, then Mathematica will give us our answer of p:

In[505]:= a  1




a 1

1  x2
x  

a

 1

1  x2
x

Out[505]= 1

Out[506]= 

ü Exercises 

In Excercises 1 through 8, evaluate the given improper integrals:

1.  -¶4 ‰.01 t „ t 2.  -3
¶ 1

x+432 „ x 3.  -2
4 1

x+213 „ x 4.  -¶¶ x ‰-x2
„ x

5. 0
3 1

x-1
„ x 6. -¶¶ 1

ex+e-x „ x 7. 1
¶ 1

x.999
„ x 8.  1

¶ 1

x1.003
„ x

11.  Find the volume of the solid obtained by rotating the region below the graph of  y = ‰-x about the x-axis for  0 § x <¶.

12.  Determine how large the number b has to be in order that   b
¶ 1

x2+1
„ x <  .0001.
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13. Evaluate the improper integral -1

1 1

x
3

„ x.

14.  Determine how large the number b should be so that  b
¶ 1

x2+1
„ x < .0001.

15. Consider the function defined by 

 Gx = 0

¶
tx-1 e-t „ t

a)  Evaluate Gn  for n = 0, 2, , 3, 4, ...., 10.  Make  a conjecture about these values.  Verify your conjecture.
b) Evaluate G2 n - 1 2, for n = 1, 2, 3, ... 10.  Make a conjecture about these values.  Verify your conjecture.
c) Plot the graph of Gx on the interval 0, 5.
NOTE: The function G is called the gamma function and is denoted by Gx. In Mathematica it is denoted by Gamma[x].   The
gamma function was first introduced by Euler as a generalization of the factorial function.

ü 7.4  Hyperbolic and Inverse Hyperbolic Functions

Students should read Section 7.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

ü 7.4.1. Hyperbolic Functions

The hyperbolic  functions are  defined in  terms of  the exponential  functions.   They  have a  direct  connection to  engineering
mathematics,  including bridge  construction.   For  example,  cables  from suspension bridges  typically  form a  curve  called  a
catenary (derived from the Latin word catena, which means chain) that is described by these functions.

The six hyperbolic functions are denoted and defined as follows:

sinh x = ex- e-x

2
,  cosh x = ex+ e-x

2
, tanh x = ex- e-x

ex+ e-x

coth x = ex+ e-x

ex- e-x ,  sech x = 2

ex+ e-x , csch x = 2

ex- e-x  

The reason these functions are called hyperbolic functions is due to their connection with the equilateral hyperbola x2 - y2 = 1.

Here, one defines x = cosh t and y = sinh t.  Hence, one obtains the basic hyperbolic identity cosh2 t - sinh2 t = 1, much the same

manner  as  the  corresponding  trigonometric  identity  cos2 t + sin2 t = 1,  when  one  considers  the  unit  circle  x2 + y2 = 1  with
x = cos t and y = sin t.

In Mathematica, we use the same notation with the obvious convention that the first letter of each function is capitalized and

square brackets must be used in place of parentheses.  Thus, sinh x will be entered as Sinh[x].

Example 7.9.  Consider the hyperbolic sine function f x = sinh x.
a) Plot the graph of f . 
b) From the graphs deduce the domain and range of the function. 
c) Is f  bounded? 
d) Does f  attain an absolute minimum? Maximum?
e) Repeat a) through d) for the hyperbolic function gx = cosh x  
f) Repeat a) through d) for the hyperbolic function hx = tanh x.

Solution: We begin by defining f  in Mathematica:
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In[507]:= Clearf, x
fx_  Sinhx

Out[508]= Sinhx
a) We next plot its graph on the interval -3, 3.
In[509]:= Plotfx, x, 3, 3

Out[509]=
-3 -2 -1 1 2 3

-10

-5

5

10

b) The preceding graph indicates that the domain and range of sinh x is -¶, ¶. To convince yourself, you should plot the graph
over wider intervals.  We should also expect this from the definition of sinh x itself.  Can you explain why?

c) The function sinh x is not bounded. The graph earlier should not be used as a proof of this.  However, we can evaluate its limit
at -¶ and ¶ to see that this is indeed true.

In[510]:= Limitfx, x  
Limitfx, x  

Out[510]= 

Out[511]= 

d) The limits just computed show that sinh x has no absolute maximum or minimum since it is unbounded.

e) Next, we consider the hyperbolic cosine function denoted by cosh x.

In[512]:= Clearg, x
gx_  Coshx

Out[513]= Coshx
In[514]:= Plotgx, x, 3, 3

Out[514]=

-3 -2 -1 1 2 3

4

6

8

10

The preceding graph indicates that the domain of cosh x is -¶, ¶. The range appears to be 1, ¶. Can you prove this?

The hyperbolic cosine function, cosh x, is not bounded from above. This can be seen from the following limits:
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In[515]:= LimitCoshx, x  
LimitCoshx, x  

Out[515]= 

Out[516]= 

Again, since cosh x is not bounded from above, it follows that cosh x has no absolute maximum. As we have observed in part b)
of this example, cosh x has absolute minimum value 1, attained at x = 0. 

f) Finally, we consider the hyperbolic tangent function, tanh x:

In[517]:= Clearh, x
hx_  Tanhx

Out[518]= Tanhx
In[519]:= Plothx, x, 3, 3

Out[519]=
-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

Again, the preceding graph indicates that the domain of tanh x is -¶, ¶. The range appears to be -1, 1. This can be seen
from the following limits:

In[520]:= LimitTanhx, x  
LimitTanhx, x  

Out[520]= 1

Out[521]= 1

The graph of tanh x also indicates that it is strictly increasing on its domain.  This can be proven by showing that its derivative,
which we will calculate later, is strictly positive.  It is clear that tanh x has no absolute extrema. 

NOTE: The reader will notice some similarities between the hyperbolic functions and the associated trigonometric functions.
Moreover, if one studies the theory of functions of a complex variable, the relationship between these classes of transcendental
functions becomes even more transparent; for numerous identities exist between the classes of functions. 

ü 7.4.2 Identities Involving Hyperbolic Functions

It is immediate that the ratio and reciprocal identities for the hyperbolic functions coincide with their trigonometric counterparts.
In fact, for each trigonometric identity, there is a corresponding (not necessarily the same) hyperbolic identity.  Following are
some examples. 

Example 7.10.  Show that the following identities hold true.

a) 1 - tanh2 x = sech2 x b)  coshx + y = cosh x cosh y + sinh x sinh y
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Solution: 

a) We use the definitions for tanh x and sech x to express each side of the identity in terms of exponentials: 

In[522]:= Simplify1  Tanhx2 . Tanhx  E^x  E^x  E^x  E^x

Out[522]=
4 2 x

1  2 x2

In[523]:= SimplifySechx2 . Sechx  2  E^x  E^x

Out[523]=
4

x  x2

We leave it for the reader to verify that both of these outputs agree, that is, 
4 e2 x

1+e2 x2 =
4

e-x+ex2
 (cross-multiply and then simplify).

The identity can also be confirmed in Mathematica by evaluating the difference between its left- and right-hand sides, which
should equal zero:

In[524]:= Simplify1  Tanhx2  Sechx2
Out[524]= 0

NOTE: We can also confirm the identity graphically by plotting the graphs of each side of the identity, which should coincide.

In[525]:= Plot1  Tanhx^2, Sechx^2, x, 2, 2

Out[525]=

-2 -1 1 2

0.2

0.4

0.6

0.8

1.0

b) We again evaluate the difference between the left- and right-hand sides of the identity:

In[526]:= SimplifyCoshx  y  Coshx Coshy  Sinhx Sinhy
Out[526]= 0

ü 7.4.3 Derivatives of Hyperbolic Functions

We next contrast the formulas for the derivatives of the trigonometric functions versus the formulas for the derivatives of the
companion hyperbolic functions.

Example 7.11.  Compare the derivatives of the given pair of functions.
a) sinh x and sin x b)  cosh x and cos x  c) tanh x and tan x

Solution: We use the derivative command, D, to evaluate derivatives of each pair.
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a)

In[527]:= DSinhx, x
DSinx, x

Out[527]= Coshx
Out[528]= Cosx
b)

In[529]:= DCoshx, x
DCosx, x

Out[529]= Sinhx
Out[530]= Sinx
b)

In[531]:= DTanhx, x
DTanx, x

Out[531]= Sechx2
Out[532]= Secx2

It is clear that derivatives of hyperbolic and trigonometric functions are quite similar.

ü 7.4.4 Inverse Hyperbolic Functions

In light of the fact that hyperbolic functions are defined in terms of the exponential functions, it is readily apparent that the
inverse hyperbolic functions are defined in terms of the natural logarithmic function.  The inverses of the hyperbolic functions

have notation similar to those of inverse trigonometric functions.  Thus, the inverse of sinh x is denoted by arcsinh x or sinh-1 x.

In Mathematica, the notation is sinh-1 x is ArcSinh[x].

Example 7.12.  Plot the graphs of sinh-1 x and sinh x on the same axis.

Solution: Recall that the graph of a function and the graph of its inverse are reflections of each other across the line y = x.  This

is confirmed by the following plot of sinh-1 x (in blue) and sin x (in red).
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In[533]:= PlotSinhx, x, ArcSinhx, x, 3, 3,
PlotStyle  Blue, Green, Red, AspectRatio  Automatic, PlotRange  3, 3

Out[533]=
-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Example 7.13.  Show that tanh-1 x = 1

2
ln 1+x

1-x
 for -1 < x < 1.

Solution: We plot the graphs of y = tanh-1 x and y = 1

2
ln 1+x

1-x
 on the same axes. Note that Mathematica's notation of tanh-1 x is

ArcTanh [x] and ln y is entered as Log[y]:

In[534]:= PlotArcTanhx, 1

2
Log 1  x

1  x
, x, 2, 2

Out[534]=
-2 -1 1 2

-3

-2

-1

1

2

3

The fact that there is only one graph indicates that the functions are the same. We prove this by letting y = tanh-1 x and solving

for y as follows.  From y = tanh-1 x we get x = tanh y = ey-e-y

ey+e-y .  Now solving this last equation for y in Mathematica yields:

In[535]:= Solvex  E^y  E^y  E^y  E^y, y
Solve::ifun : Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. à

Out[535]= y  Log 1  x

1  x
, y  Log 1  x

1  x


The first solution in the preceding output is imaginary, which we ignore, and consider only the second solution.  Hence,

tanh-1 x = y = ln
-1-x

-1+x
= ln

1+x

1-x
= 1

2
ln 1+x

1-x
 .
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NOTE: The message in the previous output refers to the fact that when solving equations involving inverse functions, not all
solutions are necessarily found by Mathematica since there may be infinitely many of them or they depend on the domain of
definition.  For example, the equation sin x = 1 has infinitely many solutions, in particular all values of the form x = p 2 + 2 p n,
where n is any integer.  On the other hand, solving this equation in Mathematica yields only the solution in its principal domain,
that is, x = p 2: 

In[536]:= SolveSinx  1, x
Solve::ifun : Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. à

Out[536]= x 


2


ü Exercises 

In Exercises 1 through 5,  verify  the given hyperbolic  identities using the Simplify  command. Also state the corresponding
trigonometric identity.  

1.  sinhx + y = sinh x cosh y + cosh x sinh y 2.  cosh 2 x = cosh2 x + sinh2 x 3.   tanh 2 x = 2 tanh x

1+tanh2 x
 

4.  coshx + y = cosh x cosh y + sonh x sinh y 5.  tanhx + y = tanh x+tanh y

1+tanh x tanh y

6.  Determine the first few positive integral powers of cosh x + sinh x.  Can you form a general conjecture for the nth case,
namely cosh x + sinh xn, where n is any natural number?  Then justify your conclusion via mathematical induction. 

 In Exercises 7 through 12, determine the derivatives of thegiven functions and simplify your answers where possible. Compare
your solution via paper and pencil methods with the one generated by Mathematica. 

7.  f x = tanh 1 + x2 8.  f x = x sinh x - cosh x 9. f x = 1+tanh x

1- tanh x

10. f x = x2 sinh-12 x  11.  f x = x tanh-1 x + ln 1 - x2 12. f x = x coth x - sech x

13. The Gateway Arch in St. Louis was designed by Eero Saarinen and was constructed using the equation 

 y = 211.49 - 20.96 cosh 0.03291765 x 
for the central curve of the arch, where x and y are measured in meters and x § 91.20.

a) Plot the graph of the central curve.
b) What is the height of the arch at its center?
c) At what points is the arch 100 meters in height?
d) What is the slope of the arch at the points in part (c)?

14.  A flexible cable always hangs in the shape of a catenary y = c + a cosh x  a, where c and a are constants and a > 0.  Plot
several members of the family of functions y = a cosh x  a for various values of a.  How does the graph change as a varies?

In Exercises 15 through 17,  evaluate each of the given integrals:

 15.   sinh x coshn x „ x 16.  cosh x

cosh2 x-1
„ x 17.   sech2 x

2+tanh x
„ x
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18.   Let t = ln 1+ 5

2
 and define

f n = 
2

5
cosht n, if n is odd

2

5
sinh t n, if n is even

Evaluate f n for n = 1, 2, 3, ..., 20.  Do these values seem familiar? If not, we highly recommend the interesting article by
Thomas Osler, Vieta-like products of nested radicals with Fibonacci and Lucas numbers,  to appear in the journal Fibonacci
Quarterly.
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Chapter  8 Further Applications of Integration

ü 8.1  Arc Length and Surface Area  

Students should read Section 8.1 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

ü 8.1.1 Arc Length

The integrals for calculating arc length and surface area are generally difficult to do by hand.  Thus, Mathematica is the appropri-
ate tool for evaluating these integrals.

If y is a function of x, that is, y = f x, and f ' x exists and is continuous on a, b, then the arc length of the graph of f x over
the interval a, b is   

 L = a

b
1 + f ' x2 „ x

If x is a function of y, that is, x = g y, and g ' y exists and is continuous on c, d, then the arc length of the graph of g y over
the interval c, d is

  L = c
d

f ' y2 + 1 „ y

Example 8.1.  Estimate the arc length of  y = 1

x
 over the interval 1, 2.

Solution: Finding the arc length of this simple rational function by hand is virtually impossible.  This is because f ' x = - 1

x2
 and

thus the arc length integral is L = 1
2

1 + 1

x4
„ x, which cannot be evaluated in terms of elementary functions, as the following

answer illustrates.

In[537]:= 
1

2

1 
1

x4
x

Out[537]=

2  Gamma 7
4


3 Gamma 5
4



1

2
Hypergeometric2F1 1

2
, 

1

4
,
3

4
, 16

However, there are numerical techniques that we can use.  For example, the Mathematica command NIntegrate uses sophisti-
cated algorithms to gives us a good estimate for this definite integral: 

In[538]:= NIntegrate 1 
1

x4
, x, 1, 2

Out[538]= 1.13209

A more elementary method of estimating this arc length is Simpson's Rule as shown in Section 7.1 of this text.
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In[539]:= Clearf, a, b, n
SIMPa_, b_, n_, f_ :

1  3 Sumfa  2 i  2 b  a  n  4 fa  2 i  1 b  a  n 

fa  2 i b  a  n, i, 1, n  2 b  a  n

In[541]:= fx_ : 1 
1

x4

TableFormTablen, NSIMP1, 2, n, f, n, 10, 100, 10,
TableHeadings  , "n", "Sn" 

Out[542]//TableForm=

n Sn

10 1.1321
20 1.13209
30 1.13209
40 1.13209
50 1.13209
60 1.13209
70 1.13209
80 1.13209
90 1.13209
100 1.13209

Thus, we see that Simpson's Rule gives us as accurate an estimate of the arc length, as does the NIntegrate command for n as
small as 20.

Example 8.2.  Consider the the ellipse whose equation is given by 

 x2

a2
+

y2

b2
= 1

Assume that a > b. Find the arc length of the upper half of the ellipse.   

Solution: To plot the ellipse for various values of a and b, we define a plotting command plot[a,b] as follows. 

In[543]:= Cleara, b, x, y, eq, plot

eqx_, y_, a_, b_ :
x2

a2

y2

b2
 1

plota_, b_ : ContourPloteqx, y, a, b  0, x, a, a, y, b, b,
AspectRatio  Automatic, Axes  True, Frame  False

Here is a plot of the ellipse for a = 2 and b = 3.
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In[546]:= plot2, 3

Out[546]=
-2 -1 1 2

-3

-2

-1

1

2

3

 On the upper half of the ellipse, we have y ¥ 0. Thus, we can solve for y and and take the positive solution. We will denote this
positive solution as a function of x, a, and b.

In[547]:= sol  Solvex
2

a2

y2

b2
 1, y;

fx_, a_, b_  sol2, 1, 2

Out[548]=
b a2  x2

a

Clearly, the domain of f  is -a, a. The natural thing to do would be to evaluate the integral -a

a
1 +  f ' x2 „ x.  Try this

yourself, but be prepared to wait awhile.  Moreover, Mathematica will give the following output:

IfIma  0 && a Im 1

a2  b2
  1 

1  a Im 1

a2  b2
  0  a Im 1

a2  b2
  0  a Re 1

a2  b2
  0 ,

1

a b2

2 a32 b2 EllipticE1  b2

a2
 Signa, Integrate 1 

b2 x2

a4  a2 x2
, x, a, a,

Assumptions  Reb  0 && Rea  0 && Ima  0 && Imb  0  Ima  0  Ima  0

To understand this output, let us make a change of variable x = a sin t. Then the integral becomes (verify this) 

 -a

a
1 +  f ' x2 „ x = a -p2p2

1 + b2 sin2 t

a2 cos2 t
cos t d t

The latter integral can be expressed as 
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 2 a 0
p2

1 + b2 sin2 t

a2 cos2 t
cos t d t = 2 a 0

p2
cos2 t + b2 a2 sin2 t d t = 2 a 0

p2
1 - c2 sin2 t d t ,

where  c = 1 - b a2 and we have used the identity cos2 t = 1 - sin2 t.

To simplify our notation, let us define the integrand in the preceding far left integral as

In[549]:= gt_, a_, b_  1  1  b  a2 Sint2

Out[549]= 1  1 
b2

a2
Sint2

Here are some values of the arc length of the upper half of the ellipse.

In[550]:= TableFormTable2 a 
0

2
gt, a, b t, a, 1, 3, b, 1, 3,

TableHeadings  "a1", "a2", "a3", "b1", "b2", "b3" 
Out[550]//TableForm=

b1 b2 b3
a1  2 EllipticE3 2 EllipticE8
a2 4 EllipticE 3

4
 2  4 EllipticE 5

4


a3 6 EllipticE 8
9
 6 EllipticE 5

9
 3 

Observe that we obtain exact values for the arc length when a = b.  Can you explain why?

The approximate values of the numbers appearing in the preceding table are as follows:

In[551]:= TableFormNTable2 a 
0

2
gt, a, b t, a, 1, 3, b, 1, 3, 10,

TableHeadings  "a1", "a2", "a3", "b1", "b2", "b3" 
Out[551]//TableForm=

b1 b2 b3
a1 3.141592654 4.844224110 6.682446610
a2 4.844224110 6.283185307 7.932719795
a3 6.682446610 7.932719795 9.424777961

NOTE: The integral  1 - c2 sin2 t „ t is known as an elliptic integral.  It is very useful in mathematics and has many applica-

tions. In Mathematica, it is denoted by Elliptic[t,c^2].  The command Elliptic[x,m] gives 0

x
1 -m sin2 t dt, while Elliptic[m]

gives  0

p2
1 -m sin2 t dt.

ü 8.1.2 Surface Area

If f ' x exists and is continuous on a, b, then the surface area of revolution obtained by rotating the graph of f x about the x-
axis for a § x § b is  
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 S = 2 p a
b

f x 1 +  f ' x2 „ x

Similarly, if x = gy and g ' y exists and is continuous on c, d, then the surface area of revolution obtained by rotating g y
about the y-axis for c § y § d is 

  S = 2 p c

d
gy g ' y2 + 1 „ y

Again, evaluating these complicated integrals is what Mathematica does best, as the following examples illustrate.

Example 8.3.  Determine the surface area of revolution obtained by rotating the region under y = ‰-x  along the interval 0, 2
about the x-axis.

Solution: We calculate

In[552]:= Clearf, x
fx_ : x

S  2  
0

2

fx 1  f'x2 x

Out[554]=
1

2
 4  2 2 

2

1  4


2

4 1  4
 Log3  2 2   Log2  4  2 1  4 

In[555]:= N
Out[555]= 6.35887

Here is the corresponding surface of revolution (rotated 90 ° about the y-axis):

In[556]:= RevolutionPlot3DEx, x, 0, 2

Out[556]=

NOTE: Observe that in this case Mathematica was able to find an anti-derivative of the integrand.  However, not all integrals of
this form can be evaluated analytically as the next example illustrates.

Example 8.4.  Determine the surface area of revolution obtained by rotating the region under y = tan x along the interval 0,
p

4


about the x-axis.

Solution: As in the previous example, we evaluate
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In[557]:= Clearf, x
fx_ : Tanx
NIntegrate2  fx 1  f'x2 , x, 0, Pi  4

Out[559]= 3.83908

To appreciate the complexity of the integral and understand why we used the command NIntegrate, we advise the reader to

define the anti-derivative F[t] below and evaluate F[p/4] (be prepared to wait awhile).

In[560]:= Ft_ : Integratefx 1  f'x2 , x, 0, t
Here is the corresponding surface of revolution:

In[561]:= RevolutionPlot3DTanx, x, 0, Pi  4

Out[561]=

ü Exercises 

In Exercises 1 and 2, calculate the arc length of the given function over the given interval:

1.  y = x4,  over 1, 2         2.  y = sin x,  over 0, p

2


3.  Calculate the arc length of the astroid  x23 + y23 = 1.  Below is a plot of its graph.  Hint: By symmetry it suffices to calculate
only the portion in the first quadrant.

In[562]:= ContourPlotx^2^1  3  y^2^1  3  1, x, 1, 1, y, 1, 1

Out[562]=

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0
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4.  Show that the circumference of the unit circle is 2p by calculating its arc length. Use the fact that the equation of the unit
circle is given by   x2 + y2 = 1.  

In Exercises 5 through 7, compute the surface area of the given functions rotated about the x-axis over the given intervals:

5.  y = x3 + 1

x
,  over 1, 4      6.  y = 4 - x2323

 over 0, 8    7.  y = cos x, over 0, p 
8.  Show that the surface area of the unit sphere is 4p by rotating the top half of the unit circle  x2 + y2 = 1 about the x-axis.

ü 8.2  Center of Mass

Students should read Section 8.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

A lamina is a thin plate whose mass is distributed throughout a region in the plane. Suppose a lamina has a constant density r and
that the lamina occupies a region in the plane under the graph of a continuous function f  over the interval a, b, where f x ¥ 0
for all x. 

The mass of the lamina is given by 

M = r a
b

f x „ x

Then the moments of the lamina with respect to x-axis and y-axis are denoted by Mx and My and are defined by       

 Mx =
1

2
r a

b f x2 „ x

My = r a

b
x f x „ x

The center of mass (also called the centroid) of the lamina is defined to be x, y, where

 x =
My

M
 and y = Mx

M

NOTE:  If the lamina described above as a density r that continuously depends on x, that is, if r = rx for x in the interval a, b,
then the moments, the total mass, and the center of mass are given by   

M = a

b
rx f x „ x

 Mx =
1

2 a

b
rx f x2 „ x

My = a

b
x rx f x „ x

 x =
My

M
 and y = Mx

M

Example 8.5.  Suppose a lamina lies underneath the graph of y = 16 - x2 and over the interval -4, 4.

a)  Assume the density of the lamina is r = 3. Find the mass, moments, and the center of mass of the lamina. 
b)  Assume the density of the lamina is r = x

2
+ 2. Find the mass, moments, and the center of mass of the lamina. 

Solution: 

a) We use the above formulas with r = 3:
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In[563]:= fx_  16  x2

Out[563]= 16  x2

The mass is given by 

In[564]:= M  3 
4

4

fx x
Out[564]= 256

The moment with respect to the x-axis is 

In[565]:= Mx  3  2 
4

4

fx2 x

Out[565]=
8192

5

The moment with respect to the y-axis is 

In[566]:= My  3 
4

4

x fx x
Out[566]= 0

The coordinates for the center of mass are 

In[567]:= xbar  My  M
ybar  Mx  M

Out[567]= 0

Out[568]=
32

5

Observe that the region of the lamina is symmetric with respect to the y-axis. Hence, the fact that x = 0 is also clear from the fact
that the density is a constant. 

Below is the plot of the lamina and its center of mass:

In[569]:= plot1  Plotfx, x, 4, 4 , Filling  Axis;
plot2  ListPlotxbar, ybar, PlotStyle  PointSize0.02, Red;
Showplot1, plot2

Out[571]=

b) Here, r = x + 4. With the above notation we have 
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In[572]:= fx_  16  x2

x_ 
x

2
 2

Out[572]= 16  x2

Out[573]= 2 
x

2

The mass is 

In[574]:= Mv  
4

4

x fx x

Out[574]=
512

3

The moment with respect to the x-axis is 

In[575]:= Mxv  1  2 
4

4

x fx2 x

Out[575]=
16384

15

The moment with respect to the y-axis is 

In[576]:= Myv  
4

4

x x fx x

Out[576]=
2048

15

The coordinates for the center of mass are 

In[577]:= xbarv  Myv  M
ybarv  Mxv  M

Out[577]=
8

15

Out[578]=
64

15

Here is a plot of the lamina showing the center of masses with the uniform density of r = 3 and variable density of r = x

2
+ 2

represented by the red and green dots, respectively.
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In[579]:= plot3  ListPlot xbarv, ybarv, PlotStyle  Green, PointSize.02;
Showplot1, plot2, plot3

Out[580]=

NOTE: Observe that the center of mass with variable density (green dot) is shifted to the right, as expected, since the density is
more weighted to the right.

Example 8.6.  Suppose a lamina covers the top half of the ellipse

 x2

a2
+

y2

b2
= 1

a) Assume the density of the lamina is r = 1. Find the mass, moments and the center of mass of the lamina. 
b) Assume the density of the lamina is r = e-x. Find the mass, moments and the center of mass of the lamina. 

Solution:  To distinguish between the uniform and variable density cases in parts a) and b), respectively, we attach the letter u

and v to the notation in this solution. Thus, Mu will be the mass corresponding to the uniform density while Mv is the mass
corresponding the variable density. 

a) We solve the equation of the ellipse for y:

In[581]:= Cleara, b, x, y

sol  Solvex
2

a2

y2

b2
 1, y

Out[582]= y  
b a2  x2

a
, y 

b a2  x2

a


In the top half of the ellipse , we have y ¥ 0. Thus, we take the second solution, simplify, and define it as a function of x, a, and b  

In[583]:= fax_, a_, b_ : b 1 
x2

a2

Let the mass, the moment with respect to the x-axis, the moment with respect to the y - axis , and the center of mass be denoted
by M a, b, Mxa, b, Mya, b, and xa, b, ya, b), respectively.  We now compute these quantities assuming r = 1.
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In[584]:= Cleara, b, Mua, Mxua, Myua, xbaru, ybaru
Muaa_, b_  

a

a

fax, a, b x

Mxuaa_, b_  1  2 
a

a

fax, a, b2 x

Myuaa_, b_  
a

a

x fax, a, b x

Out[585]=
a b 

2

Out[586]=
2 a b2

3

Out[587]= 0

In[588]:= xbaruaa_, b_ 
Myuaa, b
Muaa, b

ybaruaa_, b_ 
Mxuaa, b
Muaa, b

Out[588]= 0

Out[589]=
4 b

3 

That  x = 0 is also clear from the fact that the density is a constant and the upper half of the ellipse is symmetric with respect to
the y -axis.  

The mass of the lamina, the moments of the lamina with respect to the x- and y-axis for various values of a and b are as follows:
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In[590]:= umassa  TableFormTableMuaa, b, a, 1, 3, b, 1, 3,
TableHeadings  "a1", "a2", "a3", "b1", "b2", "b3";

uxmomenta  TableForm TableMxuaa, b , a, 1, 3, b, 1, 3 ,
TableHeadings  "a1", "a2", "a3", "b1", "b2", "b3";

uymomenta  TableForm TableMyuaa, b , a, 1, 3, b, 1, 3 ,
TableHeadings  "a1", "a2", "a3", "b1", "b2", "b3";

TableFormumassa, uxmomenta, uymomenta,
TableHeadings  "Mass", "xmoment", "ymoment", 

Out[593]//TableForm=

Mass

b1 b2 b3

a1 

2
 3 

2

a2  2  3 

a3 3 
2

3  9 
2

xmoment

b1 b2 b3

a1 2
3

8
3

6

a2 4
3

16
3

12

a3 2 8 18

ymoment

b1 b2 b3
a1 0 0 0
a2 0 0 0
a3 0 0 0

The corresponding y-coordinate of the center of mass in each case is (recall that x = 0 for all cases)

In[594]:= centermassua  Table Mxuaa, b
Muaa, b , a, 1, 3, b, 1, 3;

TableFormcentermassua,
TableHeadings  "a1", "a2", "a3", "b1", "b2", "b3"

Out[595]//TableForm=

b1 b2 b3

a1 4
3 

8
3 

4


a2 4
3 

8
3 

4


a3 4
3 

8
3 

4


The following animation shows how the center of mass changes as a and b varies.

In[596]:= plot4aa_, b_ :

Plotfx, a, b, x, a, a, PlotRange  5, 5, 15, 15, Filling  Axis;
plot5aa_, b_ : ListPlot Myuaa, b

Muaa, b ,
Mxuaa, b
Muaa, b ,

PlotStyle  Red, PointSize0.02
plotuaa_, b_ : Showplot4aa, b, plot5aa, b

Important Note:: If you are reading the printed version of this publication, then you will not be able to view any of the anima-

tions generated from the Animate command in this chapter.  If you are reading the electronic version of this publication format-

ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation.  Just click on the
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arrow button to start the animation.  To control the animation just click at various points on the sliding bar or else manually drag
the bar.

In[599]:= Animateplotuaa, b, a, 1, 8, b, 1, 10

Out[599]=

a

b

-4 -2 2 4

-15

-10

-5

5

10

15

b) Here, r = e-x. With the above notations modified to reflect variable density,  we have 

In[600]:= Cleara, b, Mv, Mxv, Myv, xbarv, ybarv
x_  Ex

Mvba_, b_  
a

a

x fax, a, b x

Mxvba_, b_  1  2 
a

a

x fax, a, b2 x

Myvba_, b_  
a

a

x x fax, a, b x
Out[601]= x

Out[602]= ConditionalExpressionb  BesselI1, a, a  0

Out[603]=
2 b2 a Cosha  Sinha

a2

Out[604]= ConditionalExpressiona b  BesselI2, a, a  0
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In[605]:= xbarvba_, b_ 
Myvba, b
Mvba, b

ybarva_, b_ 
Mxvba, b
Mvba, b

Out[605]= ConditionalExpression a BesselI2, a
BesselI1, a , a  0

Out[606]= ConditionalExpression2 b a Cosha  Sinha
a2  BesselI1, a , a  0

Observe that the formulas for the mass and moments of the lamina are no longer elementary.  Here is a table of numerical values
for these quantities assuming various choices for a and b:

In[607]:= umassb  TableFormTableMvba, b, a, 1, 3, b, 1, 3,
TableHeadings  "a1", "a2", "a3", "b1", "b2", "b3";

uxmomentb  TableForm TableMxvba, b , a, 1, 3, b, 1, 3 ,
TableHeadings  "a1", "a2", "a3", "b1", "b2", "b3";

uymomentb  TableForm TableMyvba, b , a, 1, 3, b, 1, 3 ,

TableHeadings  "a1", "a2", "a3", "b1", "b2", "b3";
TableFormNumassb, uxmomentb, uymomentb,
TableHeadings  "Mass", "xmoment", "ymoment", 

Out[610]//TableForm=

Mass

b1 b2 b3
a1 1.7755 3.551 5.3265
a2 4.99713 9.99427 14.9914
a3 12.4199 24.8398 37.2596

xmoment

b1 b2 b3
a1 0.735759 2.94304 6.62183
a2 1.94877 7.79506 17.5389
a3 4.48558 17.9423 40.3702

ymoment

b1 b2 b3
a1 0.426464 0.852928 1.27939
a2 4.32879 8.65758 12.9864
a3 21.1606 42.3213 63.4819

The coordinates for the center of mass are 

In[611]:= centermassvb  NTable Myvba, b
Mvba, b ,

Mxvba, b
Mvba, b , a, 1, 3, b, 1, 3

Out[611]= 0.240194, 0.414395, 0.240194, 0.828791, 0.240194, 1.24319,
0.866255, 0.389977, 0.866255, 0.779953, 0.866255, 1.16993,
1.70377, 0.361161, 1.70377, 0.722323, 1.70377, 1.08348

Here is a plot showing the two centers of mass with for uniform and variable density.
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In[612]:=

plot4ba_, b_ : Plotfx, a, b, x, a, a,
PlotRange  8, 8, 1, 8, AspectRatio  Automatic, Filling  Axis;

plot5ba_, b_ : ListPlot Myvba, b
Mvba, b ,

Mxvba, b
Mvba, b ,

PlotStyle  Green, PointSize0.02
plotvba_, b_ : Showplot4ba, b, plot5ba, b

Important Note:  If you are reading the printed version of this publication, then you will not be able to view any of the anima-

tions generated from the Animate command in this chapter.  If you are reading the electronic version of this publication format-

ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation.  Just click on the
arrow button to start the animation.  To control the animation just click at various points on the sliding bar or else manually drag
the bar.

In[615]:= Animateplotvba, b, a, 1, 8, b, 1, 8

Out[615]=

a

b

-5 5

2

4

6

8

ü Exercises 

1.  Suppose a lamina is lying underneath the graph of y = 1 + x2 over the interval 0, 2 .
a) Assume the density of the lamina is r = 3. Find the mass, moments, and the center of mass of the lamina. 
b) Assume the density of the lamina is r = 2 x. Find the mass, moments, and the center of mass of the lamina. 
c) Plot the lamina and the center of mass on the same axes for both parts a) and b) above.

2.  Suppose a lamina of constant density r = 2 is in the shape of the astroid  x23 + y23 = 1.  Find its mass, moments, and center
of mass.  Plot the lamina with its center of mass.
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Chapter 9 Introduction to Differential Equations

ü 9.1  Solving Differential Equations

Students should read Section 9.1 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

An ordinary differential equation is an equation that involves an unknown function, its derivatives, and an independent variable.
Differential equations are useful for modeling many physical phenomena some of which are discussed in the next section.

Given a differential equation, our objective is to find all functions that satisfy it.  Mathematica's command for solving a differen-

tial equation is DSolve[eqn,y[x],x] where eqn is the differential equation to be solved and y[x] is the unknown function that

depends on the independent variable x.

If the differential equation has initial conditions, we use braces   to group the equation as well as the initial conditions (separated

by commas): DSolve[{eqn,cond1,cond2,...,condn},y[x],x], where cond1, cond2,...,condn are initial conditions.

ü 9.1.1. Separation of Variables

As discussed in your textbook, there is a special class of first-order differential equations that can be solved by hand using the
method of separation of variables.  Mathematica  can help in applying this method but of course it can solve the differential
equation outright.  This makes Mathematica useful for verifying solutions obtained by other methods or for solving more compli-
cated differential equations.  Since your textbook focuses on solving differential equations by hand, we will primarily discuss
how to solve them using Mathematica.

Example 9.1.  Solve the given differential equation and plot the graph of the solutions.  

a)  y ' = 2 4 - y, y0 = 1 b)  1 - x2 y ' = x y  c) y
d y

d x
+ 5 x = 0

Solution: 

a) This is an initial value problem. Let us first solve this differential equation by hand using the method of separation of vari-
ables:

dy

dx
= 2 4 - y    ï 

dy

y-4
= -2 dx

 dy

y-4
= - 2 dx

log y - 4 = -2 x + C
y - 4 = e-2 x+C = eC e-2 x

y - 4 = ≤eC e-2 x = C e-2 x (≤eC replaced by C)
This shows that the general solution is given by

y = C e-2 x + 4

It remains to determine the value of the constant C using the initial condition y0 = 1 (recall from your textbook that each value
of C corresponds to a particular solution):

1 = y0 = C e-2ÿ0 + 4 = C + 4

Thus, C = -3 and the unique solution is

y = -3 e-2 x + 4
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Next, let us confirm this solution using Mathematica.  Recall that when entering a differential equation in Mathematica, we write
yx instead of y to make explicit the dependence on x.

In[616]:= sola  DSolvey'x  2 4  yx, yx, x
Out[616]= yx  4  2 x C1
This solution agrees with the solution obtained earlier by hand (the arbitrary constant C1 is the same to the constant C).  We can
visualize the behavior of the particular solutions by plotting some of their graphs for different values of C1.  First, let us define
the general solution to be gx, c, where c = C1 as follows (see Section 1.2.3 to learn how to extract elements from lists):

In[617]:= Clearg, x, c
gx_, c_  sola1, 1, 2 . C1  c

Out[618]= 4  c 2 x

We then plot the one-parameter family of solution curves by combining the graphs of gx, c for c = -5, -4, ..., 5.

In[619]:= plotgeneralsolution 

PlotTablegx, c, c, 5, 5, x, 2, 2, PlotRange  20, 20, ImageSize  250

Out[619]=
-2 -1 1 2

-20

-10

10

20

Can you explain how the graph of gx, c varies as c varies?  Which c value corresponds to the top graph?

Next, to find the unique particular solution satisfying the given initial condition y0 = 1, we solve the equation g0, c = 1 for c:

In[620]:= Solveg0, c  1, c
Out[620]= c  3
Thus, our unique solution is y = -3 e-2 x + 4.  This agrees with the solution we obtained earlier by hand.  Of course, Mathematica
can solve for the unique solution on its own, bypassing the algebraic steps involved:

In[621]:= sola  DSolvey'x  2 4  yx, y0  1, yx, x
Out[621]= yx  2 x 3  4 2 x
However, this unique solution does not appear to be the same as the one we obtained earlier.  To remedy this, let us extract
solution from the output and define it as y = f x:
In[622]:= fx_  sola1, 1, 2
Out[622]= 2 x 3  4 2 x
We then apply the Expand command to simplify f x:
In[623]:= Expandfx
Out[623]= 4  3 2 x
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Thus, the unique solution obtained by Mathematica is the same as the one obtained by hand.  Here is the plot of the unique
solution:

In[624]:= plotuniquesolution  Plotfx, x, 2, 2,
PlotRange  20, 20, PlotStyle  Thickness0.01, ImageSize  250

Out[624]=
-2 -1 1 2

-20

-10

10

20

Lastly, we combine plots of the general solution and the unique solution to show where the latter (bold graph) is situated in the
former:

In[625]:= Showplotgeneralsolution, plotuniquesolution, ImageSize  250

Out[625]=
-2 -1 1 2

-20

-10

10

20

b)  From this point on, we shall skip using the method of separation of variables, which we leave for the reader to employ, and
proceed directly to solving all differential equations using Mathematica as in part a) above.

In[626]:= solb  DSolve 1  x2 y'x  x yx, yx, x

Out[626]= yx   1x2 C1

Again, we can visualize the behavior of these particular solutions by plotting graphs of some particular solutions corresponding
to different values of C1.  As before, we define the general solution to be gx, c, where c = C1.  
In[627]:= Clearg, x, c

gx_, c_  solb1, 1, 2 . C1  c

Out[628]= c  1x2

We then make a combined plot of the graphs of gx, c for c = -5, -4, ..., 5.
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In[629]:= PlotTablegx, c, c, 5, 5, x, 2, 2, ImageSize  250

Out[629]=
-2 -1 1 2

-4

-2

2

4

c) We again use Mathematica to directly obtain the solution:

In[630]:= Cleary
solde  DSolve yx y'x  5 x  0, yx, x

Out[631]= yx   5 x2  2 C1 , yx  5 x2  2 C1 

Observe that the two solutions, which we denote by f x, c and gx, c, differ only in sign:

In[632]:= fx_, c_  solde2, 1, 2 . C1  c

gx_, c_  solde1, 1, 2 . C1  c

Out[632]= 2 c  5 x2

Out[633]=  2 c  5 x2

The following two plots show the graphs of f x, c and gx, c corresponding to c = -50, -40, ..., 0, ..., 40, 50.

In[634]:= PlotTablefx, c, c, 50, 50, 10,
x, 5, 5, PlotRange  0, 10, ImageSize  250

Out[634]=

-4 -2 0 2 4

2

4

6

8

10

In[635]:= PlotTablegx, c, c, 50, 50, 10,
x, 5, 5, PlotRange  10, 0, ImageSize  250

Out[635]=

-4 -2 2 4

-10

-8

-6

-4

-2
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Observe that the two solutions y = - 5 x2 + 2 c  and y = 5 x2 + 2 c can be represented by a single equation: 

 y2 - 5 x2 = 2 c

which describes a family of hyperbolas. Here is a contour plot of this equation.  Observe that it nothing more than a combination
of the two plots above as to be expected.

In[636]:= ContourPloty2  5 x2, x, 5, 5, y, 10, 10, Frame  False,

Axes  True, ContourShading  False, Contours  10, ImageSize  250

Out[636]=

ü Exercises 

In Exercises 1 through 8, solve the given differential equations.  If initial conditions are also given, then plot the unique solution.
If not, then make a combine plot of several particular solutions by choosing various values of the arbitrary constant.  Then
describe the graphs and explain how they vary as the arbitrary constant varies.

1.  1 + x2 y ' = x2 y; y0 = 2 2.  y ' + 3 x4 y2 = 0; y0 = 1

3.  y ' + y2 = -1; y0 = -1 4. y ' + 3 y = sin x; y0 = 0

5.  y ' = -2 x y (bell-shaped curves) 6.  16 y y ' + 9 x = 0
7. y ' - y = y2 8. 2 x y y ' - y2 + x2 = 0

9. Consider the differential equation

 3 + 2 y y ' = 2 - ex,  y0 = a

a) Solve the equation.
b) Plot the graphs for values of a = -2, -1, 0, 1, 2.
c) Plot the graphs for the values of a = -.5, -.1, .1, .5.
NOTE: For parts b) and c), make sure to use a sufficiently large interval for x.

10. Consider the differential equation

y = x y b - y  4 + x,    y0 = a

a) Solve the equation.
b) Plot the graphs for values of a = -2, -1, 0, 1, 2  and b = -2, -1, 0, 1, 2.
c) Plot the graphs for the values of a = -.5, -.1, .1, .5 and b = -.5, -.1, .1, .5
d) Show that the limit as xØ ¶ of the solution does not depend on a. Does the limit depend on b? If so, how?

11. Suppose a skydiver falls from rest toward the earth and assume that the air resistance caused by his open parachute is  propor-
tional to the square of his velocity v with proportionality constant k  (we neglect air resistance due to the skydiver himself).  A
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model for describing the skydiver's velocity after his parachute opens is then given by the differential equation 

v ' = - k

m
v2 -

m g

k


where m is the mass of the skydiver and g = 9.8 meters/sec2 is his acceleration due to gravity.

a) Solve the equation assuming an initial velocity v0 = v0.
b) Suppose that for a particular skydiver m = 70 kg and k = 30 kg meter.  Solve the equation again using these values and plot the
particular solutions for the following values of v0: 0, 2, ..., 10.
c) What is the skydiver's limiting (terminal) velocity as tØ¶ for each of the particular solutions in part b)?  Does it depend on
v0?
d) Find a formula for the terminal velocity in terms of m, g, and k.

12. Recall that the first-order linear differential equation y ' + y = 0 has solution y = C e-x.   Solve the following higher-order
generalizations of this equation:

a) y '' + 2 y ' + y = 0
b) y ''' + 3 y '' + 3 y ' + y = 0
c) y4 + 4 y ''' + 6 y '' + 4 y ' + y = 0
d) Do you recognize the coefficients involved in the differential equations above?  What would be the next differential equation
(of order 5) that follows this pattern?  Solve this differential equation to verify that its solution follows that same pattern exhibited
in parts a) through c).

ü 9.2  Models of the Form y ' = ky - b
Students should read Section 9.2 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

NOTE: The differential equations we encounter in this section can be solved by the method of separation of variables and is
discussed in the text. We leave it to the reader to solve the examples in this section by hand to verify the solutions obtained using
Mathematica.

ü 9.2.1. Bacteria Growth

The growth of bacteria in a culture is known to be proportional to the amount of the bacteria present at time t.  Suppose the initial
amount of the bacteria is y0 and the amount at time t is yt. Then the above physical law is modeled by the differential equation 

 y ' = k y, y0 = y0

where k is the proportionality (growth) constant. Such a model exhibits exponential growth as can be seen from its solution below:

In[637]:= Cleark
DSolvey'x  k  yx, y0  y0, yx, x

Out[638]= yx  k x y0
NOTE: Since the bacteria is growing in number, yt is increasing and hence y ' t > 0. Thus, k must be a positive number. 

Example 9.2.  Suppose the amount of bacteria in a culture was 200 at time t = 0.  It was found that there were 450 bacteria after 2
minutes.
a) Find the amount of the bacteria at any time t. 

b) At what time will the number of bacteria exceed 10,000? 
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Solution: 

a) First, note that y0 = 200 and y2 = 450. We solve the differential equation y ' = k y with the former as the initial condition:

In[639]:= Cleary, t, k
solde  DSolvey't  k yt, y0  200, yt, t

Out[640]= yt  200 k t
In[641]:= ft_  solde1, 1, 2
Out[641]= 200 k t

To find the value of k we solve f 2 = 450 for k.

In[642]:= solk  Solvef2  450, k
Solve::ifun : Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. à

Out[642]= k 
1

2
Log 9

4


In[643]:= N
Out[643]= k  0.405465

Thus,  the  proportionality  constant  is  k = 1

2
l n9 4 º 0.405465.  Substituting this  value  into  yt,  we  see  that  the  amount  of

bacteria at a given time t is  

yt = 200 e0.405465 t

b) To find the amount of time it takes for the bacteria to exceed 10,000, we solve

In[644]:= k  solk1, 1, 2
Solveft  10000, t

Out[644]=
1

2
Log 9

4


Solve::ifun : Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. à

Out[645]= t  
Log50

Log2  Log3

We can approximate this value for t by

In[646]:= N
Out[646]= t  9.64824
Thus, it takes about 9.64824 minutes for the bacteria to reach 10,000. To visually see this, we plot the graphs of the solution
yt = 200 e0.405465 t (blue curve) and y = 10 000 (red line) on the same axes.
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In[647]:= Plotft, 10000, t, 0, 15, PlotStyle  Blue, Red, ImageSize  250

Out[647]=

2 4 6 8 10 12 14

5000

10 000

15 000

20 000

NOTE: The solution yt = 200 e0.405465 t  is only approximate since we approximated the growth constant k.  By using the exact

value for k = 1

2
l n9 4 = l n3 2, we can derive the exact solution: 

yt = 200 ek t = 200 e t ln
3

2 = 200 e ln 3

2
t

= 200  3

2
t

This agrees with the answer obtained by Mathematica:

In[648]:= ft
Out[648]= 25  23t 3t

ü 9.2.2. Radioactive Decay

The differential equation y ' = k y is also used to model the amount of a radioactive substance whose rate of decay is proportional
to the amount present.  However, in this case we note that the proportionality constant k < 0. (Explain this!) 

Example 9.3.  Carbon dating is a method used to determine the age of a fossil based on the amount of radioactive Carbon-14 in it
compared to the amount normally found in the living environment. Suppose that a bone fossil contains 5% of the amount of
Carbon-14 normally found in living animals. If the half-life of Carbon-14 is 5600 years, estimate the age of the bone. 

Solution: Let yt) be the amount of Carbon-14 in the bone and let y0 be the initial amount of Carbon-14. Then the differential
equation we need to solve is   

In[649]:= Cleark, y, y0
solde  DSolvey't  k yt, y0  y0 , yt, t

Out[650]= yt  k t y0

Thus, the solution to the differential equation is yt = y0 ek t.  The half-life of Carbon-14 is 5600 implies that y5600 = 1

2
y0. We

solve this equation for k:

In[651]:= yt_  solde1, 1, 2
solk  Solvey5600 

1

2
y0, k

Out[651]= k t y0

Solve::ifun : Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. à

Out[652]= k  
Log2
5600
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In[653]:= N
Out[653]= k  0.000123776
Thus, k = -0.000123776. To find the age of the bone, we solve y t = 0.05 y0 (5% of the initial amount) for t.

In[654]:= k  
Log2
5600

;

Solveyt  0.05 y0, t
Solve::ifun : Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. à

Out[655]= t  24202.8
Thus, the bone is about 24,203 years old. Observe that it not necessary to know the original amount y0 of Carbon-14 in the bone. 

ü 9.2.3. Annuity

An annuity is an  investment in which a principal amount of money is placed in a bank account that earns interest at an annual
rate (compounded continuously) and the money is withdrawn at a  regular interval. The differential equation that models an
annuity is given by the annuity equation (rate of change = growth due to interest - withdrawal rate):

 P ' t = r Pt -W = rPt - W

r


where Pt is the balance in the annuity at time t, r is the interest rate, and W  is the rate (dollars per year) at which money is
withdrawn continuously.

Example 9.4.  Find the general solution of the annuity equation for Pt and then use it to calculate the following:
a) Assume r = 6% and W = $ 6000 per year and P0 = $ 50 000.  Find Pt and determine if and when the annuity runs out of
money.
b) Assume r = 6% and W = $ 6000 per year and P0 = $ 100 000.  Find Pt and determine if and when the annuity runs out of
money.
c) Assume r = 6% and W = $ 12 000 per year.  If we want the annuity to run out of money after 20 years, how much should be
invested now?

Solution: We solve

In[656]:= DSolveP't  r Pt  W

r
, Pt, t

t 
W

r
 r t C1

Thus, the general solution is Pt =W r + c er t.

a) We set r = 0.06, W = 6000, and solve the initial value problem:
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In[657]:= Clearr, W, P
r  0.06;
W  6000;

solde  DSolveP't  r Pt  W

r
, P0  50000, Pt, t

Out[660]= Pt  100000.  50000. 0.06 t
 We then define Pt to be the solution above and plot it to see when the money will run out.

In[661]:= Pt_  solde1, 1, 2
PlotPt, t, 0, 15, ImageSize  250

Out[661]= 100000.  50000. 0.06 t

Out[662]=

2 4 6 8 10 12 14

-20 000

-10 000

10 000

20 000

30 000

40 000

50 000

As the graph indicates, the money runs out after approximately 11.5 years. We can confirm this by solving Pt = 0:

In[663]:= NSolvePt  0, t
NSolve::ifun : Inverse functions are being used by NSolve, so

some solutions may not be found; use Reduce for complete solution information. à

Out[663]= t  11.5525
b) We repeat the procedure in part a) with the obvious modifications:

In[664]:= Clearr, W, P
r  0.06;
W  6000;

solde  DSolveP't  r Pt  W

r
, P0  100000, Pt, t;

Pt_  solde1, 1, 2
PlotPt, t, 0, 80, ImageSize  250

Out[668]= 100000.

Out[669]=

20 40 60 80

50 000

100 000

150 000

200 000
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Observe that the balance Pt = 100, 000 remains constant (can you explain why?) and thus  the account will never run out of
money.  What happens if we invest $100,001? $99,999?

c) In this case, we have r = 0.06 and W = 10 000 per year.  The general solution is then given by

In[670]:= Clearr, W, P, c
r  0.06;
W  12000;

dsol  DSolveP't  r Pt  W

r
, P0  c, Pt, t;

Pt_  dsol1, 1, 2
Out[674]= 200000.  200000. 0.06 t  1. c 0.06 t

To determine the principal amount that will make the account run out of money in 20 years, we solve P20 = 0 for c:

In[675]:= NSolveP20  0, c
Out[675]= c  139761.
Thus, we need to invest $139,761.00 now.

ü 9.2.4. Newton's Law of Cooling

Newton's Law of Cooling states that the rate of change in the temperature of an object is proportional to the difference between its
temperature and that of the surrounding environment (known as the ambient temperature).  If A is the ambient temperature and
Tt is the temperature of the object at time t, then the differential equation that models this law is 

T ' t = -kTt - A,   T0 = T0

where T0 is the initial temperature of the object and k is a positive proportionality constant.

Example 9.6.  The temperature in an oven is 350° F when the oven is turned off. After 15 minutes, the temperature is 250° F.

Assume the temperature in the house is 70° F.

a) Find the temperature of the oven at any time t.

b) At what time will the temperature become 75° F? 
c) What will the temperature be in the limit as tØ ¶?
d) Does your answer in c) conform with your physical intuition?

Solution: 

a) The ambient temperature here is room temperature.  Hence, A = 70.  The initial temperature is T0 = 350.  Newton's Law of
Cooling then gives the model

T ' t = -kTt - 70,   T0 = 350

We solve this equation to get 

In[676]:= ClearT, k
sol  DSolveT't  k Tt  70, T0  350, Tt, t

Out[677]= Tt  70 k t 4  k t

158   Mathematica for Rogawski's Calculus 2nd Editiion.nb



In[678]:= Tt_  sol1, 1, 2
Out[678]= 70 k t 4  k t
Thus, the solution is Tt = 70 e-k t4 + ek t or Tt = 70 + 280 e-k t. To find the value of k, we solve T15 = 250 for k:

In[679]:= solk  SolveT15  250, k
Solve::ifun : Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. à

Out[679]= k 
1

15
Log 14

9


In[680]:= k  solk1, 1, 2

Out[680]=
1

15
Log 14

9


In[681]:= N
Out[681]= 0.0294555

Thus, k = ln149
15

= 0.0294555.  Hence, the temperature of the oven at any time t is given by

 Tt = 20 + 280 e-0.0294555 t

b) We solve Tt = 75 for t:

In[682]:= NSolveTt  75, t
NSolve::ifun : Inverse functions are being used by NSolve, so

some solutions may not be found; use Reduce for complete solution information. à

Out[682]= t  136.659
Thus, the temperature will be 75° F after about two hours and 17 minutes.

c) We make a plot of the solution:

In[683]:= PlotTt, t, 0, 100, AxesOrigin  0, 0, ImageSize  250

Out[683]=

20 40 60 80 100
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100

150

200
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300
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To find the limiting temperature, we evaluate 

In[684]:= LimitTt, t  Infinity
Out[684]= 70

d) Since heat flows from a region of higher temperature to a region of lower temperature, it is intuitively clear that the oven will

cool down to the room (ambient) temperature.  Hence, the limit should be 70° F as expected.
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ü Exercises 

1. Mass of bacteria in a culture grow at a rate proportional to its size. Suppose the culture contains 200 cells intially and there are
800 cells after 3 hours.

a) Find the formula for the number of cells in the culture at time t.
b) Find the amount of bacteria after 2 hours.
c) At what time will the bacteria exceed 10,000 cells?

2. A mummy excavated from an archaelogical site in Egypt is found to contain 20% of Carbon-14 normally found in living
humans.  Use carbon dating to estimate the age of the mummy. 

3. Plutonium-239 is a highly radioactive element generated from waste in nuclear power plants and has a half-life of approxi-
mately 24,000 years.  How many years would it take for Plutonium-239 to decay to a safe level of 1/1000 its original amount?

4. Solve the following using the annuity differential eqaution discussed in this section.
a) Assume r = 6% and W = $500 per year and P0 = $5, 000. Find Pt and determine when the annuity runs out of money.
b) Assume r = 6% and W = $500 per year and P0 = $9, 000. Find Pt and determine when the annuity runs out of money.
c) Assume r = 6% and W = $20, 000 per year.  If we want the annuity to run out after 40 years, how much should we invest
now? 

5. Suppose a retired worker wants to invest in an annuity that will pay out $10,000 per year.
a) Assuming the annuity has an interest rate of 5%, find the minimum principal amount that should be invested so that the annuity
never runs out of money.
b) Assuming the principal amount of money invested is $250,000, find the minimum interest rate that the annuity should bear so
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b) Assuming the principal amount of money invested is $250,000, find the minimum interest rate that the annuity should bear so
that it never runs out of money.

6. A hot metal rod is placed in a water bath whose temperature is  40° F. The rod cools from 300° F to 200° F in 1 minute. How
long will take the rood to cool down to 150° F?  45° F? 

ü 9.3  Numerical Methods Using Slope Fields 

Students should read Section 9.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

ü 9.3.1.  Slope Fields

Consider a differential equation in the form 

 y ' = f x, y
Since y ' represents the slope of the line tangent to the graph of the solution y, we can think of f x, y as the slope of the same
tangent line at the point x, y, which we indicate by drawing a segment of it at the point of tangency.  The set of all such line
segments (normalized to have the same length) is called the slope (or direction) field of the differential equation. Note that the
slope field gives a graphical approximation to the solution.  It enables us to draw or visualize the graph of the unique solution of
the equation passing through a given point. We will illustrate this in an upcoming example.

To plot the slope field of the differential equation y ' = f x, y along the intervals a, b and c, d on the x- and y-axis, respec-

tively, we use the command VectorPlot[{1, f[x, y]}, {x, a, b}, {y, c, d}], where slope is represented as a two-dimensional vector
1, f x, y with the change in x normalized to equal 1.

NOTE: The command VectorPlot replaces the command VectorFieldPlot, which is obsolete in version 7 of Mathematica.

Example 9.9.  Consider the differential equation y ' = x2 - 2 y, y0 = -1.

a)  Draw the slope fields for the differential equation.
b)  Solve the differential equation.
c)  Plot both the slope field and the solution on the same axes.
d)  Redo parts b) and c) for the same equation but with initial condition given by ya = b.  Choose various values for a and b.

Solution:

a) Here, f x, y = x2 - 2 y.  We use the VectorPlot command to plot the corresponding slope field:

In[685]:= fx_, y_ : x2  2 y
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In[686]:= plot1  VectorPlot1, fx, y, x, 5, 5, y, 10, 10, Axes  True,

Frame  False, VectorScale  Tiny, Tiny, None, ImageSize  250

Out[686]=
-4 -2 2 4

-10

-5

5

10

b) We use the DSolve command to find the exact solution of the differential equation.

In[687]:= Cleary, x, g
sol  DSolvey'x  fx, yx, y0  1, yx, x
gx_  sol1, 1, 2

Out[688]= yx 
1

4
2 x 5  2 x  2 2 x x  2 2 x x2

Out[689]=
1

4
2 x 5  2 x  2 2 x x  2 2 x x2

c) We now plot the slope field together with the solution above passing through the point 0, -1:
In[690]:= plot2  Plotgx, x, 5, 5, PlotRange  10, 10, ImageSize  250

Out[690]=
-4 -2 2 4

-10

-5

5

10
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In[691]:= Showplot1, plot2, GraphicsPointSizeLarge, Point0, 1, ImageSize  250

Out[691]=
-4 -2 2 4

-10

-5

5

10

d) We can show several graphs of solution curves (called integral curves) together with the corresponding slope field. Here is an
example of how this can be done.

In[692]:= Cleary, x, h, a, b
sola  DSolvey'x  fx, yx, ya  b, yx, x;
hx_, a_, b_  Simplifysola1, 1, 2

Out[694]=
1

4
2 x 1  2 a  2 a2  4 b 2 a  2 x 1  2 x  2 x2

In[695]:= plot3  PlotEvaluateTablehx, a, b, a, 3, 3, 2, b, 3, 3, 2,
x, 5, 5, PlotRange  10, 10;

Showplot1, plot3, ImageSize  250

Out[696]=
-4 -2 2 4

-10

-5

5

10

ü 9.3.2.  Euler's Method

The simplest numerical method for solving a first order differential equation is Euler's Method. This method approximates the
solution by moving along tangent lines described by the slope field of the differential equation.  Here is a brief description.  

Let y = fx be the solution of the differential equation 

y ' = f x, y, yx0 = y0

Then the equation of the line tangent to the graph of y = jx at x = x0 is given by 
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 y = j ' x0 x - x0 + jx0
But when x = x0, we have jt0 = y0 and j ' x0 = f x0, y0. Thus, when x is close to x0, jx can be approximated by 

 y º f x0, y0 x - x0 + y0

We now choose h > 0 to be a small positive number, called the step size, and define x1 = x0 + h. Then jx1 is approximately
equal to

 y1 = y0 + f x0, y0 x1 - x0
or 

 y1 = y0 + h f x0, y0
We repeat the above argument at the point x1, y1 to get an approximation of jx2, where x2 = x1 + h = x0 + 2 h:  

 y2 = y1 + h f x1, y1
Proceeding in this manner, we obtain Euler's Method:  

 yn+1 = yn + h f xn, yn  for n = 0, 1, 2, 3, ....

where jxn º yn.

If the approximated solution is calculated over an interval a, b and the step size h is specified, then the number of iterations (or
steps) required is given by m = b - a h, where x0 = a and xn = x0 + n h.

Here is a Mathematica program called Euler for evaluating Euler's Method in m steps (the option SetPrecision sets the precision
of our calculations to 10 digits). 

In[697]:= Clearf, x, y, x0, y0, h, m
Eulerf_, h_, m_ : Modulen,

Do
yn  1  SetPrecisionNyn  h  fxn, yn, 10;
xn  1  xn  h,
n, 0, m

Example 9.7.  Use the Euler program to construct a table of solution values for the differential equation y ' = x2 + 2 y, y0 = 1
with a step size of h = 0.1 and for m = 10 steps.

Solution: Here f x, y = x2 + 2 y, x0 = 0, y0 = 1.
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In[699]:= fx_, y_ : x2  2 y

m  10;
x0  0;
y0  1;
h  0.1;

x0  x0;
y0  y0;
Eulerf, h, m
TableFormTablen, xn, yn, n, 1, m,
TableHeadings  , "n ", "xn ", "yn" 

Out[707]//TableForm=

n xn yn

1 0.1 1.200000000
2 0.2 1.441000000
3 0.3 1.733200000
4 0.4 2.088840000
5 0.5 2.522608000
6 0.6 3.052129600
7 0.7 3.698555520
8 0.8 4.487266624
9 0.9 5.448719949
10 1. 6.619463939

To see how accurate the above approximation is,  we solve the differential equation for the exact solution and plot both the
approximate and exact solutions on the same axes. 

In[708]:= Clearz, t, exact
exact  DSolvez't  ft, zt, zx0  y0, zt, t;
zt_  zt . exact1

Out[710]=
1

4
1  5 2 t  2 t  2 t2

In[711]:= Clearplot1, plot2
plot1  Plotzt, t, 0, 1 ;
plot2  ListPlotTablexn, yn, n, 0, m, PlotStyle  PointSize0.01 ;
Showplot1, plot2, ImageSize  250

Out[714]=

0.2 0.4 0.6 0.8 1.0

2

3

4

5

6

7

8

Observe that the approximations become less accurate as we move away from the initial point 0, 1. This is typical of numerical
methods such as Euler's Method.  However, we can increase the accuracy of our approximation by decreasing the step size.  For
example, we recompute the solution using h = 0.05 (this increases the number of steps to m = 20):
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In[715]:= h  0.05;

m  20;
Eulerf, h, m
TableFormTablen, xn, yn, n, 1, m,
TableHeadings  , "n ", "xn ", "yn" 

Out[718]//TableForm=

n xn yn

1 0.05 1.100000000
2 0.1 1.210125000
3 0.15 1.331637500
4 0.2 1.465926250
5 0.25 1.614518875
6 0.3 1.779095763
7 0.35 1.961505339
8 0.4 2.163780873
9 0.45 2.388158960
10 0.5 2.637099856
11 0.55 2.913309841
12 0.6 3.219765826
13 0.65 3.559742408
14 0.7 3.936841649
15 0.75 4.355025814
16 0.8 4.818653395
17 0.85 5.332518735
18 0.9 5.901895608
19 0.95 6.532585169
20 1. 7.230968686

The following plot of the two numerical solutions corresponding to h = 0.1 (small blue dots) and h = 0.05 (large red dots) clearly
shows that the latter is more accurate in comparison to the exact solution (curve):

In[719]:= plot3  ListPlotTablexn, yn, n, 0, m,
PlotStyle  PointSize0.01, Red, PointSize0.015 ;

Showplot1, plot2, plot3, ImageSize  250

Out[720]=

0.2 0.4 0.6 0.8 1.0

2

3

4

5

6

7

8

Here is a modification of the Euler progam that allows the user to input the endpoints a and b directly (instead of the step size h)
and m. 
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In[721]:= Clearf, x, y, h, a, b, m
EulerEndptf_, a_, b_, m_ : Modulen, h, h  N b  a

m
;

Do
yn  1  SetPrecisionNyn  h  fxn, yn, 10;
xn  1  xn  h,
n, 0, m

Example 9.8.  For the differential equation y ' = x2 + 2 y, y0 = 1, approximate its solution over the interval 0, 2 using m = 10
steps.

Solution: Again, we have f x, y = x2 + y, x0 = 0, y0 = 1.  However, we now input the interval a, b = 0, 2 into EulerEndPt.

In[723]:= fx_, y_ : x2  y

m  10;
x0  0;
y0  1;

x0  x0;
y0  y0;
a  0;
b  2;

In[731]:= EulerEndptf, 0, 2, m
TableFormTablen, xn, yn, n, 1, m,
TableHeadings  , "n ", "xn ", "yn" 

Out[732]//TableForm=

n xn yn

1 0.2 1.200000000
2 0.4 1.448000000
3 0.6 1.769600000
4 0.8 2.195520000
5 1. 2.762624000
6 1.2 3.515148800
7 1.4 4.506178560
8 1.6 5.799414272
9 1.8 7.471297126
10 2. 9.613556552

This time we numerically compare the approximate solution with the exact solution:
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In[733]:= Clearz, t, exact
exact  DSolvez't  ft, zt, zx0  y0, zt, t;
zt_  zt . exact1
TableFormTablen, xn, yn, Nzx0  n b  a  m, n, 1, m,
TableHeadings  , "n ", "xn ", "yn", "yn" 

Out[735]= 2  3 t  2 t  t2

Out[736]//TableForm=

n xn yn yn
1 0.2 1.200000000 1.22421
2 0.4 1.448000000 1.51547
3 0.6 1.769600000 1.90636
4 0.8 2.195520000 2.43662
5 1. 2.762624000 3.15485
6 1.2 3.515148800 4.12035
7 1.4 4.506178560 5.4056
8 1.6 5.799414272 7.0991
9 1.8 7.471297126 9.30894
10 2. 9.613556552 12.1672

ü Exercises 

In Exercises 1 through 4, plot the slope field of the given differential equations:
1.  y ' = x2 + y2 2.  y ' = t2 y 3.  y ' = sinx + y 4.  y ' = x e-y

5. Consider the differential equation  y ' = 3 y - 2 y2.
a) Draw the slope field for the differential equation.
b) Solve the differential equation.
c) Assume y0 = 2.  Plot the graph of the solution for this case and also the slope field on the same axes.  Discuss the behavior of
the solution as xØ¶.
d)  Redo part c) for the same differential equation but with initial condition given by ya = b (choose various values for a and b).

In Exercises 6 through 9, use Euler's Method to find a numerical solution to the given initial value problem along the stated
interval and using the prescribed number of steps.  Also, find their exact solutions and compare the results.
6.  y ' = x2 - y,   y0 = 1; 0, 1; m = 10 7.  y ' = 1 - x2 cos y,  y1 = 0; 1, 2; m = 208.  y ' - y2 = x,   y0 = 1; 0, 5;
m = 50 9.  y ' = -3 x 2 + lnx2 + y,  y1 = 1; 1, 2; m = 100

10. Heun's method is a numerical method that improves on Euler's method.  It uses the approximation from Euler's method as an
auxiliary value (called a predictor), which we denote by yn+1

* :

 yn+1
* = yn + h f xn, yn

The actual approximation (called the corrector) is then computed as the mean of yn+1
*  (based on the slope of the tangent line at

xn, yn) and yn+1
** = yn + h f xn+1, yn+1

*   (based on the slope of the tangent line at xn+1, yn+1
* ):

 yn+1 =
1

2
yn+1
* + yn+1

**  = yn +
1

2
h f xn, yn + h f xn+1, yn+1

* 
a) Apply Heun's method to Exercise 6 and the compare the results obtained by Euler's method with the exact solution.  How
much more accurate is Heun's method?
b) Redo part a) using m = 20.  How much more accurate is the solution compared to that for m = 10?
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ü 9.4  The Logistic Equation

Students should read Section 9.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

The differential equation 

d y

d t
= k y1 - y

A


is called the logistics equation. Here, k > 0 and A is a constant called the carrying capacity.  This equation is useful for modeling
the growth of a population where resources are limited and can only sustain a certain maximum population given by the carrying
capacity. 

Example 9.5.   The population pt of mosquito larvae growing in a tree hole increases according to the logistics equation with
growth constant k = 0.3 per day and carrying capacity A = 1000.

a) Assuming that the initial population of the larvae is 50, find the population pt at any time t. 
b) After how many days will the larvae population exceed 500?
c) When does the larvae population reach 99% of the maximum capacity?

Solution:  

a) We use k = 3

10
 and solve the corresponding differential equation in Mathematica:

In[737]:= Cleary
solde  DSolvey't 

3

10
yt 1 

yt
1000

, y0  50, yt, t

Solve::ifun : Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. à

Out[738]= yt 
1000 3 t10

19  3 t10


NOTE:  Be careful with using a decimal approximation for k.  For example, try using k = 0.3 and see what happens.

Next, for convenience we write the solution given in the previous output as 

In[739]:= Clearp, t
pt_  solde1, 1, 2

Out[740]=
1000 3 t10

19  3 t10

Thus, the population of larvae at any time t is given by

 pt = 1000 e3 t10

19+e3 t10

b) To find how long it takes for the larvae population to reach 500, we solve

In[741]:= NSolvept  500, t
NSolve::ifun : Inverse functions are being used by NSolve, so

some solutions may not be found; use Reduce for complete solution information. à

Out[741]= t  9.8148, t  9.8148  20.944 , t  9.8148  20.944 
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Thus, it takes about ten days for the larvae population to exceed 500.  Observe that p10 º 513.887.

NOTE: We ignored the other two solutions in the previous output since they are complex-valued and not physically relevant.

c) We first plot the graph of pt to estimate the number of days required for the larvae population to reach 99% of the maximum
capacity, that is, pt = 999.

In[742]:= Plotpt, t, 0, 60, ImageSize  250

Out[742]=

10 20 30 40 50 60

200

400

600

800

1000

It appears that the population reaches 999 larvae after t = 30. We use the Table command to numerically confirm this.

In[743]:= TableFormTablet, Npt, 20, t, 10, 50, 5,
TableHeadings  , "Days ", "Larvae Population"

Out[743]//TableForm=

Days Larvae Population
10 513.88668301168543188
15 825.71546532788782007
20 955.02200538248404316
25 989.60067930023585514
30 997.66069888351031767
35 999.47708104964742173
40 999.88327359193169386
45 999.97395245585093165
50 999.99418788969128789

We can reasonably conclude from the table that the population reaches 999 larvae between 30 and 35 days. To obtain a more
precise answer, we use Mathematica to solve pt = 999 for t:

In[744]:= NSolvept  999, t
NSolve::ifun : Inverse functions are being used by NSolve, so

some solutions may not be found; use Reduce for complete solution information. à

Out[744]= t  32.8373, t  32.8373  20.944 , t  32.8373  20.944 
Thus, the desired time is approximately t = 33 days.

ü Exercises 

1. A population of squirrels live in a forest with a carrying capacity of 3000. Assume logistic growth with growth constant k = 0.8
per year.
a) Find the population of the squirrels at any time t assuming an initial population of P0 = 800.
b) How long will it take for the squirrel population to double?  Triple?

2. From 1960 to 2000, the world's population doubled from approximately 3 billion to 6 billion people.  Assuming that the human
population follows logistic growth and that the earth has a carrying capacity of 100 billion people, determine the following:
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a) Find the population at any time t.  What is the growth constant?
b) What will the population be in the year 2050?  How does this answer compare with projections from the United Nations?
c) Find the year in which the human population will reach half its carrying capacity?
d) When will the population grow the fastest, that is, the point on the graph where it changes from concave up to concave down
(point of inflection)? What is the growth rate then?

3. In medicine, the logistics equation is used to model the growth of tumors in certain organs.  Suppose a patient is diagnosed
with a tumor that has doubled in size to 2% of his liver when a year ago it only covered 1% of his liver.  How long will it take the
tumor to grow to 10% of his liver when a transplant will most like by required to increase his chances of survival.

4. The current population of a herd of bison living inside a national park is 1000.  To ensure that the population does not reach
more than 1500 bison in 50 years time and 2000 bison in 100 years time, what carrying capacity should the park maintain?
Assume that the bison population follows a logistics model.
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Chapter 10 Infinite Series

ü 10.1 Sequences

Students should read Section 10.1 of Rogawski’s Calculus [1] for a detailed discussion of the material presented in this
section.

Recall that a sequence is a function whose domain is the set of non-negative integers. 

In Mathematica, we denote a sequence an as a function. Thus, instead of an we write an. The limit of a sequence is evaluated by

using the Limit command. When Limit[a[n], nÆ•] is evaluated, Mathematica automatically assumes that n is a continuous
variable (instead of a discrete variable). It employs various techniques to evaluate limits.  

To plot the graph of a sequence, we use the ListPlot command. ListPlot[list] plots the graph of list, where list is a list of points

x, y, denoted in Mathematica by {x,y}. In our case, list will be the table of values of the form {n,a[n]}.  The corresponding plot

command in this case would be ListPlot[Table[{n,a[n]},{n,min,max}].

Example 10.1.  Consider the sequence defined by 

an =
4 n+1

3 n+2

a) Find the first few terms of the sequence.

b) Plot the graph of the sequence.

c) Make a conjecture for the limit based on the graph.

d) Find the limit of the sequence.

Solution: 

a) We define the sequence as a function of n and use the Table command to generate the first ten terms of the sequence. 

In[745]:= Cleara, n
an_ :

4 n  1

3 n  2
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In[747]:= TableFormTablen, an, n, 1, 10,
TableHeadings  , "n", "an"

Out[747]//TableForm=

n an

1 1

2 9
8

3 13
11

4 17
14

5 21
17

6 5
4

7 29
23

8 33
26

9 37
29

10 41
32

To obtain decimal expressions of these values, we evaluate

In[748]:= TableFormNTablen, an, n, 1, 10,
TableHeadings  , "n", "an"

Out[748]//TableForm=

n an

1. 1.
2. 1.125
3. 1.18182
4. 1.21429
5. 1.23529
6. 1.25
7. 1.26087
8. 1.26923
9. 1.27586
10. 1.28125

b) To plot the graph of the sequence, we use the ListPlot command. Here is a plot of the first 100 terms of the sequence.
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In[749]:= ListPlotTablen, an, n, 1, 100

Out[749]=

20 40 60 80 100

1.28

1.29

1.30

1.31

1.32

c) The graph suggests that the limit is 1.333 ....  We can use the Table command to see this more clearly.

In[750]:= TableFormNTablen, an, n, 1000, 10000, 1000,
TableHeadings  , "n", "an"

Out[750]//TableForm=

n an

1000. 1.33278
2000. 1.33306
3000. 1.33315
4000. 1.33319
5000. 1.33322
6000. 1.33324
7000. 1.33325
8000. 1.33326
9000. 1.33327
10000. 1.33328

Hence, the limit seems to be 1.3333... or 4/3. Here is a plot of y = 4 3 and the graph of the sequence for large values of n:

In[751]:= Clearplot1, plot2
plot1  ListPlotTablen, an, n, 1, 1000, 10;
plot2  Plot4  3, x, 1, 1000;
Showplot1, plot2, PlotRange  1.25, 4  3

Out[754]=

200 400 600 800 1000

1.28

1.30

1.32

d) Finally, we confirm this in Mathematica by evaluating the limit as n goes to ¶.
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In[755]:= Limitan, n  Infinity

Out[755]=
4

3

Example 10.2.  Consider the sequence defined by 

an =
-1n

n

a) Plot the graph of the sequence.

b) Does the sequence converge?

Solution:

a) Again, we use ListPlot to plot the graph.

In[756]:= Cleara, n
an_ :

1n
n

In[758]:= ListPlotTablen, an, n, 1, 100

Out[758]=
20 40 60 80 100

-0.10

-0.05

0.05

0.10

b) From the graph, it is clear that the sequence approaches 0 in the limit. We confirm this using the Limit command.

In[759]:= Limitan, n  Infinity
Out[759]= 0

NOTE: There are instances where the sequence an  may not be well-defined if n  is treated as a real variable (as opposed to an
integer variable). In such cases, Mathematica may return the limit unevaluated or else gives an output that indicates the limit may
not exist, as the following example illustrates.

Example 10.3.  Determine whether or not the sequence defined below converges: 

an = -1n n

n+1

Solution: First, we will plot the graph of the sequence. 

In[760]:= Cleara, n
an_ : 1n n

n  1
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In[762]:= ListPlotTablen, an, n, 1, 100

Out[762]=
20 40 60 80 100

-1.0

-0.5

0.5

1.0

The graph clearly indicates the sequence does NOT converge (to a unique limiting value). We can see this by investigating the
following tables of values. The first one lists the even terms while the second one lists the odd terms of the sequence.

In[763]:= TableFormTablen, Na2 n, n, 10, 100, 10,
TableHeadings  , "n", "a2n"

Out[763]//TableForm=

n a2n

10 0.952381
20 0.97561
30 0.983607
40 0.987654
50 0.990099
60 0.991736
70 0.992908
80 0.993789
90 0.994475
100 0.995025

In[764]:= TableFormTablen, Na2 n  1, n, 10, 100, 10,
TableHeadings  , "n", "a2n1"

Out[764]//TableForm=

n a2n1

10 0.95
20 0.975
30 0.983333
40 0.9875
50 0.99
60 0.991667
70 0.992857
80 0.99375
90 0.994444
100 0.995

Finally, let us evaluate the limit.  

In[765]:= Limitan, n  Infinity
Out[765]= 2  Interval0,

This output, specifically the notation Interval[{0, p}], means that the limit does not exist uniquely, but has subsequences whose

limits take on the set of complex values e2 i x for all x œ 0, p.  This is because the variable n that appears in the Limit command

is automatically assumed by Mathematica to be a complex variable.  In our case, for n an integer variable, we have two subse-
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quences, a2 n and a2 n+1 (even and odd, respectively), converging to different limits (1 and -1, respectively).  Thus, an diverges.

Example 10.4.  Consider the sequence an defined recursively by a1 = 1 and an+1 = an + 1 .  Generate the first ten terms of
this sequence and compute its limit.

Solution: Here is one method of defining a recursive sequence.  

In[766]:= Cleara, n
a1  1

an_ : an  Sqrtan  1  2
Out[767]= 1

NOTE: The second occurrence of  a[n]  in the preceding command tells Mathematica  to store all  intermediate values of  the

recurrence in evaluating a[n]. 

Here are the first ten terms of the sequence:
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In[769]:= TableFormTablen, an, n, 1, 10,
TableHeadings  , "n", "an"

Out[769]//TableForm=

n an

1 1

2 3

3 2  3

4 2  2  3

5 2  2  2  3

6 2  2  2  2  3

7 2  2  2  2  2  3

8 2  2  2  2  2  2  3

9 2  2  2  2  2  2  2  3

10 2  2  2  2  2  2  2  2  3

The following table gives decimal expressions of the same first ten terms and reveals the limit to be equal to 2.
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In[770]:= TableFormTablen, Nan, n, 1, 10,
TableHeadings  , "n", "an"

Out[770]//TableForm=

n an

1 1.
2 1.73205
3 1.93185
4 1.98289
5 1.99572
6 1.99893
7 1.99973
8 1.99993
9 1.99998
10 2.

NOTE: In general, Mathematica is not able to directly compute limits of sequences defined recursively.  Assuming an converges
(prove this!), we then compute its limit, called L, say, by letting nØ¶ in the recurrence formula for an: 

L = limnØ¶an = limnØ¶ an-1 + 2 = limnØ¶an-1 + 2 = L + 2

Solving the equation L = L + 2  then yields L = 2 as the limit.

In[771]:= SolveL  SqrtL  2, L
Out[771]= L  2

Example 10.5.  Let a1 = 1 and b1 = 2 .  Define two sequences recursively by  

an+1 = an bn   and bn+1 =
an+bn

2

a) Choose various values of a1 and b1 and calculate the first ten terms of the sequences an and bn. 
b)  Show that an § bn for every positive integer n.

c) Show that both sequences converge to the same limit.  (NOTE: This common limit is called the arithmetic-geometric mean of
a1and b1.)

Solution: 

a) Here is a program that generates the first ten values of an and bn.  

In[772]:= Cleara, b, n
a1  1
b1  10

ai_ : ai  ai  1  bi  1 ;

bi_ : bi 
ai  1  bi  1

2
;

Out[773]= 1

Out[774]= 10
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In[777]:= TableFormTablek, Na k, 10, Nb k, 10, k, 1, 10 ,
TableHeadings  , "n", "an", "bn" 

Out[777]//TableForm=

n an bn
1 1.000000000 10.00000000
2 3.162277660 5.500000000
3 4.170434885 4.331138830
4 4.250027349 4.250786858
5 4.250407086 4.250407103
6 4.250407095 4.250407095
7 4.250407095 4.250407095
8 4.250407095 4.250407095
9 4.250407095 4.250407095
10 4.250407095 4.250407095

b) The following table suggests that an § bn for at least the first ten terms: 

In[778]:= TableForm
Tablek, Na k, 10, Nb k, 10, Nbk, 10  Nak, 10, k, 1, 10 ,
TableHeadings  , "n", "an", "bn", "bnan" 

Out[778]//TableForm=

n an bn bnan
1 1.000000000 10.00000000 9.00000000
2 3.162277660 5.500000000 2.337722340
3 4.170434885 4.331138830 0.160703945
4 4.250027349 4.250786858 0.000759508

5 4.250407086 4.250407103 1.7  108

6 4.250407095 4.250407095 0.  1010

7 4.250407095 4.250407095 0.  1010

8 4.250407095 4.250407095 0.  1010

9 4.250407095 4.250407095 0.  1010

10 4.250407095 4.250407095 0.  1010

For a better feel on this, let us plot the graphs on the same axes. To this end, we define two lists using the Table command and

use the ListPlot command to plot the graphs.

In[779]:= plot1  ListPlotTablek, ak, k, 1, 10, PlotStyle  Blue;
plot2  ListPlotTablek, bk, k, 1, 10, PlotStyle  Red;
Showplot1, plot2, PlotRange  0, 10

Out[781]=

0 2 4 6 8 10

2

4

6

8

10

The above graph suggests that the two sequences converge to the same limit.  Unfortunately, Mathematica's Limit command
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cannot help us compute the limit of an and bn due to their recursive nature. (Try this!) 

NOTE: We encourage the reader to experiment with different initial values for a1 and b1 to see if the sequences an and bn always
converge to the same limit.

Example 10.6.  Consider the sequence 

an =
n!1n

n
  

 a) Show that if  bn = ln an, then bn =
ln n!-n ln n

n
. 

 b)  Does bn converge? If so, find the limit. 

 c)  Does an converge? If so, find the limit. 

Solution:

a)  We define a sequence cn =
ln n!-n ln n

n
 and then show that bn = cn.

In[782]:= Cleara, b, c

an_ :
n1n

n
bn_ : Logan

cn_ :
Log n  n Logn

n

In[786]:= TableFormTableNcn, Nbn, Ncn, 10  Nbn, 10, n, 2, 10,
TableHeadings  Automatic, " cn", " bn", " cnbn"

Out[786]//TableForm=

cn bn cnbn

1 0.346574 0.346574 0.  1011

2 0.501359 0.501359 0.  1010

3 0.591781 0.591781 0.  1010

4 0.65194 0.65194 0.  1010

5 0.695218 0.695218 0.  1010

6 0.72803 0.72803 0.  1010

7 0.753866 0.753866 0.  1010

8 0.774799 0.774799 0.  1010

9 0.792144 0.792144 0.  1010

The preceding table indicates that the two sequences are the same.  Here is a plot of both:
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In[787]:= ListPlotTablen, bn, n, 1, 100, Tablen, cn, n, 1, 100,
PlotRange  1, 0.1, AxesOrigin  0, 0

Out[787]=

20 40 60 80 100

-1.0

-0.8

-0.6

-0.4

-0.2

This plot clearly shows that bn = cn, that is, lnan = ln n!1n

n
 = ln n!-n ln n

n
.  We leave it to the student to establish this equality

using properties of the natural logarithmic function.  

b) The previous plot indicates that the limit of bn is -1.  To confirm this, we use the Limit command.

In[788]:= Limitbn, n  Infinity
Out[788]= 1

c) Since bn = ln an, it follows that an = ebn  and hence limnØ¶an = e-1.  Again, we verify this using the Limit command: 

In[789]:= Limitan, n  Infinity

Out[789]=
1



ü Exercises 

In Exercises 1 though 3, determine the convergence of the given sequence. 

1.  an =
3 n2+n+2

2 n2+1
2. an = ln  2 n+3

n+1
  3. an = n

n

 

4.  Let   cn =
1

n+1
+ 1

n+2
+ 1

n+3
+ ... + 1

2 n
. 

a.  Find the first ten terms of the sequence.
b.  Plot the graph of the sequence.
c.  Is the sequence increasing? Bounded? Convergent? Prove each of your assertions.
d.   Find limnØ¶ cn.

5. The nth harmonic number is defined to be the sum  

Hn = 1 + 1

2
+ 1

3
+ ... + 1

n
.

Let an = Hn - ln n and bn = 1
n+1 1

x
„ x.

a.  Show that Hn ¥ bn for n = 1, 2, 3, ..., 10.  Prove that this holds for all positive integers n.

b.  Show that an ¥ 0 for n = 1, 2, 3, ..., 10.  Prove that this holds for all positive integers n.

c.  Use the ListPlot command to plot the graph of an.  Does the graph indicate that an is decreasing or increasing?

d.  Evaluate limnØ¶an.
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e.  The limit in part d) is called Euler's Constant and is denoted by g. Compute g accurate to 20 digits.

ü 10.2  Infinite Series

Students should read Section 10.2-10.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

ü 10.2.1 Finite Sums

Sum[a[n], n, n1, n2] evaluates the finite sum of an as n goes from n1 to n2.  

Sum[a[n], n, n1, Infinity] evaluates the infinite series of an as n goes from n1 to ¶.  

Using the BasicMathInput Palette, we can also enter finite sums or infinite series as nn1
n2 an or nn1

 an, respectively.

Example 10.7.  Compute the following finite sums:

a) n=1
10 -1n

n
b)  k=1

5 k - 1 k + 1

c) k=1
30 20

k
2k d)  i=1

n 3 i - 2 e)  k=0
10 k2+1

k3+2 k2+1

Solution: 

a) 

In[790]:= 
n1

10 1n
n

Out[790]= 
1627

2520

b) 

In[791]:= Sumk  1 k  1, k, 1, 5
Out[791]= 50

c) The binomial coefficient  n
m

 = n!

m! n-m!  is expressed in Mathematica by the command Binomial[n, m].

In[792]:= 
k0

30

Binomial30, k 2k

Out[792]= 205891132094649

NOTE: The above number is the same as 330 = 205 891 132 094 649. Verify this!

d) 
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In[793]:= 
j1

n

3 j  2

Out[793]=
1

2
n  3 n2

In[794]:= Simplify

Out[794]=
1

2
n 1  3 n

e) 

In[795]:= 
k0

10 k2  1

k3  2 k2  1

Out[795]=
361278549115758513

126627880430636728

ü 10.2.2  Partial Sums and Convergence

Example 10.8.  Consider the series n=1
¶ 1

4 n2-1
.   Let sn denote its nth partial sum. 

a)  Find s100. 
b)  Compute every 10th partial sum up to n = 100.
c)  Compute every 1000th partial sum up to n = 10, 000.
d)  From the tables of values in parts a) and b) what do you infer about the convergence of the series?  Prove your assertion. 

Solution:   

a) First, we define sn in Mathematica and then evaluate s100.

In[796]:= Clears, n
sn_ : 

j1

n 1

4 j2  1

s100

Out[798]=
100

201

In[799]:= N
Out[799]= 0.497512

b) Here, we use the command Table[s[n],{n,1,J,K}], which gives the list of every K-th value of sn, as n goes from 1 to J.  The

command TableForm[N[Table[s[n],{n, 1, J, K }]]] lists the values in column form.

In[800]:= Tablesn, n, 1, 100, 10

Out[800]=  1
3
,
11

23
,
21

43
,
31

63
,
41

83
,

51

103
,

61

123
,

71

143
,

81

163
,

91

183
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In[801]:= N
Out[801]= 0.333333, 0.478261, 0.488372, 0.492063,

0.493976, 0.495146, 0.495935, 0.496503, 0.496933, 0.497268
In[802]:= TableFormTablen, Nsn, n, 10, 100, 10,

TableHeadings  , "n", "sn"
Out[802]//TableForm=

n sn

10 0.47619
20 0.487805
30 0.491803
40 0.493827
50 0.49505
60 0.495868
70 0.496454
80 0.496894
90 0.497238
100 0.497512

c)

In[803]:= TableFormTablen, Nsn, n, 1000, 10000, 1000,
TableHeadings  , "n", " sn"

Out[803]//TableForm=

n sn

1000 0.49975
2000 0.499875
3000 0.499917
4000 0.499938
5000 0.49995
6000 0.499958
7000 0.499964
8000 0.499969
9000 0.499972
10000 0.499975

d) It seems that the partial sums converge to 0.5. We  confirm this by evaluating

In[804]:= Limitsn, n  

Out[804]=
1

2

Can you prove this?  Hint: Use the method of partial fractions to decompose this series into a telescoping series as discussed in
your calculus text.

Example 10.9.  Let sn be the nth partial sum of the harmonic series 

  k=1
¶ 1

k
.   

a)  Find   s100. 
b)  Compute every 1000th partial sum up to n = 10, 000
c)  Plot the graphs of the partial sums.
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d)  From the table of values in part (b) what do you infer? Prove your assertion. 

Solution:  We will follow the method of the preceding example.  First, we define the nth partial sum.

In[805]:= Clears, n
sn_ : Sum1  k, k, 1, n

a) Then s100 is given by 

In[807]:= s100
Out[807]= 14466636279520351160221518043104131447711 

2788815009188499086581352357412492142272

In[808]:= N
Out[808]= 5.18738

b) Here is a table of values of every 1000th term in the sequence sn for n less than or equal to 10, 000. 

In[809]:= TableFormTablen, Nsn, n, 1000, 10000, 1000,
TableHeadings  , "n", " sn"

Out[809]//TableForm=

n sn

1000 7.48547
2000 8.17837
3000 8.58375
4000 8.87139
5000 9.09451
6000 9.27681
7000 9.43095
8000 9.56447
9000 9.68225
10000 9.78761

c) Here is a plot of sn.

In[810]:= ListPlotTablen, sn, n, 1, 300, 20

Out[810]=

50 100 150 200 250

1

2

3

4

5

6

The graph above indicates a slow growth that makes it difficult to reach a definitive conclusion regarding the convergence of the
harmonic series. 

d) The table in b) and the plot in c) both suggest that the sequence of the partial sums is increasing. To convince ourselves of this,
we compare s2n  and n

2
.

Mathematica for Rogawski's Calculus 2nd Editiion.nb  187



In[811]:= TableFormTablen  2., Ns2n, n, 1, 10,
TableHeadings  , " n

2
", " s2n "

Out[811]//TableForm=
n
2

s2n

0.5 1.5
1. 2.08333
1.5 2.71786
2. 3.38073
2.5 4.0585
3. 4.74389
3.5 5.43315
4. 6.12434
4.5 6.81652
5. 7.50918

This table suggests that s2n ¥ n

2
 for n ¥ 2.  Use this fact (a proof of it can be found in your calculus text) to establish the diver-

gence of the harmonic series.

Example 10.10.  Determine whether the following series converges or diverges.

a)   n=1
¶ -1n

n2
b)  j=1

¶ j-1

j
c)  n=1

¶  1

n
- 1

n+1
 d)  n=1

¶ lnn + 1 - ln n

Solution: In all cases, we let Mathematica attempt to evaluate the infinite sum. For those cases where Mathematica returns a
numeric output, this is understood to mean that the series converges and that the sum of the series is the given value. 

a)

In[812]:= 
n1

 1n
n2

Out[812]= 
2

12

Thus, the series converges to - p2

12
. To see this graphically, we plot the graph of the partial sums of the series using the ListPlot

command, along with the horizontal line representing its sum s = - p2

12
º -0.822467.

In[813]:= Clears, n

sn_  
k1

n 1k
k2

;
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In[815]:= plot1  ListPlotTablen, sn, n, 1, 100;

plot2  Plot 2

12
, x, 1, 100;

Showplot1, plot2

Out[817]=

0 20 40 60 80 100

-0.8230

-0.8228

-0.8226

-0.8224

-0.8222

-0.8220

-0.8218

b) Observe that lim jØ¶
j-1

j
= 1 ∫ 0.  Hence, the series does not converge according to the Test for Divergence. This explains the

following output message from Mathematica if we attempt to evaluate the series.

In[818]:= 
j1

 j  1

j

Sum::div : Sum does not converge. à

Out[818]= 
j1

 1  j

j

c) Since this is a telescoping series, it can be shown that the nth partial sum is given by sn = 1 - 1

n+1
.  This can be seen in the

following output:

In[819]:= sn_ : 
k1

n 1

k


1

k  1
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In[820]:= TableFormTablen, sn, n, 1, 10,
TableHeadings  , "n", " sn"

Out[820]//TableForm=

n sn

1 1  1

2

2 1  1

3

3 1
2

4 1  1

5

5 1  1

6

6 1  1

7

7 1  1

2 2

8 2
3

9 1  1

10

10 1  1

11

Hence, the series converges to 1, which we confirm with Mathematica.

In[821]:= 
n1

 1

n


1

n  1

Out[821]= 1

d) This, too, is a telescoping series with the nth partial sum given by sn = ln n + 1 (verify this).  Hence, the series diverges, as
shown by the following output.

In[822]:= 
n1



Logn  1  Logn

Sum::div : Sum does not converge. à

Out[822]= 
n1



Logn  Log1  n

ü Exercises 

1. Consider the series n=1
¶ 1

n2+3 n+2
.

a.  Use the Apart command to decompose the terms of the series, an =
1

n2+3 n+2
, into partial fractions.

b.  Use part (a) to find a formula for the nth partial sum of the series. 

c) Is the series convergent? If so, then find its sum. 

In Exercises 2 through 5, determine if the given series is convergent.  If it is, then find its sum.
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2.  n=1
¶ 1

nn+1 3.  n=0
¶ -1n

n!
4.  n=1

¶ -1n+1   

5. The sereis n=0
¶ a rn is called a geometric series.  

a.   Find the nth partial sum of the geometric series.
b.   For what values of r does the series converge? Diverge?
c.   Find the sum of the geometric series for those values where the series converges.

6.  Consider the series n=1
¶ 1

n
3

.

a.  Use the ListPlot command to plot the first ten partial sums of this series.

b.  Show that the series converges.

ü 10.3  Tests for Convergence  

Students should read Sections 10.4-10.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

ü 10.3.1  Comparison and Limit Comparison Tests

 The Comparison Test: Suppose 0 § an § bn for all n >M , where M  is some positive integer. 

a) If nã1
¶ bn is convergent, then n=1

¶ an is also convergent.

b) If nã1
¶ an is divergent, then n=1

¶ bn is also divergent.

The Limit Comparison Test: Suppose an  and bn  are both positive and  limnØ¶
an

bn
= l. If  0 < l <¶ (i.e.,, if l  is a finite positive

number), then n=1
¶ an and n=1

¶ bn both converge or both diverge. 

To test convergence of a given seriesn=1
¶ an  using the Limit Comparison Test,  it is important that the series n=1

¶ bn  easily be

checked for convergence. 

Example 10.11.  Discuss the convergence of the series  

  n=1
¶ 1

n2+2

 

Solution:  Since 1

n2+2

< 1

n2

= 1

n
 and the harmonic series n=1

¶ 1

n
 was shown to divergence in Example 10.8 of this text, it

follows by the Comparison Test that our series diverges also.  This is verified by Mathematica:

In[823]:= 
n1

 1

n2  2

Sum::div : Sum does not converge. à

Out[823]= 
n1

 1

2  n2

Example 10.12.  Discuss the convergence of the series  
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  n=1
¶ 3 n3+40 n2+4

n5+200 n4+1
 

Solution: To find another series to compare ours with, we consider one with terms bn =
3

n2
.  This comes from considering lower

powers of n in both the numerator and denominator of an.

In[824]:= Cleara, b, n

an_ :
3 n3  40 n2  4

n5  200 n4  1

bn_ :
3

n2

In[827]:= Limit an
bn , n  Infinity

Out[827]= 1

Since the series n=1
¶ 3

n2
 is convergent (p-series) and limnØ¶

an

bn
= 1, we conclude from the Limit Comparison Test that our series

n=1
¶ 3 n3+40 n2+4

n5+200 n4+1
 is also convergent.

Example 10.13.  Discuss the convergence of the series n=1
¶ 1 - cos 1

n
. 

Solution: We note that limnØ¶ 1 - cos 1

n
 = 0.  This is confirmed by Mathematica.

In[828]:= Limit1  Cos1  n, n  
Out[828]= 0

Thus, the necessary condition for convergence is satisfied. But this does not guarantee convergence.  We will use the ListPlot
command to plot the graph of the partial sums to see if the series converges.

In[829]:= Clears
sn_ : Sum1  Cos1  k, k, 1, n

In[831]:= ListPlotTablen, sn, n, 1, 100, PlotRange  0, 1

Out[831]=

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

The graph above clearly indicates convergence. To see that this is indeed true, we compare it with a series that is known to

converge: n=1
¶ 1

n2
. To this end, let us define an and bn as follows.
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In[832]:= Cleara, b, n
an_ : 1  Cos 1

n


bn_ :
1

n2

Observe that both an and bn are positive terms for all n. Hence, we can apply Limit Comparison Test:

In[835]:= Limit an
bn , n  Infinity

Out[835]=
1

2

Therefore, the given series, n=1
¶ 1 - cos 1

n
, converges.

ü 10.3.2  The Integral Test

The Integral Test.  Given an infinite series 

 n=1
¶ an

we define f x so that f n = an  . If f x is positive on the interval 1, ¶, decreasing on this interval, and if limxØ¶ f x = 0,
then 

 1
¶

f x „ x     and      n=1
¶ an

both converge or both diverge.

Example 10.14.  Use the integral test to determine the convergence of the following series.

a)   n=1
¶ 1

n
c)   j=1

¶ j e- j2 c)  n=1
¶ 1

n ln n

Solution:

a) Here, an =
1

n
 and so we define f n in Mathematica: 

In[836]:= Clearf, x
fx_ :

1

x

In[838]:= f'x

Out[838]= 
1

2 x32

Since f ' x < 0 for all x œ 1, ¶, it follows that f  is decreasing.  Clearly f  is positive in value and  limxØ¶ f x = 0. Thus we

can apply the Integral Test by evaluating 1
¶

f x „ x:
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In[839]:= Integratefx, x, 1, Infinity

Integrate::idiv : Integral of 
1

x
 does not converge on 1,¶. à

Out[839]= 
1

 1

x
x

To confirm this, we evaluate this improper integral according to its limit definition:

In[840]:= ClearF, b
Fb_ : Integratefx, x, 1, b

In[842]:= LimitFb, b  
Out[842]= 

b) Here, we define f  as 

In[843]:= Clearf, x
fx_  x Ex

2

Out[844]= x
2
x

In[845]:= Plotfx, x, 0, 5, PlotRange  0, 1

Out[845]=

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

The graph clearly shows that the function is decreasing. We can confirm this by solving 

In[846]:= f'x
Solvef'x  0

Out[846]= x
2
 2 x

2
x2

Out[847]= x  
1

2
, x 

1

2


In[848]:= f'1

Out[848]= 
1
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In[849]:= N1  Sqrt2
Out[849]= 0.707107

Thus, f has critical points at ±
1

2
º 0.707.  Since f ' 1 < 0, we conclude that f  is decreasing on 1, ¶. 

The graph also shows that limxØ¶ f x = 0. Again, we can confirm this by evaluating 

In[850]:= Limitfx, x  Infinity
Out[850]= 0

Hence, the Integral Test can be used to determine if the series is convergent. That the series j=1
¶ j e- j2  is convergent follows

from the fact that   

In[851]:= 
1



fx x

Out[851]=
1

2 

Since the corresponding integral is convergent, it follows that the series j=1
¶ j e- j2  is also convergent.   

c) In this case, we define f  as 

In[852]:= Clearf, x
fx_ 

1

x Logx

Out[853]=
1

x Logx
In[854]:= Plotfx, x, 2, 100

Out[854]=

20 40 60 80 100

0.04

0.06

0.08

0.10

0.12

0.14

We leave it for the reader to check that f  satisfies all the conditions of the Integral Test, which we now apply.

In[855]:= 
2



fx x

Integrate::idiv : Integral of 
1

x Logx
 does not converge on 2,¶. à

Out[855]= 
2

 1

x Logx
x

Since the preceding output states that the integral is divergent, we conclude that the corresponding series is divergent also.
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Example 10.15.  For what values of p does the series n=2
¶ 1

nln np  converge?

Solution: We apply the Integral Test.  Toward this end, we define f x so that f n = 1

nln np  and then verify that f x is positive

and decreasing on the interval a, ¶,  and that limxØ¶ f x = 0:

In[856]:= Clearf, x, p
fx_ :

1

x Logxp
In[858]:= Limitfx, x  Infinity
Out[858]= 0

 To confirm this limit, we will plot graphs of f x for some values of p

In[859]:= PlotEvaluateTablefx, p, 4, 2, .5, x, 2, 100, PlotRange  0, 5

Out[859]=

0 20 40 60 80 100

1

2

3

4

5

In the plot above, observe that some of the graphs are initially increasing, but then begin to decrease at a certain point.  Let us
then find the interval over which the function f x is decreasing for each  p. To this end, we compute the derivative f ' x and
solve f ' x < 0 for x.

In[860]:= f'x

Out[860]= 
p Logx1p

x2

Logxp

x2

In[861]:= Simplify

Out[861]= 
Logx1p p  Logx

x2

In[862]:= Solvef'x  0, x
Out[862]= x  p
Since (ln x-1-p > 0 for all x > 1, we see that f ' x < 0 if ln x > -p, or equivalently, x = ‰-p.  Thus, f x is decreasing on 2, ¶
where a is the maximum of 2 and ‰-p. 

To apply the Integral Test, we integrate f over the interval 2, ¶.  This is easier than integrating over the interval a, ¶, and

permissible since the integrals 2

¶
f x „ x and a

¶
f x „ x either converge or diverge together.

In[863]:= Integratefx, x, 2, 

Out[863]= ConditionalExpressionLog2
1p

1  p
, Rep  1
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The preceding output shows that 2

¶
f x „ x is convergent for p > 1.  However, the case p § 1 remains unsolved.  To evaluate the

integral in this situation, we define its anti-derivative Fb = 2

b
f x „ x and find the limit of Fb as bØ ¶.

In[864]:= ClearF, b
Fb_  Integratefx, x, 2, b

Out[865]= ConditionalExpressionLog2
1p  Logb1p
1  p

, Reb  1  b  Reals

Since b is a real number and b > 2 , the solution to our integral is the first one, that is, Fb = ln 21-p-ln b1-p

1-p
, provided p ∫ 1. But

then for p < 1, we see that limbØ¶Fb =¶ since limbØ¶ lnb1-p =¶.  For p > 1, we have limbØ¶Fb = ln 21-p

1-p
, which we

already knew from the second previous Mathematica output.  The following tables might be helpful to convince you about this.

In[866]:= TableLimitFb, b  Infinity, p, 3, .9, .5
Out[866]= , , , , , , , 
In[867]:= TableLimitFb, b  Infinity, p, 1.1, 9, .5
Out[867]= 10.3733, 2.0766, 1.3605, 1.12346, 1.02813, 0.997425, 1.0048, 1.03926,

1.09605, 1.1734, 1.27122, 1.39056, 1.53333, 1.70219, 1.90056, 2.13262
For p = 1, we make this substitution inside the integral and evaluate it directly:

In[868]:= p  1;
Integratefx, x, 2, 

Integrate::idiv : Integral of 
1

x Logx
 does not converge on 2,¶. à

Out[869]= 
2

 1

x Logx x

Therefore, the infinite series n=2
¶ 1

nln np  is convergent for p > 1 and divergent for p § 1.

NOTE: To see how slow the growth of this series is for the value of p = 1, we consider the following table of partial sums. Recall
that f n is the nth term of the series and hence the nth partial sum is given by

In[870]:= Clearp, s, n
sn_  Sumfk, k, 2, n

Out[871]= 
k2

n Logkp
k

The following output shows that the sum of the first ten thousand terms is only about 3.01501088. 

In[872]:= p  1;
Ns10000

Out[873]= 3.01501

Here is a plot of the graph of the first ten thousand partial sums in steps of 1,000.
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In[874]:= ListPlotTablen, sn, n, 1000, 10000, 1000

Out[874]=

4000 6000 8000 10 000

2.80

2.85

2.90

2.95

3.00

ü 10.3.3  Absolute and Conditional Convergence

Suppose an > 0 for all n. The infinite series 

  n=1
¶ -1n an  

is called an alternating series.  If the series n=1
¶ -1n an  is convergent but the series n=1

¶ an  is divergent, then the alternating

series is called conditionally convergent.  If n=1
¶ an  is convergent, then the alternating series n=1

¶ -1n an  is called absolutely

convergent.   

Alternating Series Test: If an is decreasing and limnØ¶an = 0, then the series n=1
¶ -1n an is convergent. 

Example 10.16.  Determine if the given series is conditionally or absolutely convergent. 

a)   n=1
¶ -1n

n2+1
c)   n=2

¶ -1n

n ln n
  

Solution:

a) We define an =
1

n2+1
 in Mathematica and check that an satisfies the conditions of the Alternating Series Test.

In[875]:= Cleara, n
an_ :

1

n2  1

In[877]:= Limitan, n   
Out[877]= 0

In[878]:= fx_  ax;
f'x

Out[879]= 
2 x

1  x22

Thus, an is decreasing since f ' x > 0, where f n = an.  Moreover, an converges to 0. Hence, the series n=1
¶ -1n

n2+1
   is convergent

by the Alternating Series Test.

To check absolute convergence, we use the Limit Comparison Test with bn =
1

n2
.
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In[880]:= Limit an
1  n2

, n  Infinity

Out[880]= 1

Since  the  series  n=1
¶ 1

n2
 is  convergent  and  the  previous  output  shows  limnØ¶

an

bn
= 1,  we  conclude  that  the  series

n=1
¶ an =n=1

¶ 1

n2+1
 is also convergent.  Therefore, the alternating series n=1

¶ -1n

n2+1
 is absolutely convergent.

b) We procced as in part a). 

In[881]:= Cleara, n
an_ :

1

n Logn
In[883]:= Limitan, n   
Out[883]= 0

In[884]:= fx_  ax;
f'x

Out[885]= 
1

x2 Logx2


1

x2 Logx

For the same reasons we conclude that an  is decreasing and converges to 0.  Hence, the series n=2
¶ -1n

n ln n
   is convergent by the

Alternating Series Test.

To check absolute convergence, we apply the Intgeral Test to f x:
In[886]:= Clearm

Limit
2

m

fx x, m  Infinity
Out[887]= 

From this, we conclude that the series is conditionally convergent.

Example 10.17.  Show that the series 

  n=1
¶ -1n

n2+1

  

is conditionally convergent.  Find a value of n for which the partial sum sn  approximates the series by an error less than 10-5.
Also, find the corresponding value for sn.

Solution: We leave it for the reader to check that the series converges conditionally as in the preceding example.  For the second
part of the problem, we proceed by first defining the partial sums of the series.

In[888]:= Clears, a, n
an_ :

1

n2  1

sn_ : Sum1k ak, k, 1, n
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If S denotes the sum of the alternating series, it can be shown that S - sn < an+1 (refer to your calculus text for a proof of this
fact).  The following table of values gives some numerical evidence of this fact:


n1

 1n

1  n2

In[891]:= TableNAbs
n1

 1n

n2  1

 sm, Nam, m, 1, 10 

Out[891]= 0.266189, 0.707107, 0.181024, 0.447214,
0.135203, 0.316228, 0.107332, 0.242536, 0.088784, 0.196116,
0.075615, 0.164399, 0.0658064, 0.141421, 0.0582284, 0.124035,
0.0522031, 0.110432, 0.0473006, 0.0995037

In[892]:= ClearS, n
S  

n1

 1n

n2  1

Out[893]= 
n1

 1n

1  n2

The table below gives the values of an for large values of n.

In[894]:= TableNa10n , n, 1, 10 
Out[894]= 0.0995037, 0.0099995, 0.001, 0.0001,

0.00001, 1.  106, 1.  107, 1.  108, 1.  109, 1.  1010

Thus, n = 106 is a possible value. But solving an = 10-5 can give us a more accurate value.

In[895]:= NSolveax  105, x
Out[895]= x  100000., x  100000.
Thus, if n = 100 001, we have S - sn < 10-5.  We confirm this with Mathematica:

In[896]:= NS  s100001
Out[896]= 4.99993  106

Can you find a smaller value of n for which S - sn < 10-5?

ü 10.3.4  Ratio Test

 The Ratio Test:  Suppose an > 0 and let    

   r = limnØ¶
an+1

an
.  

a) If r < 1, the series n=1
¶ an converges. 

b) If r > 1, the series n=1
¶ an diverges.

c) If r = 1, no conclusion can be drawn about the convergence of the series n=1
¶ an.  In other words, if r = 1, then we must use
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another test to determine the convergence. 

Example 10.18.  Use the Ratio Test to determine the convergence of the following series.

a)   n=1
¶ nn

n!
c)   j=2

¶ 1

j ln j3
c)  n=1

¶ 3 n3+40 n2+4

n5+200 n4+1

Solution: For each series, we define an to be its nth term and evaluate limnØ¶
an+1

an
.  

a) 

In[897]:= Cleara, n
an_ :

nn

n

In[899]:= Limitan  1  an, n   
Out[899]= 

Since ‰ > 1, the series n=1
¶ nn

n!
 converges by the Ratio Test.

b)

In[900]:= Cleara, j
aj_ :

1

j Logj3
Limitaj  1  aj, j   

Out[902]= 1

This output means that we must use a different test. However, this is an instance of Example 11.12 in this text with p = 3.  Hence,
the series converges by the Integral Test.

c)

In[903]:= Cleara, n

an_ :
3 n3  40 n2  1

n5  200 n4  1

In[905]:= Limitan  1  an, n   
Out[905]= 1

Again, this output means we are forced to use a different test.  Therefore, we shall use the Limit Comparison Test instead. To this

end, we define bn =
3

n2
:

In[906]:= Clearb, n
bn_ :

3

n2

In[908]:= Limit an
bn , n  Infinity

Out[908]= 1
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Since the series n=1
¶ 1

n2
 is convergent, we conclude that the series n=1

¶ 3 n3+40 n2+4

n5+200 n4+1
 is also convergent.

ü 10.3.5  Root Test

 The Root Test:  Suppose an > 0 and let    

   r = limnØ¶ an1n.  

a) If r < 1, the series n=1
¶ anconverges. 

b) If r > 1, the series n=1
¶ an diverges.

c) If r = 1, no conclusion can be drawn about the convergence of the series n=1
¶ an. In other words, if r = 1, then we must use

another test to determine the convergence. 

Example 10.19.  Use the Root Test  to determine the convergence of the following series:

a)   n=1
¶  n

2 n+1
n

b)   n=1
¶ 1

n 3n+n2
c)  n=1

¶ 3 n+1

n2+n+1

Solution: For each series we define an to be its nth term and evaluate limnØ¶ an1n. 

a) 

In[909]:= Cleara, n
an_ :

n

2 n  1

n

In[911]:= Limitan1n, n   

Out[911]=
1

2

Thus, the series n=1
¶  n

2 n+1
n

 converges by Root Test.

b)

In[912]:= Cleara, n
an_ :

1

n 3n  n2

In[914]:= Limitan1n, n   

Out[914]=
1

3

Even though the preceding Limit command is returned as unevaluated, the N command reveals that it is approximately 1/3. 

In[915]:= N
Out[915]= 0.333333

To verify this, we use the Squeeze Theorem (discussed in your calculus text) with bn =
1

2 n 3n  and cn =
1

n 3n .   First, note that

bn § an § cn.  We can verify this using the following plot: 
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In[916]:= Plot 3
x

2 x
, ax, 3x

x
, x, 1, 10, PlotStyle  Green, Red, Blue

Out[916]=

4 6 8 10

0.01

0.02

0.03

0.04

We now define bn and cn as and evaluate limnØ¶ cn1n  and limnØ¶ bn1n.

In[917]:= Clearb, c, n
bn_ :

1

2 n 3n

cn_ :
1

n 3n

In[920]:= Limitbn1n, n  Infinity
Limitcn1n, n  Infinity

Out[920]=
1

3

Out[921]=
1

3

Thus, we also have limnØ¶ an1n = 1

3
 and hence the series converges by the Root Test. 

c)

In[922]:= Cleara, n
an_ :

3 n  2

n2  n  1

In[924]:= Limit an1n, n   
Out[924]= 1

The Root Test fails. Let us try the Ratio Test:

In[925]:= Limit an  1
an , n  Infinity

Out[925]= 1

The Ratio Test fails as well. We can easily verify that the Integral Test is applicable. We will evaluate the integral    
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In[926]:= 
1



ax x

Integrate::idiv : Integral of 
2

1 - x + x2
+

3 x

1 - x + x2
 does not converge on 1,¶. à

Out[926]= 
1

 2  3 x

1  x  x2
x

To confirm the divergence of the improper integral, we leave it to the reader to evalaute the function Fx defined below for large
values of x. 

In[927]:= ClearF, b
Fb_ : 

1

b

ax x

ü Exercises 

In Exercises 1 through 6, use the Comparison Test or the Limit Comparison Test to determine if the given series is convergent. If
it is convergent, then find its sum.

1.  n=1
¶ n

n3+1

2.  n=2
¶ ln n

n2+3 ln n
3.  n=1

¶ n4+200 n2+1000 n+2222

n6+5 n4+n+1
  

4.  n=1
¶ ln n

n2
   5.  n=2

¶ 1

nln n
6.  n=1

¶ 1 - 2-1n   

 In Exercises 7 through 9, use the Integral Test to determine if the given series is convergent. If it converges, then find its sum.

7.  n=1
¶ n

n2+1
8.  n=2

¶ n

2n 9.  n=1
¶ ln n3

n2
  

10. For what values of p does the series n=1
¶ 1

np ln n
 converge?

11. Consider the series n=2
¶ ln nk

np .  

a.   Fix a value of p (say, p = 2 or p = 1 2) and find all values of k for which the series converges.

b.   Fix a value of k (say, k = 2 or k = -2) and find all values of p for which the series converges.

c.   Generalize the results of a) and b) to all values of p and k.

12.  Let f  be  a positive valued function that decreases on 1, ¶ and let an = f n. It can be shown that 

 1
¶

f x „ x §n=1
¶ an § a1 + 1

¶
f x „ x .

a.  Use f x = 1

x1.1
 to verify this. 

b.  Approximate n=1
¶ 1

n1.1
 using its nth partial sums with n = 10, 100, 1000, 10 000.

In Exercises 13 through 16, determine if each of the infinite series is absolutely convergent, conditionally convergent, or diver-

gent. Justify your conclusions! 

13.  n=1
¶ -1n n2-1

n2+1
14. n=1

¶ 20 n2-n-1

n3+n2+33
15. n=1

¶ -2n

n!
16.  n=1

¶ -1n+1 n + 1 - n  ]
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17.  Discovery Exercise: 

a.  Determine the convergence or divergence of n=2
¶ 1

n ln ln ln n0.5
, n=2

¶ 1

n ln ln ln n , and n=2
¶ 1

n ln ln ln n2
.

b.  Generalize your work in part a) by determining for which real numbers p the seriesn=2
¶ 1

n ln ln ln np  converges.

In Exercises 18 through 25, determine the convergence or divergence of the given infinite series using any of the convergence
tests discussed in this section.

18. n=1
¶ 3 n+1

4 n+5
19. n=1

¶ n

2 n2+1
 20. n=1

¶ n+3

4 n3+5
  21. n=1

¶ n 2

3
n

 

22. n=1
¶ n 3

2
n

 23. n=1
¶ nn

n!
24. n=1

¶ n!2

3 n!  25. n=0
¶ -1n 1 + 1

n
n

 

26.  The Ratio Test proved to be inconclusive for some of the series in the previous exercise. Can you conjecture for what type of
series the Ratio Test will fail in general? Use other tests to rework the problems in the first exercise where the Ratio Test failed.

27. Of the following four conditions, one guarantees that a series will diverge, two conditions guarantee that a series will con-
verge, and one has no guarantee (the series can either converge or diverge).  Identify each one and explain your reasoning.

limnØ¶
an+1

an
= 0

limnØ¶
an+1

an
= 1

2

limnØ¶
an+1

an
= 1

limnØ¶
an+1

an
= 2

28.  Identify the two series that are the same:

a. n=1
¶ n 3

4
n

b. n=0
¶ n + 1  3

4
n

c. n=1
¶ n 3

4
n-1

In Exercises 29 through 32, determine the convergence or divergence of the series: 

29.   n=1
¶ 2 n

n

+1) n  30,  n=0
¶ e-n  31.  n=1

¶  -2 n

3 n+1
3 n

 32.  n=1
¶  n

2 n+1
) n

 

33. Construct two examples of infinite series, the first convergent and the second divergent, for which the Root Test generates
inconclusive information.  

34. Use the Root Test to test for convergence or divergence of the series:

a. 
1

ln 33
+ 1

ln 44
+ 1

ln 55
+

1

ln 66
+ ...

b. 1+ 
2

3
+ 3

32
+ 4

33
+ 5

34
+

6

35
+...

Hint: Write a formula for the general nth term in each case.

ü  10.4  Power Series

Students should read Sections 10.6-10.7 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.
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ü 10.4.1  Taylor Polynomials

The Taylor polynomial of a given function f  at a point x = a is given by  

Tnx = f a + f ' a x - a + f '' a
2!

x - a2 +
f ''' a

3!
x - a3 + ....+

f na
n!

x - an.

The Mathematica Series[f,{x, a, n}] generates the nth Taylor polynomial Tnx plus a term of the form Oxn+1.  To obtain the

Taylor polynomial without this term, we use the command Normal[Series[f,{x, a, n}]].

The nth remainder Rnx of f x at x = a is defined by

Rnx = f x - Tnx.
Taylor's Theorem states that 

Rnx = 1

n! a

x
f n+1u x - un „u.

Here is a way to define the Taylor polynomial of f at x = a by defining Tnx and the nth remainder Rnx (using Taylor's Theo-

rem for Rn) without referring to Mathematica's built-in command Series. 

In[929]:= Cleara, x, f, T, R
Tx_, a_, n_ : 

k0

n Dfx, x, k . x  a

k
x  ak

Rx_, a_, n_ :
1

n

a

x

Dfu, u, n  1  x  un u

Example 10.20.  Let f x = ex.  Find its 5th Taylor polynomial at x = 0.

Solution: We use the Series command to obtain the answer: 

In[932]:= NormalSeriesEx, x, 0, 5

Out[932]= 1  x 
x2

2

x3

6

x4

24


x5

120

Using the polynomial Tx, a, n, we defined above we get 

In[933]:= Clearf
fx_ : Ex

Tx, 0, 5

Out[935]= 1  x 
x2

2

x3

6

x4

24


x5

120

In[936]:= Rx, 0, 5

Out[936]=
1

120
120  120 x  120 x  60 x2  20 x3  5 x4  x5

Example 10.21.  Find the nth Taylor polynomial of f x at x = a for various values of a and n.  

 a) f x = x  b)  f x = cos x 

Solution:  a) We shall use the same function T[x,a,n] defined in the previous example (make sure you evaluate this function
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before you evaluate the table below).

In[937]:= Cleara, x, f
Tx_, a_, n_ : 

k0

n Dfx, x, k . x  a

k
x  ak

Rx_, a_, n_ :
1

n

a

x

Dfu, u, n  1  x  un u

In[940]:= Clearf
fx_  x

TableFormTable Tx, a, n , a, 1, 5, n, 1, 3 ,

TableHeadings 

"at a=1", "at a=2", "at a=3", "at a=4", "at a=5", "n=1", "n=2", "n=3"
Out[941]= x

Out[942]//TableForm=

n=1 n=2 n=3

at a=1 1  1
2
1  x 1  1

2
1  x  1

8
1  x2 1  1

2
1  x  1

8
1  x2  1

16
1 

at a=2 2  2x

2 2
2  2x

2 2
 2x2

16 2
2  2x

2 2
 2x2

16 2
 2x3

64 2

at a=3 3  3x

2 3
3  3x

2 3
 3x2

24 3
3  3x

2 3
 3x2

24 3
 3x3

144 3

at a=4 2  1
4
4  x 2  1

4
4  x  1

64
4  x2 2  1

4
4  x  1

64
4  x2  1

512
4

at a=5 5  5x

2 5
5  5x

2 5
 5x2

40 5
5  5x

2 5
 5x2

40 5
 5x3

400 5

b) We proceed as in part a):

In[943]:= Clearf
fx_  Cosx
TableFormTable Tx, a, n , a, 0, 2 Pi, Pi  2, n, 1, 4 ,

TableHeadings  "at a=0", "at a=/2", "at a=", "at a=3/2", "at a=2",
"n=1", "n=2", "n=3", "n=4"

Out[944]= Cosx
Out[945]//TableForm=

n=1 n=2 n=3 n=4

at a=0 1 1  x2

2
1  x2

2
1  x2

2
 x4

24

at a=/2 

2
 x 

2
 x 

2
 x  1

6
 

2
 x3 

2
 x  1

6
 

2
 x3

at a= 1 1  1
2
  x2 1  1

2
  x2 1  1

2
  x2  1

24


at a=3/2  3 
2
 x  3 

2
 x  3 

2
 x  1

6
 3 

2
 x3  3 

2
 x  1

6
 3 

2
 x3

at a=2 1 1  1
2
2   x2 1  1

2
2   x2 1  1

2
2   x2  1

24
2

Example 10.22.  Let f x = 1

2+3 x2
. 

a) Find the Taylor polynomials Tnx of f  at x = 0 for n = 1, 2, ..., 6.
b) Draw the graphs of the function f  and its Taylor polynomials found in part a).
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c) Over which interval does the nth Taylor polynomial gives a close approximation to f x if n = 4, n =10, and n = 20? 

Solution:

a) Here are the Taylor polynomials up to order n = 6.

In[946]:= Clearf
fx_ 

1

2  3 x2

TableFormTable n, Tx, 0, n , n, 1, 6 ,

TableHeadings  , "n", "Tn at a=0"

Out[947]=
1

2  3 x2

Out[948]//TableForm=

n Tn at a=0

1 1
2

2 1
2
 3 x2

4

3 1
2
 3 x2

4

4 1
2
 3 x2

4
 9 x4

8

5 1
2
 3 x2

4
 9 x4

8

6 1
2
 3 x2

4
 9 x4

8
 27 x6

16

b)  We first use the Plot command to plot the graphs of f  and its Taylor polynomial at x = 0 for the desired values of n.  We then

use the Show command to plot both graphs on the same axes.

In[949]:= Clearplot1, plot2
plot1  Plotfx, x, 3, 3, PlotStyle  Red;
plot2  PlotEvaluateTableTx, 0, n, n, 1, 6, x, 3, 3 ;
Showplot1, plot2

Out[952]=

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

0.5

c) We use the same commands as in part b) except that we do not use the Table command. The first one is for the case n = 4.
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In[953]:= Clearplot1, plot2
plot1  Plotfx, x, 3, 3, PlotStyle  Red;
plot2  PlotEvaluateTx, 0, 4, x, 3, 3 ;
Showplot1, plot2

Out[956]=

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

0.5

It seems that the two graphs are close to each other  if x is in the interval -0.5, 0.5. To see this close up, we recommend that
you change the range of values for x in both plots (plot1 and plot2) to the interval -1, 1. We can confirm this by plotting the 4th
remainder of f x at x = 0. 

In[957]:= PlotEvaluateRx, 0, 4, x, 1, 1, PlotRange  1, 1

Out[957]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

We repeat the above with n = 10.
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In[958]:= Clearplot1, plot2
plot1  Plotfx, x, 3, 3, PlotStyle  Red;
plot2  PlotEvaluateTx, 0, 100, x, 3, 3 ;
Showplot1, plot2

Out[961]=

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

0.5

The graph above clearly indicates the 10th Taylor polynomial gives a close approximation for f  in the interval -.6, .6. Again,
plotting  Rn will confirm this. 

In[962]:= PlotEvaluateRx, 0, 10, x, 1, 1, PlotRange  1, 1

Out[962]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

If we continue in this manner, we see that the Taylor polynomial  Pn for large values of n gives a better approximation of f  in the
interval -1, 1.  In fact, for n = 20, we see that Rnx is almost zero in the interval -0.7, 0.7, which is an improvement over the
previous interval -0.6, 0.6 obtained for n = 10. 

In[963]:= PlotEvaluateRx, 0, 20, x, 1, 1, PlotRange  1, 1

Out[963]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0
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ü 10.4.2  Convergence of Power Series

A series of the form 

n=0
¶ anx - x0n = a0 + a1x - x0 + a2x - x02 + a3x - x03 + ....

is called a power series. 

The set of all x for which the series converges is called the interval of convergence.

If the series converges for x = x0 only, we say is radius of interval is R = 0. In this case, its interval of convergence is x0.
If the series converges for all real numbers x, we say its radius of convergence is R =¶. In this case, its interval of convergence
is -¶, ¶. 
If the series converges for some x ∫ x0 and diverges for some y, then it can be shown that there exists R > 0 such that the power
series converges for all x for which x - x0 < R and diverges for all x for which x - x0 > R. The convergence at x = x0 - R
and x = x0 + R needs to be checked. 

When the radius of convergence R is a positive real number, there are four possiblities for the interval of convergence: 

x0 - R, x0 + R or x0 - R, x0 + R or x0 - R, x0 + R or x0 - R, x0 + R 
depending on the convergence at the end points of the intervals.

The radius of convergence R of the power series n=0
¶ anx - x0n can be found by using the Ratio or Root Test.  Let 

 r = limnØ¶
an+1

an
    or    r = limnØ¶ an

n

a) If r = 0, then R =¶. 
b) If r =¶, then  R = 0 .

c) If 0 < r <¶, then R = 1

r
.

Example 10.23.  Find the radius and interval of convergence for the given power series.

a)   n=0
¶ n

2 n+1
xn b)   n=1

¶ x-3n

n 3n c)  n=0
¶ x+2n

n2+n+1
 

d)   n=0
¶ nn xn e)   n=0

¶ 1

n!
x - 1n   

Solution:

a) Let us define smx to be the mth partial sum of the series and plot the graph of some of these partial sums. We will plot every
100th partial sum up to 10,000 terms.  

In[964]:= Clears, n, m
sx_, m_ : 

n0

m n

2 n  1
xn
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In[966]:= PlotEvaluateTablesx, m, m, 1, 1000, 100, x, 2, 2

Out[966]=

-2 -1 1 2

-2μ1026

2μ1026

4μ1026

This clearly indicates that the partial sums diverge outside -1, 1. Here is the plot over the interval -1, 1.
In[967]:= PlotEvaluateTablesx, m, m, 1, 1000, 100, x, 1, 1

Out[967]=

-1.0 -0.5 0.5 1.0

0.5

1.0

1.5

We now use calculus. Here, note that an =
n

2 n+1
 and x0 = 0. We first define an  in Mathematica and find the radius of conver-

gence. We recall a  (absolute value of a) is entered as Abs[a].

In[968]:= Cleara, n, r
an_ :

n

2 n  1

In[970]:= r  LimitAbsan  1
an , n  Infinity

Out[970]= 1

Thus, the radius of convergence is R = 1

r
= 1

1
= 1. The power series convrges on -1, 1. To check convergence at the endpoints

x = -1 and x = 1, we note that the power series becomes n=0
¶ n

2 n+1
-1nand n=0

¶ n

2 n+1
1n, both of which are divergent, since

their nth terms do not converge to 0. Here, Mathematica confirms the divergence at the endpoints.

In[971]:= 
n0

 n

2 n  1
1n

Sum::div : Sum does not converge. à

Out[971]= 
n0

 1n n
1  2 n
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In[972]:= 
n0

 n

2 n  1
1n

Sum::div : Sum does not converge. à

Out[972]= 
n0

 n

1  2 n

Therefore, the interval of convergence is -1, 1.

b)  n=1
¶ x-3n

n 3n

In[973]:= Cleara, r, n
an_ :

1

n 3n

In[975]:= r  Limit an  1
an , n  Infinity

Out[975]=
1

3

Thus the radius of convergence is R = 1

r
= 1

13 = 3. 

Since x0 = 3, the power series converges on x0 - R, x0 + R = 3 - 3, 3 + 3 = 0, 6. We need to check the endpoints x = 0 and
x = 6. We substitute these in the power series and evaluate  

In[976]:= 
n1

 x  3n
n 3n

. x  0, 6

Out[976]= Log2, 
Thus, the interval of convergence is 0, 6.

 c)  n=1
¶ x+2n

n2+n+1

In[977]:= Cleara, r, n
an_ :

1

n2  n  1

In[979]:= r  LimitAbs an  1
an , n  

Out[979]= 1

Hence, the radius of convergence is R = 1

1
= 1. Since x0 = -2, we see that the power series converges at least on the open interval

-2 - 1, -2 + 1 = -3, -1. To determine the actual interval of convergence we need to check the endpoints. As in part c), we
evaluate 
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In[980]:= 
n0

 x  2n
n2  n  1

. x  3, 1

Out[980]= HypergeometricPFQ1, 113, 123,  3
2

 3

2
,
3

2

 3

2
, 1,

HypergeometricPFQ1, 113, 123,  3
2

 3

2
,
3

2

 3

2
, 1

In[981]:= N
Out[981]= 0.76131  4.70246  1016 , 1.79815  4.96787  1016 
Since this is  not clear, we examine the series by  plugging in by hand x = -3 and x = -1. When x = -3 the series becomes

n=1
¶ -3+2n

n2+n+1
= n=1

¶ -1n

n2+n+1
, which is an alternating series. We leave it to the reader to verify that the Alternating Series Test

applies in this case.  Thus, we have a convergent series.

Next, we substitute x = -1 to obtain the series n=1
¶ -1+2n

n2+n+1
= n=1

¶ 1

n2+n+1
 to which we apply the Integral Test (verify that the

conditions of the Integral Test are satisfied):   

In[982]:= Integrate 1

x2  x  1
, x, 0, Infinity

Out[982]=
2 

3 3

Thus, the series converges in this case as well. Therefore, the interval of convergence for the power series is -3, -1.
  d)   n=0

¶ nn xn   

In[983]:= Cleara, r, n
an_ : nn

In[985]:= r  LimitAbs an  1
an , n  

Out[985]= 

Thus, the radius of convergence is R = 0 and the series converges for x = 0 only.

e)   n=0
¶ 1

n!
x - 1n

In[986]:= Cleara, r, n
an_ :

1

n

In[988]:= r  LimitAbs an  1
an , n  

Out[988]= 0

Thus, the radius of convergence is R =¶ and the series converges for all real x.  Hence, the interval of convergence is -¶, ¶.
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ü 10.4.3  Taylor Series

The Taylor series for f x at x = a is given by the power series

 n=0
¶ f na

n!
x - an = f a + f ' a x - a + f '' a

2
x - a2 +

f ''' a
6

x - a3 + .....

The Mathematica command Series[f,{x, a, n}] generates the power series of f  at x = a to the order x - an.  It is not possible to
write all the terms explicitly since there are infinitely many.

Example 10.24.  Let f x = 1+x

1+x2
. 

a) Find the first ten terms of the Taylor series of f  at x = 0.
b) Estimate the radius and interval of convergence of the Taylor series of f  at x = 0.   

Solution:

a) We use the Series command to obtain the Taylor series as follows:   

In[989]:= Clearf, x
fx_ :

1  x

2  x

In[991]:= Seriesfx, x, 0, 10

Out[991]=
1

2

3 x

4

3 x2

8

3 x3

16

3 x4

32

3 x5

64

3 x6

128

3 x7

256

3 x8

512


3 x9

1024

3 x10

2048
 Ox11

This output gives the Taylor series to order n = 10.

b) To first gain intuition for the radius of convergence of the Taylor series, we define the nth Taylor polynomial of f x as a

function of n (note our use of the Normal command to truncate the remainder term from the Taylor series).

In[992]:= ClearT, x, n
Tx_, n_ : NormalSeriesfx, x, 0, n

Here is a list of the first 20 of these polynomials. 

In[994]:= TableTx, n, n, 0, 10

Out[994]=  1
2
,
1

2

3 x

4
,
1

2

3 x

4

3 x2

8
,
1

2

3 x

4

3 x2

8

3 x3

16
,

1

2

3 x

4

3 x2

8

3 x3

16

3 x4

32
,
1

2

3 x

4

3 x2

8

3 x3

16

3 x4

32

3 x5

64
,

1

2

3 x

4

3 x2

8

3 x3

16

3 x4

32

3 x5

64

3 x6

128
,
1

2

3 x

4

3 x2

8

3 x3

16

3 x4

32

3 x5

64

3 x6

128

3 x7

256
,

1

2

3 x

4

3 x2

8

3 x3

16

3 x4

32

3 x5

64

3 x6

128

3 x7

256

3 x8

512
,

1

2

3 x

4

3 x2

8

3 x3

16

3 x4

32

3 x5

64

3 x6

128

3 x7

256

3 x8

512


3 x9

1024
,

1

2

3 x

4

3 x2

8

3 x3

16

3 x4

32

3 x5

64

3 x6

128

3 x7

256

3 x8

512


3 x9

1024

3 x10

2048
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Observe that each polynomial appears twice, that is, T2 n = T2 n+1, since f  is an even function.  Next, we plot the graphs of some
of these polynomials:

In[995]:= Clearplot1
plot1 

PlotEvaluateTableTx, n, n, 1, 20, x, 5, 3, PlotRange  10, 10

Out[996]=
-4 -2 2

-10

-5

5

10

To compare the graph of these polynomials, we plot the graph of f  and use the Show command.  

In[997]:= Clearplot2
plot2  Plotfx, x, 5, 3, PlotRange  10, 10, PlotStyle  Red

Out[998]=
-4 -2 2

-10

-5

5

10

In[999]:= Showplot1, plot2, PlotRange  10, 10

Out[999]=
-4 -2 2

-10

-5

5

10

Observe that the graphs of the Taylor polynomials in the preceding plot seem to give a good approximation to f  only inside the
interval -2, 2.  This suggests that the radius of convergence is 2.  This becomes more evident as we plot the graph of Tn  for
large values of n as shown in the following plot, where n = 30, 35, 40, 45, 50.

216   Mathematica for Rogawski's Calculus 2nd Editiion.nb



In[1000]:= Clearplot3
plot3  PlotEvaluateTableTx, n, n, 30, 50, 5, x, 3, 3;
plot4  Plotfx, x, 5, 3, PlotStyle  Red, Thickness0.002;
Showplot3, plot4, PlotRange  10, 10

Out[1003]=
-4 -2 2

-10

-5

5

10

To prove that the radius of convergence is indeed R = 2, we first find a formula for the Taylor coefficients.  Based on the follow-

ing table, it is clear that a0 = 1 2 and an = -1n 32n+1 (prove this for all n).

In[1004]:= an_ : Dfx, x, n  n . x  0

Tablean, n, 0, 10

Out[1005]=  1
2
, 

3

4
,
3

8
, 

3

16
,

3

32
, 

3

64
,

3

128
, 

3

256
,

3

512
, 

3

1024
,

3

2048


We now apply the Ratio Test on n=0
¶ an xn.

In[1006]:= Cleara
an_  1^n  3  2^n  1
r  LimitAbsan  1

an , n  

Out[1007]= 3 1n 21n

Out[1008]=
1

2

Hence, the radius of convergence is R = 1 r = 2.

Next, we determine whether the endpoints should be included in the interval of convergence.  For this, we evaluate our Taylor
series at x = -2 and x = 2.
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In[1009]:= 
n1



an 2^n


n1



an 2^n

Sum::div : Sum does not converge. à

Out[1009]= 
n1

 3

2
12 n

Sum::div : Sum does not converge. à

Out[1010]= 
n1

 3 1n
2

This shows that the Taylor series diverges at both endpoints.  Thus, the interval of convergence is -2, 2. 
Example 10.25.  Let f x = sin x. 

a) Find the Taylor series of f  at x = 0.
b) Find the radius and interval of convergence of the Taylor series.   

Solution:

a) We repeat the steps in the previous example.

In[1011]:= Clearf
fx_ : Sinx

In[1013]:= ClearT
Tx_, n_ : NormalSeriesfx, x, 0, n

In[1015]:= TableTx, n, n, 0, 10

Out[1015]= 0, x, x, x 
x3

6
, x 

x3

6
, x 

x3

6


x5

120
, x 

x3

6


x5

120
, x 

x3

6


x5

120


x7

5040
,

x 
x3

6


x5

120


x7

5040
, x 

x3

6


x5

120


x7

5040


x9

362880
, x 

x3

6


x5

120


x7

5040


x9

362880


Observe that all terms of the Taylor polynomials are odd powers of x.  Can you explain why?

Here is a plot of the graphs of the first ten of these polynomials and the function f .
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In[1016]:= Clearplot1, pl0t2
plot1  PlotEvaluateTableTx, n, n, 0, 10, x, 3 Pi, 3 Pi;
plot2  Plotfx, x, 3 Pi, 3 Pi, PlotStyle  Red;
Showplot1, plot2, PlotRange  10, 10

Out[1019]=
-5 5

-10

-5

5

10

b) Observe that the higher the order of the Taylor polynomial the better it approximates f  over a wider interval.  To see this more
clearly, we plot Tn for n = 20, 40, 60.

In[1020]:= Clearplot1, plot2
plot1  Plotfx, x, 40, 40, PlotStyle  Red, PlotRange  5, 5;
plot2 

Plot EvaluateTx, 20 , x, 40, 40 , PlotStyle  Blue, PlotRange  5, 5;
plot3  Plot EvaluateTx, 40 , x, 40, 40 ,

PlotStyle  Blue, PlotRange  5, 5;
plot4  Plot EvaluateTx, 60 , x, 40, 40 ,

PlotStyle  Blue, PlotRange  5, 5;
Showplot1, plot2

Out[1025]=
-40 -20 20 40

-4

-2

2

4
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In[1026]:= Showplot1, plot3

Out[1026]=
-40 -20 20 40

-4

-2

2

4

In[1027]:= Showplot1, plot4

Out[1027]=
-40 -20 20 40

-4

-2

2

4

The preceding plots suggest that the radius of convergence for the Taylor series of sin x is R =¶.  To prove this, we first find a
formula for the Taylor coefficients an.  Again, based on the following table, it is clear that an = sinp n 2 n ! (prove this for all
n).

In[1028]:= an_ : Dfx, x, n  n . x  0

Tablean, n, 0, 10

Out[1029]= 0, 1, 0, 
1

6
, 0,

1

120
, 0, 

1

5040
, 0,

1

362880
, 0

We now apply the Root Test on n=0
¶ an xn.

In[1030]:= Cleara, n, r
an_  SinPi  n  2  n
Tablean, n, 0, 10
r  LimitAbsan^1  n, n  

Out[1031]=

Sin n 
2


n

Out[1032]= 0, 1, 0, 
1

6
, 0,

1

120
, 0, 

1

5040
, 0,

1

362880
, 0

Out[1033]= 0

Hence, the radius of convergence is R =¶.
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ü Exercises 

In Exercises 1 through 6,  determine the radius and interval of convergence for the given power series.

1. n=1
¶ -1n+1 xn

4n  2. n=0
¶ 2 n !  x

2
) n 3. n=1

¶ n! xn

2 n!
4. n=0

¶ -1n xn

n+1
5. n=0

¶ 4 xn  6. n=0
¶ 2 xn

n!

7. Give examples of power series that have an infinite radius of convergence, a radius of convergence containing only the center,
and a radius of convergence of one.

8. Find the Taylor series for f x = e2 x centered about c = 0.

9. Find the Taylor series for f x = ln x centered about the point c = 1.

In Exercises 10 through 12, find the MacLaurin series for each of the given function.

10. f x = sin 2 x 11. gx = sinh x 12. hx = arc sin x  x

13. Consider the function f x =  e-1x2
if x ∫ 0

0 if x = 0
.  

a.  Plot the graph of this function using Mathematica.
b.  Use the limit definition of the derivative and L'Hopital's Rule to show that every higher-order derivative of f  at x = 0 vanishes.
c.  Find the MacLaurin series for f .  Does the series converge to f ? 

14. Use Taylor series to evalaute the following definite integral, which cannot be integrated via elementary means: 

 0
1 sin x

x
„ x. 

15. Find the following limit using the theory of Taylor series.

  lim xØ 0 1-cos x

x

Mathematica for Rogawski's Calculus 2nd Editiion.nb  221



Chapter 11 Parametric Equations, Polar Curves, 
and Conic Sections

ü 11.1  Parametric Equations

Students should read Sections 11.1-11.2 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

Parametric equations are useful for describing curves not modeled by functions or motions parametrized by quantities such as
time.  The standard form for a set of parametric equations is

 xt = f t
yt = gt

where t is called the parameter.

ü 11.1.1.  Plotting Parametric Equations

The Mathematica command for plotting a curve defined by parametric equations x = f t and y = gt for a § t § b is Parametric-

Plot[{f(t),g(t)},{t,a,b}].

Here are some examples:

Example 11.1.  Plot the curve described by the parametric equations x = cos t and y = sin t for 0 § t § 2 p.

Solution:

In[1034]:= ParametricPlotCost, Sint, t, 0, 2 , ImageSize  200

Out[1034]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

NOTE: Recall that the above parametric equations represent the unit circle. However, Mathematica may produce a graph that,
depending on its default settings, looks visually like an ellipse due to different scalings of the x- and y-axes.  In that case, the plot

option AspectRatio can be used to specify the ratio of the height to the width for a plot.  For example, to stretch the plot above so

that the circle becomes elliptical where the height is twice as long as the width, we can set AspectRatio equal to 2.
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In[1035]:= ParametricPlotCost, Sint, t, 0, 2 , AspectRatio  2, ImageSize  200

Out[1035]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Example 11.2.  Plot the curve described by the parametric equations x = t2 - 4 and y = t 2 for -2 § t § 3.

Solution: Here is a plot of the curve:

In[1036]:= ParametricPlott^2  4, t  2, t, 2, 3

Out[1036]=

-4 -2 2 4

-1.0

-0.5

0.5

1.0

1.5

Example 11.3.  Plot the curve (prolate cycloid) described by the parametric equations x = 2 q - 4 sin q and y = 2 - 4 cos q for
0 § t § 2 p and determine its y-intercepts.

Solution: We first plot the curve:

In[1037]:= Clearf, g, 
f_  2   4 Sin;
g_  2  4 Cos;
ParametricPlotf, g, , 4 Pi, 4 Pi,
PlotLabel  "Prolate cycloid"

Out[1040]=

-20 -10 10 20-2

2
4
6

Prolate cycloid

To find the y-intercepts (there appears to be two based on the graph), we solve f q = 0 for q:
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In[1041]:= Solvef  0, 
Solve::nsmet : This system cannot be solved with the methods available to Solve. à

Out[1041]= Solve2   4 Sin  0, 
Observe that the Solve command here fails to give us an answer since the equation is non-algebraic.  However, note that the
negative y-intercept is trivially located at y = -2 corresponding to q = 0.  The other (positive) y-intercept must be solved numeri-

cally using the FindRoot command (even the NSolve command fails in this case), where we provide a nearby location (q = p 2)
for our desired solution.

In[1042]:= root  FindRootf  0, , Pi  2
Out[1042]=   1.89549
In[1043]:= groot1, 2
Out[1043]= 3.27609

Thus, the second y-intercept is located approximately at y º f 1.89549 = 3.27609.

NOTE: Observe that we used of the option PlotLabel to print the label "Prolate cycloid" in the plot above. In general, the inside

PlotLabel Ø"text" inside a plot command prints the title text for the given plot.

ü 11.1.2.  Parametric Derivatives

Recall that for a curve described by parametric equations x = f t and y = gt, its derivative dy dx can be expressed as a ratio
between the parametric derivatives dy dt and dx dt (application of the Chain Rule):

 
dy

dx
=

dy

dt

dx

dt

=
g' t
f ' t

where it is assumed that f ' t ∫ 0.

Example 11.4.  Consider the following parametric equations (folium of Descartes):

x = 4 t

1+t3
 and y = 4 t2

1+t3

a) Plot the curve described by the parametric equations above (select an appropriate interval for t  that captures all the salient
features of the graph).
b) Find all points of horizontal tangency on the curve.
c) Find the derivative at the tip of the folium.

Solution:

a) Here is a plot of the folium of Descartes on the interval 0, 20:
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In[1044]:= Clearf, g, t
ft_  3 t  1  t^3;
gt_  3 t^2  1  t^3;
ParametricPlotft, gt, t, 0, 20, PlotRange  All, AspectRatio  1,
PlotLabel  "Folium of Descartes", ImageSize  200

Out[1047]=

0.5 1.0 1.5

0.5

1.0

1.5

Folium of Descartes

NOTE: The plot above does not reveal the full graph of the folium.  A more complete graph is shown in the following plot.  The
dashed line indicates an asymptote.  Can you generate a Mathematica plot of it?  Can you find an equation of the asymptote (see
Exercise 7)?  Hint: Beware of the discontinuity at t = -1.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3
Folium of Descartes

b) In order to find points of horizontal tangency, that is, points where the slope of the tangent line is equal to zero, it suffices to

solve 
dy

dx
= 0, or equivalently, 

dy

dt
= 0 (assuming 

dx

dt
∫ 0).  Hence, we evaluate 

In[1048]:= SolveDgt, t  0, t
Out[1048]= t  0, t  213, t  213, t  123 213

Since dx

dt
 does not vanish at  t = 0 and t = 213  (we ignore the imaginary solutions), we conclude that there are two points

corresponding to these values at which the tangent lines are horizontal, namely at 0, 0 and 213, 223:
In[1049]:= ft, gt . t  0

ft, gt . t  213

Out[1049]= 0, 0
Out[1050]= 213, 223
c) To locate the tip of the folium, we take advantage of the folium's symmetry to argue that the slope of the tangent at the tip must
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equal -1 (parallel to the asymptote of the folium).  Thus, we solve 
dy

dx
= -1, or equivalently, g ' t = - f ' t, for t: 

In[1051]:= sol  Solveg't  f't, t
Out[1051]= t  1, t  1
In[1052]:= fsol1, 1, 2

gsol1, 1, 2

Power::infy : Infinite expression 
1

0
 encountered. à

Out[1052]= ComplexInfinity

Power::infy : Infinite expression 
1

0
 encountered. à

Out[1053]= ComplexInfinity

Thus, the tip is located at 3 2, 3 2.

ü 11.1.3.  Arclength and Speed

The arc length of a curve described by parametric equations x = f t and y = gt, a § t § b, is given by

 s = a
b  dx

dt
2
+  dy

dt
2
„ t

Suppose xt, yt now represent the position of a particle moving along a path at time t.  The distance traveled by the particle
over the interval t0, t is given by 

 st = t0

t  dx

du
2
+  dy

du
2
„u

and

 ds

dt
=  dx

dt
2
+  dy

dt
2

represents its speed (length of the velocity vector x ' t, y ' t).
Example 11.5.  Find the arc length of the curve x = e-t cos t,  y = e-t sin t for 0 § t § p 2.

Solution: Here is a plot of the curve:

In[1054]:= Clearx, y, t
xt_  E^t  Cost;
yt_  E^t  Sint;
ParametricPlotxt, yt, t, 0, Pi  2, ImageSize  250

Out[1057]=

0.2 0.4 0.6 0.8 1.0

0.05
0.10
0.15
0.20
0.25
0.30
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To find its arc length, we compute

In[1058]:= 
0

2Dxt, t^2  Dyt, t^2 t

Out[1058]= 2 1  2
In[1059]:= N
Out[1059]= 1.12023

This answer makes sense based on the graph.  

Example 11.5.  A particle moves along a path described by x = t2 - 4,  y = t 2.
a) Find the distance traveled by the particle over the interval -3, 3.
b) What is the particle's minimum speed over the same interval?  When does this occur?

Solution:
a) The distance traveled is given by

In[1060]:= Clearx, y, t
xt_  t^2  4;

yt_  t  2;


3

3Dxt, t^2  Dyt, t^2 t

Out[1063]=
1

8
12 145  ArcSinh12

In[1064]:= N
Out[1064]= 18.4599

a) We make a plot of the particle's speed:

In[1065]:= speed  Dxt, t^2  Dyt, t^2
Plotspeed, t, 3, 3, ImageSize  250

Out[1065]=
1

4
 4 t2

Out[1066]=

-3 -2 -1 1 2 3

1

2

3

4

5

6

This shows that the minimum speed is 1/2 and occurs at t = 0.  Can you verify this using calculus techniques?

ü Exercises 

In Exercises 1 through 3, sketch the curve represented by the given parametric equations.  Be sure to select an appropriate
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interval for the parameter that captures all the salient features of the curve.

1.  x = t3 , y = t2 2 2.  x = 2 q - sin q,  y = 1 - cos q 3.  x = 3 cos3 q, y = 3 sin3 q

4. Find all points of horizontal and vertical tangency to the curve x = cos q + q sin q,  y = sin q - q cos q,  0 § q § 2 p.

5. Consider parametric equations given by x = 3 cos t 3 - cos t and y = 3 sin t 3 - sin t.
a) Graph the curve represented by the parametric equations above.
b) Find the slope of the line tangent to the curve at the point where t = p 4.
c) Find the arc length of the curve from t = 0 to t = 3 p 2.

6. Consider a particle moving along a curve described by x = t - cos t and y = t - sin t with respect to time t.

a) Approximate the distance traveled by the particle over the interval 0, 2 p.  Hint: Use the NIntegrate command.
b) Find the minimum and maximum speeds of the particle over the same interval.  At what times do they occur?

7. Cornu's spiral (also known as Euler's spiral) is a curve defined by the following Fresnel integrals:

 xt = 0

t
cosu2 „u, yt = 0

t
sinu2 „u

a) Plot Cornu's spiral for -10 § t § 10.
b) Compute the length of Cornu's spiral over the same interval.  Then find a formula for the length of Cornu's spiral over the
interval a § t § b.
c) Determine the coordinates of the center of the two "eyes" that form Cornu's spiral.

8. Find the asymptote corresponding to the folium of Descartes (see Example 11.4) and plot the asymptote together with the
folium of Descartes.

ü 11.2   Polar Coordinates and Curves

Students should read Sections 11.3-11.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

Polar coordinates, expressed as r, q), represent the location of a point on the Cartesian plane in terms of distance r from the
origin and angle q with respect to the positive x-axis.

ü 11.2.1.  Conversion Formulas

Conversion between Cartesian (rectangular) coordinates x, y  and polar coordinates r, q  can be achieved by the following
formulas:

r2 = x2 + y2

q = tan-1 y  x

x = r cos q
y = r sin q

Example 11.6.  Perform the following conversions:
a) Convert the rectangular coordinates 3, 4 into polar coordinates.
b) Convert the polar coordinates 7, p 3 into Cartesian coordinates.

Solution:

a) Using the first set of conversion formulas above, we find that
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In[1067]:= r  32  42

  NArcTan4  3
Out[1067]= 5

Out[1068]= 0.927295

b) This time, we use the second set of conversion formulas:

In[1069]:= x  7  CosPi  3
y  7  SinPi  3

Out[1069]=
7

2

Out[1070]=
7 3

2

ü 11.2.2.  Polar Curves

The Mathematica  command for plotting a curve described by a polar equation in the form r = f q  for a § q § b  is  Polar-

Plot[f(q),{q, a, b}].

Example 11.7.  Plot the graph of the limacon r = 3 - 4 cos q.

Solution: Here is a plot of the limacon:

In[1071]:= PolarPlot3  4 Cos, , 4 Pi, 4 Pi,
AspectRatio  Automatic, ImageSize  200

Out[1071]=
-7 -6 -5 -4 -3 -2 -1

-4

-2

2

4

Example 11.8.  Plot the graph of the six-leaf rose r = 2 cos3 q 2.
Solution: Here is a plot of the six-leaf rose:
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In[1072]:= PolarPlot2 Cos3   2, , 4 Pi, 4 Pi,
PlotLabel  "A SixLeaf Rose", AspectRatio  Automatic, ImageSize  200

Out[1072]=

-2 -1 1 2

-1.5

-1.0

-0.5

0.5

1.0

1.5

A Six-Leaf Rose

Can you can modify the function to generate a 12-leaf rose?

ü 11.2.2.  Calculus of Polar Curves

Recall that the derivative of a polar equation in the form r = f q for a § q § b is given by

dy

dx
=

f ' q sin q+ f q cos q

f ' q cos q- f q sin q

Moreover, the area A of the region bounded by a polar equation in the form r = f q between a § q § b is given by

A = 1

2 ab f 2q „q
Example 11.9.  Locate all horizontal and vertical tangents of the limacon r = 2 - sin q.

Solution: We first plot the limacon to anticipate our solution points:

In[1073]:= PolarPlot1  Cos, , 2 Pi, 2 Pi, ImageSize  200

Out[1073]=
0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0

From the plot above, we should expect to find two horizontal tangents and three vertical tangents.

Next, we compute the derivative of the limacon:

In[1074]:= Clearf, 
f_  1  Cos

Out[1075]= 1  Cos
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In[1076]:= dydx  Simplifyf'  Sin  f  Cos  f'  Cos  f  Sin

Out[1076]= 
Cos 3 

2
 Csc 

2


1  2 Cos
To obtain horizonal tangents, we solve dy dx = 0 for q.

In[1077]:= dydx  0
Solvedydx  0, 

Out[1077]= 
Cos 3 

2
 Csc 

2


1  2 Cos  0

Solve::ifun : Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. à

Out[1078]=   
5 

3
,   ,   



3
,  



3
,   ,  

5 

3


Therefore, our two horizontal tangents are located at q = ≤p 3.

As for vertical tangents, we solve for where the reciprocal of the derivative is zero, that is, 1  dy dx = 0 for q.

In[1079]:= 1  dydx
Solve1  dydx  0, 

Out[1079]= 1  2 Cos Sec 3 
2

 Sin 
2


Solve::ifun : Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. à

Out[1080]=   0,   
4 

3
,   

2 

3
,  

2 

3
,  

4 

3


Since the solution above only gives us the principal solution q = 0 of -tan3 q 2 = 0, we need to additionally solve 3 q 2 = ≤p
for q, which yields our two other solutions, q = ≤2 p 3.

NOTE: What is the derivative at q = p?

Example 11.10.  Find the area of the region contained inside the circle r = 3 sin q and outside the convex limacon r = 2 - sin q.

Solution: We first plot the two polar curves on the same set of axes.
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In[1081]:= PolarPlot3 Sin, 2  Sin, , 0, 2 ,
AspectRatio  Automatic, ImageSize  200

Out[1081]=
-2 -1 1 2

-3

-2

-1

1

2

3

Next, we find their points of intersection by equating them and solving for q:  

In[1082]:= Solve3 Sin  2  Sin, 
Solve::ifun : Inverse functions are being used by Solve, so

some solutions may not be found; use Reduce for complete solution information. à

Out[1082]=  


6


Observe that Mathematica gives only the solution q = p 6, which lies in the first quadrant since trigonometric inverse functions
are involved.  We can see from the above graph that the other point of intersection must be at q = 5 p 6 due to symmetry. Thus,
the area of the enclosed region is given by the difference in areas enclosed by the circle and limacon between q = p 6 and
q = 5 p 6:

In[1083]:= 1  2 Integrate3 Sin^2, , Pi  6, 5 Pi  6 

Integrate2  Sin^2, , Pi  6, 5 Pi  6
Out[1083]= 3 3

In[1084]:= N
Out[1084]= 5.19615

NOTE: Using even symmetry of our region, it would have been enough to integrate between q = p 6 and q = p 2 and double the
result.  

ü Exercises 

In Exercises 1 and 2, use Mathematica to perform the following conversions.

1. Convert the rectangular coordinates -1, 3  into polar coordinates.

2. Convert the polar coordinates 5, 3 p 4 into Cartesian coordinates.  What if we replace 5, 3 p 4 with -5, 3 p 4?
In Exercises 3 through 6, plot the graph of each of the given polar equations and find an interval for q over which each graph is
traced only once.
3.  r = 3 - 4 cos q    4.  r = 2 + sin q   5.  r = 3 cos 3 q 2  6.  r = 5 sin 2 q

7. Generate the butterfly curve r = ‰cos q - 2 cos 4 q + sin5 q 12.
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8. Find all horizontal and vertical tangents of the lemniscate r2 = cos2 q.  Plot its graph to confirm your answers.

9. Consider the rose curve r = cos 2 q for -2 p § q § 2 p.
a) Plot its graph.
b) Find the area of one petal of the curve.

In Exercises 10 through 12, graph and find the area of each of the given regions.
10. The common interior of r = 3 - 2 sin q and r = -3 + 2 sin q.
11. Inside r = 2 1 + cos q and outside r = 2 cos q.
12. Inner loop of r = 3 + 4 sin q.

In Exercises 13 and 14, find the length of the given curve over the specified interval.
13.  r = 1 + sin q, 0 § q § 2 p 14.  r = 6 1 + cos q,  0 § q § 2 p

15. Consider the polar equations r = 4 sin q and r = 2  2 - sin2 q.
a) Graph the polar equations on the same axes.
b) Find the points of intersection of the curves.
c) Find the circumference of each curve.

ü 11.3   Conic Sections

Students should read Section 11.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Conic sections refer to the three families of curves (ellipses, hyperbolas, parabolas) generated by intersecting a plane with a cone.
Recall the equations for describing each family of curves in standard position:

I. Ellipse

 x

a
2 +  y

b
2
= 1

If b > a > 0, then the ellipse has two foci located at 0, ≤c, where c = b2 - a2 .

II. Hyperbola

 x

a
2 -  y

b
2
= 1

III. Parabola

y = 1

4 c2
x2

NOTE: These formulas assume that the "center" of the conic section is at the origin.  To translate the center to a different point,
say x0, y0, we replace x and y by x - x0 and y - y0, respectively.

The most useful command for plotting conic sections is ContourPlot[eqn,{x,a,b},{y,c,d}], where eqn is the equation of the conic.

Example 11.10.  Determine the family that each conic section below belongs to and then make a plot of each.

a) x2

9
+

y2

16
= 1

b) y = 9

4
x2

c) x2

4
-

y2

9
= 1
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Solution:

a) This conic is an ellipse.  To plot it, we evaluate

In[1085]:= ContourPlotx^2  9  y^2  16  1, x, 4, 4,
y, 4, 4, Axes  True, Frame  False, ImageSize  200

Out[1085]=
-4 -2 2 4

-4

-2

2

4

Observe that the length of semi-major and semi-minor axes are 4 and 3, respectively.  How would this change if we happen to
switch the coefficients 9 and 16?

b) This conic is a parabola.  Since the equation here is solved for y, we merely use the Plot command:

In[1086]:= Plot9  4 x^2, x, 2, 2, ImageSize  200

Out[1086]=

-2 -1 1 2

2

4

6

8

c) This conic is a hyperbola.  Here is its plot:

In[1087]:= ContourPlotx^2  4  y^2  9  1, x, 6, 6,
y, 6, 6, Axes  True, Frame  False, ImageSize  200

Out[1087]=
-6 -4 -2 2 4 6

-6

-4

-2

2

4

6

Example 11.11.  Find an equation of an ellipse with center at -1, 3 and having semi-major and semi-minor axes of lengths 5
and 1/2, respectively.

Solution: From the given data, we see that x0, y0 = -1, 3, a = 5 , and b = 1 2.  The equation of our ellipse is therefore:
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x+12

5
+ 4 y - 32 = 1

To plot it, we evaluate

In[1088]:= ContourPlotx  1^2  5  4 y  3^2  1, x, 4, 2, y, 2, 4,
AspectRatio  2  3, Axes  True, Frame  False, ImageSize  200

Out[1088]=

-4 -3 -2 -1 1 2

2.5

3.0

3.5

4.0

ü Exercises 

In Exercises 1 through 4, plot each of the given conic sections.  Can you determine the family that each conic section belongs to
before plotting?  Also, what are the values of the parameters a and b (or c) in each conic section?

1.  x2

25
+

y2

4
= 1 2.  

y2

36
- x2

16
= 1 3.  y = 3 x2 4.   

y-22

25
- x+12

49
= 1

5. Consider the ellipse x2

9
+ 4 y2 = 1.

a) Make a plot of the ellipse.
b) What are the lengths of the semi-major and semi-minor axes?
c) Where are the foci located?
d) Compute the sum of the distances from the two foci to any point on the ellipse.  Do you recognize the answer? 

6. Find an equation of an ellipse with center 1 2, -5 and having semi-major and semi-minor axes of lengths 3/4 and 7 ,
respectively. 

7. Find all points on the hyperbola x2

25
-

y2

9
= 1 where its slope equals 1. 

8. Consider a polar curve of the form r = d e

1+e cos q
, where d and e are non-negative constants.

a) Plot this curve for d = 3, and e = 1 2.  Do you recognize this curve as a conic section?  Of which type?  Hint: Use the com-

mand PolarPlot. 

b) Repeat part a) but this time use e = 2 instead.  Do you recognize this curve as a conic section?  Of which type?

c) Repeat part a) but this time use e = 1 instead.  Do you recognize this curve as a conic section?  Of which type?

d) Describe how the graph changes as we vary the values d  and e.  What happens to the graph when e = 0?  NOTE: The value e
is called the eccentricity of the conic section.  

e) Assume 0 < e < 1.  Convert the polar equation r = d e

1+e cos q
 to that in standard form for an ellipse,   x-x0

a
2 +  y-y0

b
2
= 1, and

determine formulas for its center, semi-major, and semi-minor axes.  Verify these formulas for the ellipse in part a).
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Chapter 12 Vector Geometry
Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible
to view 3-D plots generated by Mathematica from different perspectives.  First, place your screen cursor over the plot.  Then drag
the mouse while pressing down on the left mouse button to rotate the plot.

ü 12.1  Vectors

Students should read Sections 12.1 - 12.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

A vector is an object that has magnitude and direction.  In physics, these vectors are denoted by arrows, where the magnitude of
the vector is represented by the length of the vector, and the way in which the arrow points indicates its direction.  In mathemat-
ics, these vectors are represented by points in two or three dimensions, where the vector is the arrow that starts at the origin and
ends at the point.  For example, the point (2, 1, 3) could be considered both as a point in 3-D space and as a vector from (0, 0, 0)
to (2, 1, 3). To distinguish a point from a vector, we will use the angled brackets  and  instead of parentheses. Thus, the point (2,
1, 3) is denoted (2, 1, 3) as usual, but the vector from the origin to that point is denoted 2, 1, 3.  

The length or magnitude of a vector v is denoted v, and is read as "norm v."  If  v = a, b, c, then v = a2 + b2 + c2 .  In

two dimensions, if v = a, b, then v = a2 + b2 . 

Vectors and matrices, in Mathematica,  are simply lists.  A vector is a list of numbers within braces, with commas between
numbers, while a matrix is a list of lists (vectors), with each vector list being a row of the matrix (for a complete description of

lists in Mathematica, see Section 1.2.3 of this text).  Of course, all rows must be the same size.  For example, consider the vector

a below:

In[1089]:= a  1, 3 , 5
Out[1089]= 1, 3, 5
The ith component of the vector a is denoted by ai, or in Mathematica, by a[[i]].  For instance the second component of a, which
is 3, would be obtained by:

In[1090]:= a2
Out[1090]= 3

All of the usual vector algebra operations are available to us:

Dot Product

The Dot Product of two vectors u = u1, u2, u3 and v = v1, v2, v3 is defined by 

u ◊ v = u1 v1 + u2 v2 + u3 v3.  For example:

In[1091]:= a  1, 3, 5
b  1, 2, 3
a.b

Out[1091]= 1, 3, 5
Out[1092]= 1, 2, 3
Out[1093]= 10
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or

In[1094]:= Dota, b
Out[1094]= 10

NOTE: We use the ordinary period symbol on the keyboard for the dot product.

Cross Product

The cross product of two vectors u = u1, u2, u3 and v = v1, v2, v3, is defined as a vector perpendicular to both u and v, and

calculated by the following "right-hand" rule:

u × v = u2v3 - u3v2, u3 v1 - u1 v3 , u1v2 - u2v1
This calculation can be done in Mathematica in two ways.  The first is to use the Cross command:

In[1095]:= Crossa, b
Out[1095]= 19, 2, 5
The second is by using the multiplication symbol "×".  This special symbol can be entered on the Basic Math Input Palette or

by pushing the escape key, followed by typing the word "cross" and hitting the escape key again:  [esc]cross[esc]

In[1096]:= a  b

Out[1096]= 19, 2, 5
Recall that the cross product of 2 vectors, a and b creates a vector perpendicular to the plane of the vectors a and b.  In your
Calculus text, the cross product is also defined as the determinant of a special matrix. We will look at this a little later.

Norm (Length) of a Vector

The norm or length of a vector can be calculated in Mathematica by the Norm command

In[1097]:= Clearx, y, z
In[1098]:= Normx, y, z

Out[1098]= Absx2  Absy2  Absz2

In[1099]:= Norma
Out[1099]= 35

In[1100]:= Norm 2 a
Out[1100]= 2 35

In[1101]:=

Vector Addition

The sum of two vectors u = u1, u2, u3 and v = v1, v2, v3 is defined to be u + v = u1 v1 + u2 v2 + u3 v3.
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In[1102]:= 2 a  3 b  1, 1, 1
Out[1102]= 0, 13, 2

Example 12.1.  Let a = 1, 2, 3.  Show that a
a is a unit vector.

In[1103]:=

Solution:

In[1104]:= Norma  Norma
Out[1104]= 1

Example 12.2.  Find the equation of a line in 3-space passing through P0 = (3,-1,4) in the direction of  v = 2,7,1 and graph it.

Solution: The line through P0 = x0, y0, z0 in the direction of v = a, b, c is described in vector or parametric form by:

Vector form:  rt = x0, y0, z0 + t a, b, c
Parametric Form:  x = x0 + a t, y = y0 + b t, z = z0 + c t

Thus, the vector description of the line is

In[1105]:= Clearr, t;
rt_  3, 1, 4  t 2, 7, 1

Out[1106]= 3  2 t, 1  7 t, 4  t
To graph this line we use the ParametricPlot3D command:

ParametricPlot3D fx, fy, fz, u, umin, umax
produces a three-dimensional space curve parametrized by a variable u which runs from
umin to umax. 

In[1107]:= ParametricPlot3Drt, t, 3, 3,
ImageSize  250, ImagePadding  15, 15, 15, 15

Out[1107]=

0
5

-20

-10

0

10

20

2
4
6

NOTE: This plot command uses the option ImageSize to specify the size of graphics output.  Settings include Tiny, Small,

Medium, Large, or {pt}, where pt is the number of points.

Example 12.3.  Give the description in vector form of the line that passes through the points P = 1, 0, 4 and Q = 3, 2, 1, then

find the midpoint of the line segment PQ and plot this line segment.
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Solution: The line through points P = a1, b1, c1 and Q = a2, b2, c2 has vector form rt = 1 - t a1, b1, c1 + t a2, b2, c2.  In
this parametrization, r0 = P and r1 = Q.  Thus,

In[1108]:= rt_  1  t 1, 0, 4  t 3, 2, 1
Out[1108]= 1  2 t, 2 t, 4 1  t  t

The midpoint of the line segment PQ is 

In[1109]:= r 1
2


Out[1109]= 2, 1,
5

2


The plot of the line segment is

In[1110]:= ParametricPlot3Drt, t, 0.1, 1.1,
ImageSize  250, ImagePadding  15, 15, 15, 15

Out[1110]=

1.0 1.5 2.0 2.5 3.0

0.0
0.5

1.0
1.5

2.0

1

2

3

4

Example 12.4.  Find the angle between the vectors v = 3,6,2 and w = 6,3,6.

Solution:  Remember that  the  angle  between two vectors,  v  and w,  is  given by  q,  which  is  defined by  q = cos-1 v.w

v w   .

Therefore,

In[1111]:= v  3, 6, 2
w  6, 3, 6

Out[1111]= 3, 6, 2
Out[1112]= 6, 3, 6

In[1113]:=   ArcCos v.w

Normv Normw 

Out[1113]= ArcCos16
21



In[1114]:= N
Out[1114]= 0.704547

Therefore, q = .7045 radians.

Mathematica for Rogawski's Calculus 2nd Editiion.nb  239



ü Exercises 

1. Calculate the length of the vector v = 1, 3, 4.
In Exerices 2 and 3, calculate the linear combinations.
2.   5 2, -2, 5 + 6 1, 3, 8 3.   6 2, 0, -1  - 3 8, 6, 9
4. Find a vector parametrization for the line that passes through P = 1, 2, -6 with direction vector v = 2, 1, 5.
In Exercises 5 and 6, determine whether the two given vectors are orthogonal (v ¦ w iff  v.w = 0):
5.  1, 1, 1,  1, -2, 3 6.  1, 1, 1,  -3, 2, 1
In Exercises 7 and 8, find the angle between the vectors:
7.  1, 2,  5, 7 8.  2, 4, 1,  1, -3, 5

ü 12.2  Matrices and the Cross Product

Students should read Section 12.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

In order to understand the alternate approach to the cross product alluded to above, we need to define the terms matrix and
determinant.

Matrices

A matrix is a rectangular array of numbers consisting of n rows and m columns (denoted n × m).  We are especially interested in
square matrices where m = n and, in particular, m = 2 or m = 3.  For example:  A 3 × 3 matrix would be

a11 a12 a13

a21 a22 a23

a31 a32 a33

but Mathematica would show this matrix as:

In[1115]:= A  Table10 i  j, i, 3, j, 3
Out[1115]= 11, 12, 13, 21, 22, 23, 31, 32, 33
In[1116]:= B  Tablei  j, i, 2, j, 2
Out[1116]= 2, 3, 3, 4
To have Mathematica display a matrix in the traditional way, use the MatrixForm command:

In[1117]:= MatrixFormA
MatrixFormB

Out[1117]//MatrixForm=

11 12 13
21 22 23
31 32 33

Out[1118]//MatrixForm=

 2 3
3 4



Note that in the definition of the matrices A and B, Mathematica treats them as lists and when we use the command Matrix-
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Form, we can see the matrices presented in the traditional way.

Determinants

The determinant is a function, Det, which assigns to each square matrix a number which is defined for 2 × 2 and 3 × 3 matrices
as follows:

In[1119]:= Cleara, b;
F  a, b, c, d
MatrixFormF

Out[1120]= a, b, c, d
Out[1121]//MatrixForm=

 a b
c d



In[1122]:= DetF
Out[1122]= b c  a d

In[1123]:= G  a1, a2, a3, b1, b2, b3, c1, c2, c3
MatrixFormG

Out[1123]= 1, a2, a3, b1, b2, b3, c1, c2, c3
Out[1124]//MatrixForm=

1 a2 a3
b1 b2 b3
c1 c2 c3

In[1125]:= DetG
Out[1125]= a3 b2 c1  a2 b3 c1  a3 b1 c2  b3 c2  a2 b1 c3  b2 c3

Using these definitions, we can now define the cross product of two vectors by the formula

b1, b2, b3μc1, c2, c3 =Det

i j k

b1 b2 b3

c1 c2 c3

where i = 1, 0, 0, j = 0, 1, 0, and k = 0, 0, 1.
Example 12.5.  Calculate the cross product of  v = 1, 3, 6 and w = -2, 8, 5.
In[1126]:=

Solution:
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In[1127]:= Cleari, j, k
g  i, j, k
v  1, 3, 6
w  2, 8, 5
A  g, v, w

Out[1128]= i, j, k
Out[1129]= 1, 3, 6
Out[1130]= 2, 8, 5
Out[1131]= i, j, k, 1, 3, 6, 2, 8, 5
In[1132]:= MatrixFormA
Out[1132]//MatrixForm=

i j k
1 3 6
2 8 5

In[1133]:= v  w

DetA
Out[1133]= 33, 17, 14
Out[1134]= 33 i  17 j  14 k

Observe that the two previous outputs are equivalent.

ü Exercises 

1.  Calculate the determinants of 

0 5 0

1 3 6

2 5 5

 and of 
3 5

6 2
.

2.  Calculate the cross product of  v = 2, 0, 0 and w = -1, 0, 1.  Do this using the Cross command as well as by the determi-
nant approach. 

3.  Calculate the area of the parallelogram spanned by the vectors v and w above. (Hint: look up the formula for this in your
calculus textbook.)

4.  Calculate the volumn of the parallelepiped spanned by:

      u  =  2, 2, 1,  v  =  1, 0, 3,   and  w  =  0, -4, 2
5.  Show that  väw = -wäv  and that  väv = 0.

ü 12.3  Planes in 3-Space

Students should read Section 12.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Note that a plane in 3-D space is defined as all points P x, y, z such that the line segment P0 P  is perpendicular to a given

vector n, called the normal vector, where the initial point of n is P0 = x0, y0, z0.  In vector notation, this is described by the

equation n ◊ P0 P  = 0, where  P0 P = x - x0, y - y0, z - z0.  Therefore, the equation of the plane through P0 = (x0, y0, z0 with
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nonzero normal vector n = a, b, c can be denoted by either of the following:

Vector form: n ◊x, y, z = d
Scalor form: a x + b y + c z = d

Here, d = a x0 + b y0 + c z0 = n ◊x0, y0, z0.
Example 12.6.  Find an equation of the plane determined by the points P = 1, 0, -1, Q = 2, 2, 1, and R = 4, 2, 5.  Then plot
the graph of the plane.

Solution: The vectors a = PQ  and  b = PR  lie in the plane, so the cross product n = aμb is normal to the plane:

In[1135]:= Cleara, b, n
a  2, 2, 1  1, 0, 1
b  4, 2, 5  1, 0, 1
n  a  b
n . x, y, z  d

Out[1136]= 1, 2, 2
Out[1137]= 3, 2, 6
Out[1138]= 8, 0, 4
Out[1139]= 8 x  4 z  d

To compute the value of d,  we choose any point on the plane, that is, we can choose either P,  Q,  or R,  and then compute
d = n ◊ P, d = n ◊Q, or d = n ◊R.  Let us choose P = 1, 0, -1.
In[1140]:= d  n . 1, 0, 1
Out[1140]= 12

Therefore, the plane we want has equation 8 x - 4 z = 12  and the graph is obtained by using the ContourPlot3D  command
which has the form:

ContourPlot3D f , x, xmin, xmax, y, ymin, ymax, z, zmin, zmax
which produces a three-dimensional contour plot of f as a function of x, y and z. 

or

ContourPlot3D f  g, x, xmin, xmax, y, ymin, ymax, z, zmin, zmax
which plots the contour surface for which f  g. 
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In[1141]:= ContourPlot3D8 x  4 z  12, x, 2, 2, y, 2, 2, z, 2, 2, ImageSize  250

Out[1141]=

In order to see this plane more clearly from a different perspective, move your cursor over the plot.  Then drag the mouse while
pressing and holding the left mouse button to rotate the plot.

ü Exercises 

1.  Let PL be the plane with equation 7 x - 4 y + 2 z = 10.  Find an equation of the plane QL parallel to                       PL and
passing through Q = 2, 1, 3 and graph it.  

2.  Find the equation of the plane through the points P = 1, 5, 5, Q = 0, 1, 1, and R = 2, 0, 1 and     graph it.

3.  Find the angle between the two planes:  x + 2 y + z = 3 and 4 x + y + 3 z = 2.  (Hint: The angle between two planes is the angle
between their normal vectors.) 

ü 12.4  A Survey of Quadric Surfaces

Students should read Section 12.6 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

A quadric surface is the three-dimensional equivalent of a conic section (i.e., ellipses, hyperbolas, and parabolas).  The basic
types of quadric surfaces are ellipsoids, hyperboloids (of one or two sheets), paraboloids (elliptic or hyperbolic), and cones.

ü 12.4.1  Ellipsoids

The standard ellipsoid is described by x a2 + y b2 + z c2 = 1. To help us visualize it, we are often interested in the mesh of

curves called traces, obtained by intersecting our quadric surface with planes parallel to one of the coordinate planes. In the plot
below, you can see that mesh, and also see that the traces of an ellipsoid are themselves ellipses.

Example 12.7.  Graph the ellipsoid above, with a = 3, b = 4, and c = 5, and describe the traces of this ellipsoid. 

Solution: The correct Mathematica command to use is ContourPlot3D.  This is shown following:
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In[1142]:= ContourPlot3Dx  3^2  y  4^2  z  5^2  1, x, 6, 6,
y, 6, 6, z, 6, 6, AxesLabel  x, y, z, ImageSize  250

Out[1142]=

Again, note that the ellipsoid can be manually rotated to look at it from different perspectives. First, place your screen cursor over
the plot.  Then drag the mouse while pressing down on the left mouse button to rotate the plot.  When you do this, you will note
that, indeed, all of the traces are ellipses.

ü 12.4.2  Hyperboloids

The three-dimensional hyperbolas are called hyperboloids, and come in two types: the hyperboloid of one sheet, with standard

form x a2 + y b2 = z c2 + 1, and the hyperboloid of two sheets, with standard form x a2 + y b2 = z c2 - 1.  A limiting

case of the hyperboloid is the elliptic cone, defined by the equation x a2 + y b2 = z c2.

Example 12.8.  Describe the traces of the two hyperboloids: x 32 +y 42 = z 52 + 1 and x 32 +y 42 = z 52 - 1.

Solution: First we graph the hyperboloids:

In[1143]:= ContourPlot3Dx  3^2  y  4^2  z  5^2  1, x, 6, 6,
y, 6, 6, z, 6, 6, AxesLabel  x, y, z, ImageSize  250

Out[1143]=

In this case, the traces parallel with the xy-axis are all ellipses, and the traces parallel wth the xz- and yz-axes are hyperbolas.
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In[1144]:= ContourPlot3Dx  3^2  y  4^2  z  5^2  1, x, 30, 30,
y, 30, 30, z, 30, 30, AxesLabel  x, y, z, ImageSize  250

Out[1144]=

When we look at this plot, we see that the traces are the same as for the previous hyperboloid of one sheet.

Example 12.9.  Graph the cone with a = 3, b = 4, and c = 5, and define its relationship to the hyperboloid of one sheet.

Solution: We get the graph by using the ContourPlot3D Command: 

In[1145]:= ContourPlot3Dx  3^2  y  4^2  z  5^2, x, 30, 30,
y, 30, 30, z, 30, 30, AxesLabel  x, y, z, ImageSize  250

Out[1145]=

When we compare this plot with that of the hyperboloid of one sheet (see previous example), we can see clearly that this cone
can be thought of as a limiting case of the hyperboloid of one sheet in which we pinch the waist down to a point.

ü 12.4.3  Paraboloids

The final family of quadric surfaces that we want to consider are the paraboloids, of which there are two types: elliptic and

hyperbolic. Their standard equations are z = x a2 + y b2 (elliptic paraboloid) and z = x a2 - y b2 (hyperbolic paraboloid).

Example 12.10.  Graph the two types of paraboloids for a = 3 and b = 4 and describe their traces.

Solution: Here is the graph of the elliptic paraboloid:
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In[1146]:= ContourPlot3Dx  3^2  y  4^2  z, x, 30, 30,
y, 30, 30, z, 30, 30, AxesLabel  x, y, z, ImageSize  250

Out[1146]=

Observe that the traces in the direction of the xz- and yz-axes are both parabolas while those in the xy-direction are ellipses, which
can be seen by dragging the plot in the appropriate directions.  Similarly, for the hyperbolic paraboloid:

In[1147]:= ContourPlot3Dx  3^2  y  4^2  z, x, 30, 30,
y, 30, 30, z, 30, 30, AxesLabel  x, y, z, ImageSize  250

Out[1147]=

Again, by dragging the plot above, we see that the traces in the yz-direction are parabolas while those in the xz-direction are
hyperbolas.

ü 12.4.4  Quadratic Cylinders

The last group of quadric surfaces we will look at are the quadratic cylinders. These are surfaces formed from a two-dimensional
curve (in the xy-plane) along with all vertical lines passing through the curve:

Example 12.11.  Graph a selection of quadratic cylinders.

Solution:

a)  A circular cylinder of radius r:  x2 + y2 = r2.  For the graph, we will use r = 3.
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In[1148]:= ContourPlot3Dx^2  y^2  3^2, x, 5, 5, y, 5, 5,
z, 30, 30, AxesLabel  x, y, z, ImageSize  250

Out[1148]=

b)  An elliptic with equation x a2 + y b2 = 1. We will use a = 3 and b = 6.

In[1149]:= ContourPlot3Dx  3^2  y  6^2  1, x, 5, 5,
y, 8, 8, z, 20, 20, AxesLabel  x, y, z, ImageSize  250

Out[1149]=

c) A hyperbolic cylinder with equation x a2 - y b2 = 1.  We will use a = 3 and b = 6.

In[1150]:= ContourPlot3Dx  3^2  y  6^2  1, x, 10, 10,
y, 10, 10, z, 20, 20, AxesLabel  x, y, z, ImageSize  250

Out[1150]=

d) A parabolic cylinder with equation y = a x2 with a = 3.

248   Mathematica for Rogawski's Calculus 2nd Editiion.nb



In[1151]:= ContourPlot3Dy  3 x^2, x, 3, 3, y, 1, 8,
z, 10, 10, AxesLabel  x, y, z, ImageSize  250

Out[1151]=

ü Exercises 

In Exercises 1 through 5, state whether the given equation defines an ellipsoid, hyperboloid, or paraboloid, and of which type.
Then confirm your answer by graphing the quadric surface.

1.   x 52 + y 72 + z 92 = 1

2.   x 52 - y 72 + z 92 = 1
3.    x2 + 5 y2 - 6 z2 = 1

4.    z = x 52 + y 72

5.    z = x 52 - y 72

In Exercises 6 through 8, state the type of  the quadric surface and graph it, and then describe the trace obtained by intersecting it
with the given plane.

6.   x 52 + y2 + z 92 = 1,  z = 1 4
7.   y = 2 x2,    z = 25

8.   x 52 - y 72 + z 92 = 1,  y = 4

ü 12.5  Cylindrical and Spherical Coordinates

Students should read Section 12.7 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

ü 12.5.1  Cylindrical Coordinates

In cylindrical coordinates, the point P = x, y, z is expressed as r, q, z where r and q are the polar coordinates of x and y.  The
formulas for converting from x, y, z to r, q, z are:

Cylindrical to Rectangular Rectangular to Cylindrical

x = r cos q r = x2 + y2

y = r sin q tan q = y  x
z = z z = z

The commands in Mathematica  to do these conversions must first be loaded into Mathematica  from the "Vector  Analysis"
external package:
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In[1152]:=  VectorAnalysis`

Example 12.12.  Convert r, q, z = 2, 3 p 4, 5 to rectangular coordinates.

Solution: We use the CoordinatesToCartesian command to convert from cylindrical to rectangular coordinates:

In[1153]:= CoordinatesToCartesian2, 3 Pi  4, 5, Cylindrical
Out[1153]=  2 , 2 , 5
In[1154]:= N
Out[1154]= 1.41421, 1.41421, 5.
Example 12.13.  Convert x, y, z = 2, 3, 5 to cyclindrical coordinates.

Solution: We use the CoordinatesFromCartesian command to convert from rectangular to cylindrical coordinates:

In[1155]:= CoordinatesFromCartesian2, 3, 5, Cylindrical

Out[1155]=  13 , ArcTan 3
2
, 5

In[1156]:= N
Out[1156]= 3.60555, 0.982794, 5.
Of course, one very strong point for Mathematica is its graphing ability.  It will easily graph functions described in cylindrical

coordinates. The command to do this is RevolutionPlot3D. 

RevolutionPlot3D fz, t, tmin, tmax, q, qmin, qmax
takes the azimuthal angle q to vary between qmin and qmax.

Example 12.14.  Graph the cylindrical coordinate function z = 2 r2 sin 5 q
1+r2

.

Solution:

In[1157]:= Clearr, ;

RevolutionPlot3D 2 r
2 Sin5 
1  r2

, r, 0, 5, , 0, 2 , ImageSize  250

Out[1158]=

ü 12.5.2  Spherical Coordinates

A point P = x, y, z is described in spherical coordinates by a triple r, q, f where r is the distance of P from the origin, q is the
polar angle of the projection x, y, 0, and f is the angle between the z-axis and the ray from the origin through P. The formulas
for converting between rectangular and spherical coordinates are:
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Spherical to Rectangular Rectangular to Spherical

x = r cos q sin f r = x2 + y2 + z2

y = r sin q sin f tan q = y  x
z = r cos f cos f = z  r
These conversions are done in Mathematica using the same commands as with cylindrical coordinates, but with the word spheri-
cal replacing cylindrical.

Example 12.15.  Convert r, q, f = 2, 3 p 4, p 5 to rectangular coordinates.

Solution:

In[1159]:= CoordinatesToCartesian2, 3 Pi  4,   5, Spherical

Out[1159]=  1  5

2 2
, 2

5

8


5

8
,  2 

In[1160]:= N
Out[1160]= 1.14412, 0.831254, 1.41421
Example 12.16.  Convert x, y, z = 2, 3, 5 to spherical coordinates.

Solution:

In[1161]:= CoordinatesFromCartesian2, 3, 5, Spherical

Out[1161]=  38 , ArcCos 5

38
, ArcTan 3

2


In[1162]:= N
Out[1162]= 6.16441, 0.624754, 0.982794
Again, the main use here of Mathematica is its graphing ability.  It will easily graph functions described in spherical coordinates.

The command to do this is the SphericalPlot3D command. 

SphericalPlot3Dr, q, qmin, qmax, f, fmin, fmax
generates a 3 D plot with a spherical radius r as a function of spherical coordinates  and .

Example 12.17.  Graph the spherical coordinate function r = 1 + sin 6 f 6.

Solution:
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In[1163]:= SphericalPlot3D   1  Sin6   6, , 0, Pi, , 0, 2 Pi, ImageSize  250

Out[1163]=

ü Exercises 

Convert from cylindrical to rectangular:
1.  2, p 3, -4  2.  1, p 2, 3
Convert from rectangular to cylindrical:

3.   2, 2, 5 4.   4, 3 , 8

5.  Plot the surface z2 + r2 = 25 q and describe it.

Convert from spherical to rectangular:

6.    2, p 5, p 3 7.    4, p 6, 5 p 6
Convert from rectangular to spherical:

8.    2 , 2, 3 9.   4, 3 2, 8 

10.  Plot the surface r sin f = 5 and describe it.
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Chapter 13 Calculus of Vector-Valued Functions
Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible
to view 3-D plots generated by Mathematica from different perspectives.  First, place your screen cursor over the plot.  Then drag
the mouse while pressing down on the left mouse button to rotate the plot.

ü 13.1.  Vector-Valued Functions

Students should read Section 13.1 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

A vector-valued function is a vector where the components of the vector are themselves functions of a common parameter (or

variable). For example, r is a vector-valued function if rt = xt, yt, zt.  If we think of t as the time variable, the rt
describes the motion of a particle through three-dimensional space over time.  What we want to do is to understand what path is
taken.  We do this through graphing in three dimensions. Also, sometimes it is helpful to consider the projections of these curves
onto the coordinate planes.  For example, the projection of rt on the xy-plane is xt, yt, 0.
Example 13.1. Trace the paths of each of the following vector functions and describe its projections onto the xy-, xz-, and yz-
planes:

a)  rt = t, t2, 2 t
b)  rt = cos3 t, sin3 t, sin 2 t 
Solution:  We use the ParametricPlot3D command to trace the path of each curve and to see its projection.

a) First, we look at the plot of rt = t, t2, 2 t:
In[1164]:= ParametricPlot3Dt, t2, 2 t, t, 3, 3, PlotStyle  Red, ImageSize  250

Out[1164]=

-2 0 2

0
2

4
6

8

-5

0

5

This curve looks very much like a parabola in 3-D space.  To see the projections, we look first at: 
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In[1165]:= ParametricPlot3Dt, t2, 0, t, 3, 3,
PlotRange  1, 1, PlotStyle  Orange, ImageSize  250

Out[1165]=
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0.5
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-0.5

0.0

0.5

1.0

This is clearly a parabola in the xy-plane.

In[1166]:= ParametricPlot3Dt, 0, 2 t, t, 3, 3, Ticks  Automatic, 1, 0, 1, Automatic,
PlotStyle  Orange, ImageSize  250, ImagePadding  15, 15, 15, 15

Out[1166]=

-2
0

2-10
1

-5

0

5

And this clearly a line in the xz-plane.  

In[1167]:= ParametricPlot3D0, t2, 2 t, t, 3, 3,
Ticks  1, 0, 1, Automatic, Automatic, PlotStyle  Orange, ImageSize  250

Out[1167]=

-1 0 1

0
2

4
6

8

-5

0

5

This last plot is also clearly a parabola, but in the yz-plane.

b)  Next, we look at rt = cos3 t , sin3 t, sin 2 t:
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In[1168]:= ParametricPlot3DCost3, Sin t3, Sin2 t,
t, 2 , 2 , PlotStyle  Orange, ImageSize  250

Out[1168]=
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Note that since both sine and cosine are periodic with period 2 p, it is not necessary to extend the domain beyond -2 p or +2 p.
The projection in the xy-plane is:

In[1169]:= ParametricPlot3DCost3, Sin t3, 0,
t, 2 , 2 , PlotPoints  100, ImageSize  250

Out[1169]=

-1.0
-0.5

0.0
0.5

1.0

-1.0

-0.5
0.0

0.5
1.0

-1.0

-0.5

0.0

0.5

1.0

The projection in the xz-plane is:
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In[1170]:= ParametricPlot3DCost3, 0, Sin2 t, t, 2 , 2 , ImageSize  250

Out[1170]=

-1.0
-0.5

0.0
0.5

1.0

-1.0

-0.5
0.0

0.5
1.0

-1.0

-0.5

0.0

0.5

1.0

Lastly, the projection in the yz-plane is:

In[1171]:= ParametricPlot3D0, Sin t3, Sin2 t, t, 2 , 2 , ImageSize  250

Out[1171]=

-1.0
-0.5

0.0
0.5

1.0

-1.0
-0.5

0.0
0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

Note that the last two projections are almost exactly alike.  This is to be expected because the sine and cosine functions have the
same graph, but p 2 radians apart. 

ü Exercises 

In Exercises 1 through 3,  graph rt and its three projections onto the coordinate planes.

1.  rt = cos 2 t, cos t, sin t 2.  rt = t + 15, e0.08 t cos t, e0.08 t sin t
3.  rt = t, t, 25 t1 + t2
4. Which of the following curves have the same projection onto the xz-plane?  Graph the three projections to check your answer.

a.  r1t = t, et, t2 b.  r2t = et, t, t2 c.  r3t = t, cos t, t2

ü 13.2.  Calculus of Vector-Valued Functions

Students should read Section 13.2 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Since vector-valued functions are differentiated and integrated component by component, Mathematica will handle this easily
since it treats vectors as lists and automatically performs the indicated operation on each element of the list.
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The derivative of a vector valued function rt = xt, yt, zt is defined to be

r ' t = x ' t, y ' t, z ' t
while the integral of rt is

 rt „ t =  xt „ t,  yt „ t,  zt „ t.
Similarly, the limit is defined by

limtØa rt = limtØa xt, limtØa yt, limtØa zt.
Example 13.2.  Differentiate and integrate each of the following vector functions:

a) rt = t, t2, 2 t
b) st = cos3 t , sin3 t, sin 2 t
Solution:

(a)

In[1172]:= Clearr, s, t
In[1173]:= rt_ : t, t2, 2 t

st_ : Cost3, Sint3, Sin2 t
In[1175]:= t rt
Out[1175]= 1, 2 t, 2

In[1176]:=  rt t

Out[1176]=  t
2

2
,
t3

3
, t2

(b)

In[1177]:= t st
Out[1177]= 3 Cost2 Sint, 3 Cost Sint2, 2 Cos2 t

In[1178]:=  st t

Out[1178]=  3 Sint
4


1

12
Sin3 t, 

3 Cost
4


1

12
Cos3 t, 

1

2
Cos2 t

Limits are handled the same way both in the calculus of vector-valued functions and in Mathematica:

Example 13.3.  Evaluate limit
hØ0

 rt+h-rt
h

  for rt = t, t2, 2 t.

Solution:

Since rt has been defined in the previous example, we merely evaluate
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In[1179]:= Limit rt  h  rt
h

, h  0
Out[1179]= 1, 2 t, 2
As we would expect, this limit gives us the same answer for r ' t as in the previous example. 

Example 13.4.  Evaluate limit
tØ3

t2, 4 t, 1

t3
.

Solution:

In[1180]:= Limitt2, 4 t,
1

t3
, t  2

Out[1180]= 4, 8,
1

8


Derivatives of Dot and Cross Products

Using the formulas of the derivative of the dot and cross products for vector-valued functions is simple in Mathematica. As a
reminder, the formulas are:

d

dt
rt ◊st = rt ◊s ' t + r ' t ◊st and d

dt
rtμst = rtμs ' t + r ' tμst

Example 13.5.  Evaluate d

dt
rt ◊st and d

dt
rtμst for rt = t, t2, 2 t and st = cos3 t , sin3 t, sin 2 t.

Solution:

In[1181]:= trt.st
Out[1181]= Cost3  4 t Cos2 t  3 t Cost2 Sint  3 t2 Cost Sint2  2 t Sint3  2 Sin2 t
In[1182]:= trtst
Out[1182]= 2 t2 Cos2 t  6 t Cost Sint2  2 Sint3  2 t Sin2 t,

2 Cost3  2 t Cos2 t  6 t Cost2 Sint  Sin2 t,
2 t Cost3  3 t2 Cost2 Sint  3 t Cost Sint2  Sint3

Tangent Lines

Example 13.6.  Find the vector parametrization of the tangent line to rt = 1 - t2, 5 t, t3 at the point t = 1 and plot it along with

rt.
Solution: Recall that the tangent line at t0 has vector parametrization Lt = rt0 + t r ' t0:
In[1183]:= rt_  1  t2, 5 t, t3

r't
Lt_  r1  t  r'1

Out[1183]= 1  t2, 5 t, t3
Out[1184]= 2 t, 5, 3 t2
Out[1185]= 2 t, 5  5 t, 1  3 t
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Here is a plot of the curve and the tangent line.

In[1186]:= ParametricPlot3Drt, Lt, t, 2, 4, ImageSize  Small

Out[1186]=

-15-10-5 0

-10

0
10

20

0

10

20

30

NOTE: Recall that the plot can be rotated to better view it from different perspectives.

ü Exercises 

In Exercises 1 and 2 evaluate the limits

1.  limtØp sin 2 t, cos t, tan 4 t 2.  limtØ0  1

t+1
, et-1

t
, 4 t

In Exercises 3 and 4 compute the derivative and integral.

3.  rt = tan t, 4 t - 2, sin t 4.  rt = et, e2 t
5.  Find a parametrization of the tangent line at the point indicated and plot both the vector-valued curve and the tangent line on
the same set of axes.

6.  Evaluate 
d

dt
rgt for rt = 4 sin 2 t, 2 cos 2 t and gt = t2.

ü 13.3.  Arc Length

Students should read Section 13.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

The arc length of a path rt = x t, y t, z t for a § t § b is given by

L = a
b  r ' t  „ t = a

b x ' t2 + y ' t2 + z ' t2 „ t 

and like the one-dimensional version is difficult to evaluate by hand.  Thus Mathematica is the perfect tool for calculating this.

Example 13.7.  Compute the arc length of rt = 1 - t2, 5 t, 2 t3  over the interval 1 § t § 2.

Solution:
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In[1187]:= rt_ : 1  t2, 5 t, 2 t3
L  

1

2

Normr't t

Out[1188]=
1

54




54
134 9 130  18 1234 

8  8  
7

  4 14
EllipticE ArcSinh 3  3 

  4 14

,   4 14

  4 14
 

1   
2

  4 14
EllipticE ArcSinh 3  3 

  4 14

,   4 14

  4 14
 

8  8  
7

  4 14
EllipticE ArcSinh 6  6 

  4 14

,   4 14

  4 14
 

1   
2

  4 14
EllipticE ArcSinh 6  6 

  4 14

,   4 14

  4 14
 

8  8  
7

  4 14
EllipticF ArcSinh 3  3 

  4 14

,   4 14

  4 14
 

224  224  
2

  4 14
EllipticF ArcSinh 3  3 

  4 14

,   4 14

  4 14
 

8  8  
7

  4 14
EllipticF ArcSinh 6  6 

  4 14

,   4 14

  4 14
 

224  224  
2

  4 14
EllipticF ArcSinh 6  6 

  4 14

,   4 14

  4 14


Note that the above output indicates that Mathematica cannot find an antiderivative for the integrand, and thus we need to find

another technique to evaluate this integral.  Hence, we next try the numerical integrate command, NIntegrate, which does give
us our result:

In[1189]:= L  NIntegrateNormr't, t, 1, 2
Out[1189]= 15.285

Speed

The vector r ' t is also known as the velocity vector as it points in the (instantaneous) direction of motion described by rt.  Its
length or norm, r ' t, gives the speed at time t. 
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Example 13.8.  Compute the speed of rt = 1 - t2, 5 t, 2 t3 when t = 1, 1.5, and 2.

Solution: 

The following output gives a list of speeds of r ' t at the three given times using the Norm command, which calculates the norm
of a vector:

In[1190]:= rt_ : 1  t2, 5 t, 2 t3
Speed  Normr'1, Normr'1.5, Normr'2

Out[1191]=  65 , 14.7054, 617 
In[1192]:= N
Out[1192]= 8.06226, 14.7054, 24.8395
Observe that the speed is increasing as we move along the path of rt from t = 1 to t = 2.  This can be seen graphically by
plotting the speed:

In[1193]:= Normr't
PlotNormr't, t, 1, 2

Out[1193]= 25  4 Abst2  36 Abst4

Out[1194]=

1.2 1.4 1.6 1.8 2.0

15

20

25

NOTE: Observe how the Norm command inserts absolute values around each vector component in the formula for r ' t, which
seems redundant since each component is squared.  This is done because in Mathematica vector components are allowed to be
complex-valued, in which case absolute values are needed to refer to their magnitudes. 

ü Exercises 

In Exercises 1 and 2, compute the length of curve over the given interval.

1.  rt = 2 sin t, 6 t, 2 cos t,   -6 § t § 6 2.  rt = 12 t, 8 t32, 3 t2,   0 § t § 1

In Exercises 3 and 4, find the speed of a particle moving along the curve rt at the given value of t.

3.  rt = et-2, 15 t, 5  t,    t = 1 4.  rt = sin 2 t, cos 4 t, sin 6 t,   t = p 2 

5. Compute st = 0
t  r ' u  „u for rt = t2, 2 t2, t3 and interpret Mathematica's result.  

6. For rt = 4 t, 1 - 3 t, 24 t, compute s t as in the previous exercise.  Then use s t to find an arc length parametrization of

rt, that is, find js = t, where j is the inverse of s t, and check to see that rj s has unit speed, that is, r ' j s  = 1.
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Lastly, plot rt and rj s and compare them.

7.  Consider the helix rt = a sin t, a cos t, c t. 
a. Find a formula for the arc length of one revolution of rt.
b. Suppose a helix has radius 10, height 5, and makes three revolutions.  What is its arc length?

8. The Cornu spiral is defined by rt = xt, yt, where xt = 0
t
sin u2

2
 „u and yt = 0

t
cos u2

2
 „u.

a.  Plot the Cornu spiral over various intervals for t.
b.  Find a formula for its arc length along the interval -a § t § a, where a is a positive real number.
c.  What is its arc length in the limit as aØ¶?

ü 13.4.  Curvature

Students should read Section 13.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Vector tools previously studied including arc length enables one to study the idea of curvature, which serves as a measure of how
a curve bends, that is, the rate of change in direction of a curve.  In arriving at a definition of curvature, consider a path in vector
form and parametrized by

rt = x t, y t, z t
The parametrization is classified as regular if r ' t ∫ 0 for all  values of t and for which r t is defined.  Assume then that rt is
regular and define the unit tangent vector in the direction of r ' t, denoted T t, as follows:

Tt = r' t
r' t .

This unit tangent vector T at any point enables us to determine the direction of the curve at that point, so one may define the
curvature k (Greek letter kappa) at a point as

k =  dT

ds
 = T' t

r' t ,

which represents the magnitude of the rate of change in the unit tangent vector with respect to arc length. One denotes the vector
dT ds  as the curvature vector.  Its scalar length therefore measures curvature.  For example, a straight line has k = 0 (zero
curvature) as one would expect.  For a circle of radius r, we have k = 1  r (reciprocal of r).  This makes sense since a larger
circle should have smaller curvature.  In general, if we were to secure a circle, called the osculating circle, that best fits a curve at
a specific point on the curve, then curvature of the curve at such a point should agree with the curvature of the osculating circle,
that is, 

k = 1

r

Moreover, the radius r of this circle is called the radius of curvature. Note that the equations linking k and r illustrate their
inverse relationship: 

k = 1

r
 and r = 1

k

Example 13.9.  Compute the curvature k for a circle of radius r defined by 

rt = r cos t, r sin t

Solution: We first compute the unit tangent vector T using the formula Tt = r' t
r' t :
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In[1195]:= Clearr, T, t, 
In[1196]:= rt_   Cost,  Sint

r't
Tt_  r't  SimplifyNormr't

Out[1196]=  Cost,  Sint
Out[1197]=  Sint,  Cost

Out[1198]=   Sint
Abs Cost2  Abs Sint2

,
 Cost

Abs Cost2  Abs Sint2


Observe that in this output Mathematica is not able to reduce the expression inside the radical, which simplifies to r as a result of

the fundamental trigonometric identity cos2 x + sin2 x = 1.  This is due to the Norm command, which employs absolute values.

To remedy this, we use the formula r ' t = r ' t ◊r ' t  instead of the Norm command.

In[1199]:= Tt_  r't  SqrtSimplifyr't.r't

Out[1199]=   Sint
2

,
 Cost

2


We then compute the curvature using the formula k = T' t
r' t :

In[1200]:=   SqrtSimplifyT't.T't  Simplifyr't.r't

Out[1200]=
1

2

Since the radius r is assumed to be positive, we conclude that k = 1

r2
=  1

r
 = 1

r
 as expected.

Example 13.10.  Compute the curvature k for the curve defined by f x = x2 at the point 3, 9.
Solution: Observe that the graph of a function y = f x can be parametrized by x = t and y = f t and hence rt = t, f t. In
this case the formula for curvature reduces to 

In[1201]:= Clearr, t, f
rt_  t, ft

Out[1202]= t, ft
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In[1203]:= Tt_ 
r't

Sqrtr't.r't
  SqrtSimplifyT't.T't  Simplifyr't.r't

Out[1203]=  1

1  ft2
,

ft
1  ft2



Out[1204]=
ft2

1  ft23

which is the same as k =
f '' x

1+ f ' x232 . With f x = x2, we get

In[1205]:= ft_  t2



Out[1205]= t2

Out[1206]= 2
1

1  4 t23

At x = t = 3, the curvature becomes

In[1207]:=  . t  3

Out[1207]=
2

37 37

Here is a plot of the curvature along with the function.

In[1208]:= Plotft, , t, 0, 3

Out[1208]=

0.5 1.0 1.5 2.0 2.5 3.0

2

4

6

8

Example 13.10.  Compute the curvature k and the radius of curvature r for the curve defined by 

rt = 1 - t, t2 + 1, 2

3
t3 + 1 at t = 1 2.
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Solution: Again we begin by computing the unit tangent vector T: 

In[1209]:= Clearr, T, t, 
In[1210]:= rt_  1  t, t^2  1, 2  3 t^3  1

r't
Tt_  r't  SqrtSimplifyr't.r't

Out[1210]= 1  t, 1  t2, 1 
2 t3

3


Out[1211]= 1, 2 t, 2 t2

Out[1212]=  1

1  2 t22
,

2 t

1  2 t22
,

2 t2

1  2 t22


We then compute the curvature using the same formula as in the previous example and evaluate it at t = 1 2:

In[1213]:=   SqrtSimplifyT't.T't  Simplifyr't.r't
 . t  1  2

Out[1213]= 2
1

1  2 t24

Out[1214]=
8

9

Hence, the curvature k = 8 9 at t = 1 2 and the corresponding radius of curvature is r = 1 k = 9 8.

Curvature Formula (Cross Product)

There is an alternative formula for calculating the curvature of space curves that involves the cross product and eliminates the
need to compute the unit tangent vector function:

k =  r'' t μ r' t 
 r' t 3 =  at μ vt 

 vt 3  

Example 13.11.  Compute the curvature kt and the radius of curvature for the helix defined by rt = cos t, sin t, t for any real
number t.

Solution: We first find the derivative of the unit tangent vector with respect to t. 

In[1215]:= Clearr, T, t, 
rt_  Cost, Sint, t
r't
r''t

Out[1216]= Cost, Sint, t
Out[1217]= Sint, Cost, 1
Out[1218]= Cost, Sint, 0
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In[1219]:= t_  SqrtSimplifyCrossr''t, r't.Crossr''t, r't 
SqrtSimplifyr't.r't3

Out[1219]=
1

2

It follows that k = 1

2
 and r = 2 for all values of t.  Hence, our helix is a curve of constant curvature.

ü Exercises

In Exercises 1 and 2, find r ' t and Tt and evaluate T2.
1.  rt = 3 + 2 t i + 2 - 5 t j + 9 t k 2. vt = sin t, cos t, 1
3. Use Mathematica  to find the curvature function kx  for y = cos x.  Also plot kx  for 0 § x § 1. Where does the curvature
assume its maximum value?

4. Determine the unit normal vectors to rt = t i + sin t j at t = p

4
 and t = 3 p

4
.

5. Determine the curvature of the vector-valued function rt = 3 + 2 t i + 6 t j + 5 - t k.   

6. Find a formula for the curvature of the general helix rt = a cos t i + a sin t j + c t k.   

ü 13.5.  Motion in Three Space

Students should read Section 13.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Recall that the velocity vector is the rate of the change of the position vector with respect to time while the acceleration vector
represents the rate of change of the velocity vector with respect to time.  Moreover, speed is defined to be the absolute value of
the velocity vector. In short, we have the following:

vt = r ' t, st = vt and at = v ' t = r '' t
One can secure the velocity vector and the position function if the acceleration vector is known via integration.  More specifically:

vt = 0
t
au „u + v0 where v0 represents the initial velocity vector and rt = 0

t
vu „u + v0 t + r0 where r0 is the initial position.

Example  13.12.   Find  the  velocity  vector,  the  speed,  and  the  acceleration  vector  for  the  vector-valued  function
rt = t3 i + 1 - t j + 4 t2 k at time t = 1.

Solution: 
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In[1220]:= Clearr, v, s, a
rt_  t^3, 1  t, 4 t^2
vt_  r't
st_  Sqrtvt.vt
at_  r''t
v1
s1
a1

Out[1221]= t3, 1  t, 4 t2
Out[1222]= 3 t2, 1, 8 t

Out[1223]= 1  64 t2  9 t4

Out[1224]= 6 t, 0, 8
Out[1225]= 3, 1, 8
Out[1226]= 74

Out[1227]= 6, 0, 8

Thus, v1 = r ' 1 = 3 i - j + 8 k, s1 = 74 , and a1 = 6 i + 8 k. 

Example 13.13.  Find rt and vt if a t = t i+4 j subject to the initial conditions v0 = 3 i - 2 j and r0 = 0.

Solution: We first solve for vt by integrating at:
In[1228]:= Clearr, v, a

at_  t, 4
vt_  Integrateau, u, 0, t  v01, v02

Out[1229]= t, 4

Out[1230]=  t
2

2
 v01, 4 t  v02

Here, the constant vector of integration v0 = v01, v02 = 3, -2 equals the initial velocity:

In[1231]:= Solvev0  3, 2, v01, v02
Out[1231]= v01  3, v02  2

Thus, vt = t2

2
i + 4 t j + 3 i - 2 j.

In[1232]:= vt_  vt . v01  3, v02  2

Out[1232]= 3  t2

2
, 2  4 t

Next, we solve for rt by integrating vt:
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In[1233]:= rt_  Integratevu, u, 0, t  r01, r02

Out[1233]= r01  3 t  t3

6
, r02  2 t  2 t2

Again, the constant vector of integration r0 = r01, r02 = 0, 0 equals the initial position:

In[1234]:= Solver0  0, 0, r01, r02
Out[1234]= r01  0, r02  0

Hence, rt =  t3

6
+ 3 t i + 2 t2 - 2 t j.

Components of Acceleration

There are two components of acceleration: tangential and normal.  More precisely, the acceleration vector a can be decomposed

as  a = aT T + aN N,  where  aT =
d2 s

dt2
= a ◊ v

 v   is  the  tangential  component  and  aN = k ds

dt
2
= a ¥ v 

 v   is  the  normal  component.

Moreover, one has aT
2 + aN

2 = a2 so that aN =  a 2 -aT
2  and aT =  a 2 -aN

2 .

Example 13.14.  Determine the tangential and normal components of acceleration for the vector function r t = t3, t2, t.
Solution: 

In[1235]:= Clearr, v, s
rt_  t^3, t^2, t
r't
r''t

Out[1236]= t3, t2, t
Out[1237]= 3 t2, 2 t, 1
Out[1238]= 6 t, 2, 0
In[1239]:= speed  SimplifySqrtr't.r't

Out[1239]= 1  4 t2  9 t4

The result in the last output represents the speed at time t.  In order to secure the tangential component of the acceleration, we
differentiate the previous output: 

In[1240]:= at  Dspeed, t

Out[1240]=
8 t  36 t3

2 1  4 t2  9 t4

The normal component of the acceleration is
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In[1241]:= an  r''t.r''t  at2

Out[1241]= 4  36 t2 
8 t  36 t32

4 1  4 t2  9 t4

In[1242]:= Simplifyan

Out[1242]= 2
1  9 t2  9 t4

1  4 t2  9 t4

NOTE: The components of acceleration can also be found through the formulas aT =
a ◊ v

 v   and aN =
a ¥ v 
 v  ,  confirmed using

Mathematica as follows:

In[1243]:= at  r''t.r't  Sqrtr't.r't
an  SqrtCrossr''t, r't.Crossr''t, r't  Sqrtr't.r't

Out[1243]=
4 t  18 t3

1  4 t2  9 t4

Out[1244]=
4  36 t2  36 t4

1  4 t2  9 t4

ü Exercises 

In Exercises 1 and 2, calculate the velocity and acceleration vectors and the speed at the time indicated:
1.  rt = t2 i + 1 - t j + 5 t2 k, t = 2. 2.  rt = cos t i + sin t j + tan 2 t k, t = p

6
.

3.  Sketch the path rt = 1 - t2 i + 1 - t j for -3 § t § 3 and compute the velocity and acceleration vectors at t = 0, t = 1, and
t = 2.

4.  Find vt given at and the initial velocity v0.

a.  at = t i + 3 j, v0 = 1

2
i + 2 j b.  at = e2 t i + 0 j + t + 2 k, v0 = i - 3 j + 2 k

5.  Find rt and vt given at together with the initial velocity and position at rest:
a.  at = e3 t i + 4 t j + t - 2 k, v0 = 0 i + 0 j + k, r0 = 0 i + 3 j + 4 k
b. at = 0 i + 0 j + sin t k, v0 = i + j, r0 = i.

6.  Find the decomposition of at into its tangential and normal components at the indicated point:
a.  rt = 3 - 4 t i + t + 1 j + t2 k at t = 1
b.  rt = t i + e-t j + t e-t k at t = 0

7.  Show that the tangential and normal components of acceleration of the helix given by rt = cos t i + sin t j + t k are equal
to 0 and 1, respectively.
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Chapter 14  Differentiation in Several Variables
Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible
to view 3-D plots generated by Mathematica from different perspectives.  First, place your screen cursor over the plot.  Then drag
the mouse while pressing down on the left mouse button to rotate the plot.

ü 14.1  Functions of Two or More Variables

Students should read Section 14.1 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

ü 14.1.1 Plotting Level Curves using ContourPlot

We begin with plotting level curves f x, y = c of a function of two variables. The command to plot level curves is Contour-

Plot[f,{x,a,b},{y,c,d}].

Most of the options for ContourPlot are the same as those for Plot.  In the following example, we consider the option Image-

Size. 

Example 14.1.  Plot the level curves of f x, y = x2 + x y - y2 .

Solution:  Let us first plot the level curves using the default settings of Mathematica. 

In[1245]:= Clearx, y, f
fx_, y_ : x2  x y  y2

In[1247]:= ContourPlotfx, y, x, 5, 5, y, 5, 5, ImageSize  250

Out[1247]=

To get the level curves on the xy-plane without the shading, the colors, and the frame, but with the coordinate axes, we use the

following options of ContourPlot.  
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In[1248]:= ContourPlotfx, y, x, 5, 5, y, 5, 5, Frame  False,

Axes  True, ContourShading  False, ImageSize  250

Out[1248]=

Contours is an option of ContourPlot that can be used in two different ways: ContourØn displays n equally spaced contour

curves while ContourØlist plots level curves f x, y = c where c is an element of the list list. 

To plot 15 level curves, we evaluate

In[1249]:= ContourPlotfx, y, x, 1, 1, y, 1, 1, Contours  15, ImageSize  250 

Out[1249]=

Here is an example when list = -10, -5, -2, -1, 0, 1, 2, 5, 10. 
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In[1250]:= ContourPlotfx, y, x, 5, 5, y, 5, 5,
Contours  10, 5, 2, 1, 0, 1, 2, 5, 10, ImageSize  250

Out[1250]=

ü 14.1.2  Plotting Surfaces using Plot3D

Plot3D  is the three-dimensional analog of the Plot  command. Given an expression in two variables and the domain for the

variables, Plot3D produces a surface plot. 

The basic syntax to plot the graph of a function of two variables is Plot3D[ f,{x, a, b},{y, c, d}], where f is a function of x and y
with  a § x § b and c § y § d.

The command to plot the graphs of two or more functions on the same coordinate axes is Plot3D[{f, g, h, .... }, {x, a, b}, {y, c,

d}], where f, g, h, ...  are the functions to be plotted. 

We will begin with the default settings of plotting a graph of a function of two variables.

Example 14.2.  Plot f x, y = sinx - cos y.
Solution:

In[1251]:= Plot3DSinx  Cosy, x, 3, 3, y, 3, 3

Out[1251]=

Example 14.3.  Plot the graphs of f x, y = 3 x + 4 y - 3 and g x, y = 10 sinxy on the same axes.

Solution:  We will use red color for the graph of f  and blue for that of g. This is given using the option PlotStyle.
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In[1252]:= Plot3D3 x  4 y  3, 10 Sinx y, x, 5, 5,
y, 5, 5, PlotStyle  Green, Blue, ImageSize  250

Out[1252]=

NOTE: One of  the most significant improvements of  Mathematica  7.0 over the previous editions is its  graphics capability.

Plot3D has many options.  Evaluate the command Options[Plot3D] to see the many options you have to plot a nice graph. 

We will discuss some of these options below.

ViewPoint

In Mathematica 7.0, we can rotate the graph of a function of two variables by simply clicking on the graph and dragging the
mouse around to see the graph from any point of view.

The option ViewPoint specifies the point in space from which the observer looks at a graphics object. The syntax for choosing a

view point of a surface is Plot3D[f[x, y], {x, a, b}, {y, c, d}, ViewPointÆ{A, B, C} ]. The default value for {A, B, C}   is
{1.3,-2.4,2.0}. This may be changed by entering values directly.  

To view a graph from directly in front 0, -2, 0; in front and up 0, -2, 2; in front and down 0, -2, -2; left hand corner
 -2, -2, 0;  directly above  0, 0, 2. 
Plot3D[ f[x, y], {x, a, b}, {y, c, d}, ViewPoint Æ view ] produces a plot viewed from view. The possible values of view are

Above (along positive z-axis), Below (along negative z-axis), Front (along negative y-axis), Back (along  positive y-axis), Left

(along the negative x-axis), and Right (along the positive x-axis).

Example 14.4.  Plot f x, y = cos x sin y using ViewPoint option to view the graph from various view points.

Solution: We leave it to the reader to navigate all of the above choices. We will consider a few of them. 

In[1253]:= Clearf
fx_, y_  Cosx Siny

Out[1254]= Cosx Siny
Here is a plot of the graph using the default setting for ViewPoint: 
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In[1255]:= Plot3D fx, y, x, 2 Pi, 2 Pi, y, 2 Pi, 2 Pi , PlotRange  All,

ImageSize  250 

Out[1255]=

View from directly in front:

In[1256]:= Plot3D fx, y, x, 2 Pi, 2 Pi, y, 2 Pi, 2 Pi, ViewPoint  Front ,
PlotRange  All , ImageSize  250

Out[1256]=

View from in front and up:

In[1257]:= Plot3D fx, y, x, 2 Pi, 2 Pi, y, 2 Pi, 2 Pi, ViewPoint  0, 2, 2,
PlotRange  All, ImageSize  250

Out[1257]=

View from in front and down:
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In[1258]:= Plot3D fx, y, x, 2 Pi, 2 Pi, y, 2 Pi, 2 Pi, ViewPoint  0, 2, 2,
PlotRange  All, ImageSize  250

Out[1258]=

View from directly above:

In[1259]:= Plot3D fx, y, x, 2 Pi, 2 Pi, y, 2 Pi, 2 Pi, ViewPoint  Above,
PlotRange  All, Ticks  Automatic, Automatic, 1, 0, 1,
ImageSize  250

Out[1259]=

View from the right:

In[1260]:= Plot3D fx, y, x, 2 Pi, 2 Pi, y, 2 Pi, 2 Pi, ViewPoint  Right,
PlotRange  All, ImageSize  250

Out[1260]=

NOTE: As we pointed out earlier, we can also select different viewpoints by clicking on the graph and dragging the mouse
around until we get the desired viewpoint.

Mesh, MeshStyle, MeshShading 
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The option Mesh specifies the type of mesh that should be drawn.

The option MeshStyle specifies the style in which a mesh should be drawn. 

The option MeshShading is an option for specifying a list of colors to be used between mesh divisions.

We illustrate some uses of these options in the example below. 

Example 14.5.  Plot f x, y = cos x sin y using various options involving Mesh. 

Solution: 

In[1261]:= Clearf
fx_, y_  Cosx Siny

Out[1262]= Cosx Siny
To plot a graph without a mesh we use the setting MeshØNone.

In[1263]:= Plot3D fx, y, x, 2 Pi, 2 Pi, y, 2 Pi, 2 Pi , Mesh  None,

ImageSize  250 

Out[1263]=

MeshØn plots a surface with only nμn meshes. 

In[1264]:= Plot3D fx, y, x, 2 Pi, 2 Pi, y, 2 Pi, 2 Pi , Mesh  8 ,

ImageSize  250

Out[1264]=

We can choose the color of the mesh using MeshStyle. 
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In[1265]:= Plot3D fx, y, x, 2 Pi, 2 Pi, y, 2 Pi, 2 Pi , MeshStyle 

Red, Black, ImageSize  250 

Out[1265]=

Here is another use of MeshStyle:

In[1266]:= Plot3D fx, y, x, 2 Pi, 2 Pi, y, 2 Pi, 2 Pi , MeshStyle 

Dashing0.01, None, ImageSize  250 

Out[1266]=

To display a plot with selected colors between meshes we use MeshShading:

In[1267]:= Plot3Dfx, y, x, 2 Pi, 2 Pi, y, 2 Pi, 2 Pi,
MeshShading  Blue, Red, White, Purple, Green, Black, ImageSize  250 

Out[1267]=

Here is a neat example in Mathematica 7.0:
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In[1268]:= Plot3Dx^2  y^2  x^2  y^2^2, x, 1.5, 1.5, y, 1.5, 1.5,
BoxRatios  Automatic, PlotPoints  25, MeshFunctions  3 &,
MeshStyle  Purple, MeshShading  None, Green, None, Yellow, ImageSize  250

Out[1268]=

BoxRatios

The option BoxRatios specifies the ratio of the lengths of the sides of the box. This is analogous to specifying the AspectRatio

of a two-dimensional plot.  For Plot3D, the default setting is BoxRatiosØAutomatic. 

Example 14.6.  Plot f x, y = e1-x2-y2
 using the BoxRatio option.

Solution:

In[1269]:= Clearf
fx_, y_  E1x

2 y2

Out[1270]= 1x
2y2

In[1271]:= Plot3D fx, y, x, 2, 2, y, 2, 2, ImageSize  250

Out[1271]=
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In[1272]:= Plot3D fx, y, x, 2, 2, y, 2, 2, BoxRatios  1, 1, 0.62`,
ImageSize  250

Out[1272]=

AxesLabel

The option AxesLabel  is a command used to label the axes in plotting.

Example 14.7.  Plot f x, y = 9 - x2 - y2  using the AxesLabel option.

Solution:

In[1273]:= Clearf
fx_, y_  9  x2  y2

Out[1274]= 9  x2  y2

In[1275]:= Plot3Dfx, y, x, 3, 3, y, 3, 3, AxesLabel  "x ", "y ", "z ",
ImageSize  250, ImagePadding  15, 15, 15, 15

Out[1275]=

NOTE: To label a graph, use the PlotLabel option as shown following:
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In[1276]:= Plot3Dfx, y, x, 3, 3, y, 3, 3, AxesLabel  "x ", "y ", "z ",
PlotLabel  "Upper hemisphere", BoxRatios  Automatic, ImageSize  250,
ImagePadding  15, 15, 15, 25

Out[1276]=

ColorFunction

The option ColorFunction specifies a function to apply to the values of the function being plotted to determine the color to use

for a particular region on the xy-plane. It is an option for Plot3D,  ListPlot3D,  DensityPlot,  and ContourPlot.   The default

setting for ColorFunction is ColorFunctionØAutomatic.  ColorFunctionØHue yields a range of colors.

Example 14.8.  Plot f x, y = sinx2 + y2 + e1- x 2-y2
 in various colors using the ColorFunction option.  

Solution:

In[1277]:= Clearf, x, y
fx_, y_  Sinx2  y2  E1x

2 y2

Out[1278]= 1x
2y2  Sinx2  y2

In[1279]:= Plot3Dfx, y, x, Pi, Pi, y, Pi, Pi, ColorFunction  Hue,
ImageSize  250

Out[1279]=

Here are other ways to use ColorFunction.
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In[1280]:= Plot3Dfx, y, x, Pi, Pi, y, Pi, Pi, ColorFunction  "Rainbow",

ImageSize  250 

Out[1280]=

In[1281]:= Plot3Dfx, y, x, Pi, Pi, y, Pi, Pi, ColorFunction 

"BlueGreenYellow", ImageSize  250

Out[1281]=

NOTE: We can use PlotStyle option to select color for graphs. The plot below uses this option. 

In[1282]:= Plot3Dfx, y, x, Pi, Pi, y, Pi, Pi, PlotStyle  Yellow,

ImageSize  250 

Out[1282]=

RegionFunction

The option RegionFunction specifies the region to include in the plot drawn.

Example 14.9.  Plot f x, y =  10 sin 3 x - y, if x2 + y2 < 4;

x2 + y2 - 5, otherwise
.   

Solution: We will use the command RegionFunction to specify the domain x2 + y2 < 4 as follows.  Note that we have used

Mathematica for Rogawski's Calculus 2nd Editiion.nb  281



Show to display the graphs.  

In[1283]:= Clearplot1, plot2
plot1  Plot3D10 Sin3 x  y, x, 4, 4, y, 4, 4, PlotStyle  Blue,

RegionFunction  Functionx, y, z, x^2  y^2  4;
plot2  Plot3D x2  y2  5, x, 4, 4, y, 4, 4, PlotStyle  Red,

RegionFunction  Functionx, y, z, x^2  y^2  4;
Showplot1, plot2, ImageSize  250

Out[1286]=

If we want to focus on a particular part of a surface defined by a function, we can use the option RegionFunction. The following
example shows this point.  

Example 14.10.  Plot the graph of f x, y = x2 - 3 x y - 2 y2  and show the portion of the surface direclty above the unit circle
centered at the origin.

Solution: We will use the option ViewPoint.

In[1287]:= Clearplot1, plot2, f, x, y
fx_, y_  x2  3 x y  2 y2

plot1  Plot3Dfx, y, x, 4, 4, y, 4, 4, PlotStyle  Blue,
RegionFunction  Functionx, y, z, x^2  y^2  1 ;

plot2  Plot3Dfx, y , x, 4, 4, y, 4, 4, PlotStyle  Red,

RegionFunction  Functionx, y, z, x^2  y^2  1 ;
Showplot1, plot2 , ViewPoint  Front, ImageSize  250 

Out[1288]= x2  3 x y  2 y2

Out[1291]=

ü  14.1.3  Plotting Parametric Surfaces using ParametricPlot3D

ParametricPlot3D is a direct analog of ParametricPlot.  Depending on the input, ParametricPlot3D  produces a space curve

or a surface. ParametricPlot3D[{f, g, h}, {t, a, b }] produces a three-dimensional space curve parametrized by the variable t,

which runs from  a to b. ParametricPlot3D[{f, g, h}, {t, a, b },{u, c, d}] produces a two-dimensional surface parametrized by t

and u. Options are given to ParametricPlot3D the same way as for  Plot3D. Most of the options are the same.
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Example 14.11.  Plot the curve that is parametrized by x = sin t, y = cos t and z = t 3 with 0 § t § 2 p.  

Solution:

In[1292]:= ParametricPlot3DSint, Cost, t

3
, t, 0, 2 , ImageSize  250,

ImagePadding  15, 15, 15, 15

Out[1292]=

-1.0
-0.5

0.0
0.5

1.0

-1.0
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0.0

0.5
1.0

0.0

0.5

1.0

1.5
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Example  14.12.   Plot  the  surface  that  is  parametrized by   x = u cos u 4 + cos u + v,  y = u sin u 4 + cos u + v,  and
z = u sin u + v.
Solution:

In[1293]:= ParametricPlot3Du Cosu 4  Cosu  v, u Sinu 4  Cosu  v, u Sinu  v,
u, 0, 4 , v, 0, 2 , ImageSize  250

Out[1293]=

ü  14.1.4  Plotting Level Surfaces using ContourPlot3D

ContourPlot3D  is  the  command  used  to  plot  level  surfaces  of  functions  of  three  variables.   Its  syntax  is  Contour-

Plot3D[f,{x,a,b}, {y,c,d},{z,e,f}].  Most of the Options for ContourPlot3D are the same as those of Plot3D.  Below we will

consider the option Contours of ContourPlot3D. 

 Example 14.13.  Plot level surfaces of f x, y, z = x2 + y2 + z2.
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In[1294]:= Clearx, y, z, f
fx_, y_, z_  x2  y2  z2

ContourPlot3Dfx, y, z, x, 3, 3, y, 3, 3, z, 3, 3, ImageSize  250
Out[1295]= x2  y2  z2

Out[1296]=

The following displays five (5) equally spaced contour surfaces of f . 

In[1297]:= ContourPlot3Dfx, y, z, x, 3, 3, y, 3, 3, z, 3, 3,
Contours  5, ImageSize  250

Out[1297]=

The following  displays three level surfaces f x, y, z = c, where c = 1, 4, 9. 
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In[1298]:= ContourPlot3Dfx, y, z, x, 3, 3, y, 3, 3, z, 3, 3,
Contours  1, 4, 9, ImageSize  250

Out[1298]=

Notice that we only see one sphere. The other two are enclosed in the sphere of radius 3 corresponding to c = 9.  One way to

remedy this is to plot the level surfaces one by one. For this we use the GraphicsArray command. First, let us define the level
surfaces as function of c: 

In[1299]:= Clearc, plot
plotc_ : ContourPlot3Dfx, y, z, x, 3, 3, y, 3, 3, z, 3, 3,

Contours  c
Here are the three level surfaces corresponding to c = 1, 4, 9. 

In[1301]:= ShowGraphicsArrayplot1, plot4, plot9
GraphicsArray::obs : GraphicsArray is obsolete. Switching to GraphicsGrid. à

Out[1301]=

ü Exercises 

In Exercises 1 through 4, plot the level curves and the graphs of the given functions.
1.  f x, y = x y5 - x5 y for -10 § x § 10, -10 § y § 10

2.  f x, y = x2+2 y

1+x2+y2
 for -10 § x § 10, -10 § y § 10

3.  f x, y = sin y  ecos x for -2 p § x § 2 p, -2 p § y § 2 p
4.  f x, y = sinx + siny for -4 p § x § 4 p, -4 p § y § 4 p

In Exercises 5 through 7, use at least two nondefault options to plot the given functions.
5.  f x, y = sin x - 2 y e1y-x for  -2 p § x § 2 p, -2 p § y § 2 p
6.  f x, y = 4 - 3 x -2 y  for -10 § x § 10, -10 § y § 10

7.  f x, y = tanh-1x  y for -5 § x § 5, -5 § y § 5 
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 8.  Plot f x, y =  x2 + y2 - 4 if x2 + y2 < 4

4 - x2 + 3 y2 otherwise
  

9.  Plot the portion of the helicoid (spiral ramp) that is defined by:
x = u cos v,  y = u sin v, z = v for 0 § u § 3 and  -2 p § v § 2 p

10. Use ContourPlot3D to plot the level surfaces of the function f x, y, z = 9 - x2 - y2 - z2.

ü 14.2  Limits and Continuity

Students should read Section 14.2 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

ü 14.2.1  Limits

If f x, y is a function of x and y, and if the domain of f  contains a circle around the point a, b, we say that the limit of f  at
a, b is L if and only if f x, y can be arbitrarily close to L for all x, y arbitrarily close a, b.  
More precisely, for a given e > 0, there exists a d > 0 such that for every x, y is in the domain of f ,

0 < x - a2 + y - b2 < d ï  f x, y - L < e
If this is the case, we write

   limx,yØa,b f x, y = L

The Limit command of Mathematica is restricted to functions of one variable. However, we can use it twice to find the limit of
function of two variables provided the limit exists.

Example 14.14.  Find limx,yØ3,4 x2 + y2.
Solution: We can easliy determine that the limit exists. We can find the limit by evaluating

In[1302]:= LimitLimitx2  y2, x  3, y  4
Out[1302]= 25

The plot following confirms this. 
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In[1303]:= Clearplot1, plot2
plot1  Plot3Dx2  y2, x, 1, 4, y, 3, 5;
plot2  Graphics3DRed, PointSize.025, Point3, 4, 25;
Showplot1, plot2, ImageSize  250, ImagePadding  15, 15, 15, 15

Out[1306]=

Example 14.15.   Find limx,yØ4,1
3 x+y2

x-4 y
.

Solution: We will evaluate the limit in two different orders. The limit in which we use limit with x first and then with y is 

In[1307]:= Clearf, x, y

fx_, y_ 
3 x  y2

x  4 y

Out[1308]=
3 x  y2

x  4 y

The limit in which we use limit with x first and then with y is 

In[1309]:= LimitLimitfx, y, x  4, y  1
Out[1309]= 

The limit in which we use limit with y first and then with x is 

In[1310]:= LimitLimitfx, y, y  1, x  4
Out[1310]= 

Here is the plot of the graph near the point 4, 1. Observe that the graph of the function is in green and the point 4, 1, 0 is in
red. For a better comaprison, we have colored the xy-plane light blue. You may need to rotate the graph to see the point 4, 1, 0
on the xy-plane and see how the graph behaves when x, y is close to 4, 1.
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In[1311]:= Clearplot1, plot2
plot1  Plot3Dfx, y, 0, x, 3, 5,

y, 0, 2, PlotStyle  Green, LightBlue, PlotPoints  100;
plot2  Graphics3DRed, PointSize.025, Point4, 1, 0;
Showplot1, plot2, ImageSize  250,
ImagePadding  15, 15, 15, 15

Out[1314]=

Here is the animation with x as the animation parameter.

Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-

tions generated from the Animate command in this chapter.  If you are reading the electronic version of this publication format-

ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation.  Just click on the
arrow button to start the animation.  To control the animation just click at various points on the sliding bar or else manually drag
the bar.

In[1315]:= AnimatePlotfx, y, y, 0, 3, PlotRange  20, 20, x, 3, 5

Out[1315]=

x

0.5 1.0 1.5 2.0 2.5 3.0

-20

-10

10

20

Example 14.16.  Find limx,yØ0,0
sin x sin y

x y
.

Solution: We will evaluate the limit in two different orders. 
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In[1316]:= Clearf, x, y
fx_, y_ 

Sinx y
x y

Out[1317]=
Sinx y

x y

In[1318]:= LimitLimitfx, y, x  0, y  0
Out[1318]= 1

In[1319]:= LimitLimitfx, y, y  0, x  0
Out[1319]= 1

Here is the plot of the graph and the point 0, 0, 1.   
In[1320]:= Clearplot1, plot2

plot1  Plot3Dfx, y, x, 1, 1, y, 1, 1, PlotStyle  Green;
plot2  Graphics3DRed, PointSize.02, Point0, 0, 1;
Showplot1, plot2, ImageSize  250

Out[1323]=

If we rotate this graph to a suitable position, we notice that the limit exists.  Here are animations with x and y as animation
parameters, respectively.
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In[1324]:= AnimatePlotfx, y, x, 2, 2, PlotRange  0, 1, y, 2, 2

Out[1324]=

y
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0.8

1.0

In[1325]:= AnimatePlotfx, y, y, 2, 2, PlotRange  0, 1, x, 2, 2

Out[1325]=

x
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0.6

0.8

1.0

Example 14.17.  Find limx,yØ0,0 x ln y.

Solution:
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In[1326]:= Clearf, x, y
fx_, y_  x Logy

Out[1327]= x Logy
In[1328]:= LimitLimitfx, y, x  0, y  0
Out[1328]= 0

In[1329]:= LimitLimitfx, y, y  0, x  0
Out[1329]= Indeterminate

In[1330]:= Clearplot1, plot2
plot1 

Plot3Dfx, y, 0, x, 1, 1, y, 1, 1, PlotStyle   Green, LightBlue;
plot2  Graphics3DRed, PointSize.025, Point0, 0, 0;
Showplot1, plot2, ImageSize  250,
ImagePadding  15, 15, 15, 15

Out[1333]=

Here is the animation with x as the animation parameter.
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In[1334]:= AnimatePlotfx, y, y, 2, 2, PlotRange  10, 10, x, 2, 2

Out[1334]=

x
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-10
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Example 14.18.  Consider the function f x, y = x y2

x2+y4
. Show that limx,yØ0,0 f x, y does not exist. 

Solution:

In[1335]:= Clearf, x, y

fx_, y_ 
x y2

x2  y4

Out[1336]=
x y2

x2  y4

In[1337]:= LimitLimitfx, y, x  0, y  0
Out[1337]= 0

In[1338]:= LimitLimitfx, y, y  0, x  0
Out[1338]= 0

In[1339]:= LimitLimitfx, y, y  m x, x  0
Out[1339]= 0

However, note that the limit along the curve y = x  is  

In[1340]:= LimitLimitfx, y, y  x , x  0

Out[1340]=
1

2

Hence, the limit does not exist.  Here is the plot of the function:
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In[1341]:= Plot3Dfx, y, x, 1, 1, y, 1, 1, ImageSize  250

Out[1341]=

ü 14.2.2  Continiuty

Recall that a function f  of two variables x and y is continuous at the point a, b if and only if limix,yØa,b f x, y = f a, b.

Example 14.19.  Let f x, y =  1 - x2 - y2, if x2 + y2 < 1

0, if x2 + y2 ¥ 1
.  Is f  continuous?

Solution: Clearly, f  is continuous at all points inside and outside the circle of radius 1.  To check continuity on the unit circle,
we let x = r cos t and y = r sin t. We then let rØ 1.

In[1342]:= Clearx, y, r, s, t, f
fx_, y_  1  x2  y2

Out[1343]= 1  x2  y2

In[1344]:= x  r Cost
y  r Sint

Out[1344]= r Cost
Out[1345]= r Sint
In[1346]:= Simplifyfx, y

Out[1346]= 1  r2

In[1347]:= Limitfx, y, r  1
Out[1347]= 0

The command below evaluates f on the circle.

In[1348]:= Simplifyfx, y . r  1
Out[1348]= 0

Thus, the limit and the value of f  are equal at all points on the unit circle. Hence, f  is continuous everywhere.  Here is the graph.
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In[1349]:= Clearplot1, plot2
plot1  Plot3Dfx, y, x, 5, 5, y, 5, 5, PlotStyle  Red,

RegionFunction  Functionx, y, z, x^2  y^2  1, Mesh  None;
plot2  Plot3D 0, x, 5, 5, y, 5, 5, PlotStyle  LightBlue,

RegionFunction  Functionx, y, z, x^2  y^2  1, Mesh  None;
Showplot1, plot2, ImageSize  250

Out[1352]=

ü Exercises 

In Exercises 1 through 4, find the limit, if it exists.

1.  limx,yØ1,-1 2 x2 y + x y2 2. limx,yØ1,1
3 x2+y2

x2-y

3.   limx,yØ0,0
tan x sin y

x y
 4.  limx,yØ0,0 sin x ln y

5. Consider the function f x, y = x2 +y2

x2+y4
. Show that limx,yØ0,0 f x, y does not exist. 

6.  Let f x, y =  x2 - y2, if x + y < 0

2 x + y, if x + y ¥ 0
.

Is f  continuous?

7.  Let f x, y = x y

x2+y2
. The domain of f  is the whole plane without the origin. Is it possible to define f 0, 0 so that f  is continu-

ous everywhere? Plot the graph of f  to support your conclusions. 

8.  The domain of f x, y = x y

x+y
  is the whole plane without the line y = -x.   Is it possible to define f 0, 0 so that f  is continu-

ous everywhere? Plot the graph of f  to support your conclusions. 

ü 14.3  Partial Derivatives

Students should read Section 14.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Recall that the Mathematica command for the partial derivative of a function f with respect to x is D[f, x], and D[f,{x,n}] gives

the nth partial derivative of  f  with respect to x.  The multiple (mixed) partial derivative of f  with respect to x1, x2, x3, ...  is

obtained by Df, x1, x2, x3, ....  We can access this command from  BasicMathInput. The symbols are ∑Ñ Ñ and ∑Ñ,ÑÑ .

Example 14.20.  Find the first partial derivatives of x3 + y2 with respect to x and y .
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Solution:  We give two methods of input.

Method 1: We can type all the inputs and the command as follows: 

In[1353]:= Clearx, y
Dx^3  y^2, x

Out[1354]= 3 x2

In[1355]:= Dx^3  y^2, y
Out[1355]= 2 y

Method 2:  We can use the BasicInput palette to enter the inputs.

In[1356]:= x x3  y2
Out[1356]= 3 x2

In[1357]:= y x3  y2
Out[1357]= 2 y

Example 14.21.  Find the four second partial derivatives of x3 siny + ex y.  

Solution: Let z = x3 sin y + ex y.  We again demonstrate two methods of input.

Method 1:

We can find zxx by 

In[1358]:= Clearx, y
Dx^3  Siny  E^x  y, x, 2

Out[1359]= x y y2  6 x Siny
We can find zyy by 

In[1360]:= Dx^3  Siny  E^x  y, y, 2
Out[1360]= x y x2  x3 Siny
We can find zxy by 

In[1361]:= Dx^3  Siny  E^x  y, x, y
Out[1361]= x y  x y x y  3 x2 Cosy
zyx  is given by  

In[1362]:= Dx^3  Siny  E^x  y, y, x
Out[1362]= x y  x y x y  3 x2 Cosy
NOTE: Clairaut's Theorem states that if the mixed partial derivatives fx y  and fy x  are continuous at a point x, y, then they are

equal: fx y = fy x.  The last two outputs confirm Clairaut's Theorem for this particular example. 

Method 2: Here is the input using the palette symbol ∑Ñ,ÑÑ:
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In[1363]:= Clearx, y
x,xx3  Siny  xy
y,yx3  Siny  xy
x,yx3  Siny  xy
y,xx3  Siny  xy

Out[1364]= x y y2  6 x Siny
Out[1365]= x y x2  x3 Siny
Out[1366]= x y  x y x y  3 x2 Cosy
Out[1367]= x y  x y x y  3 x2 Cosy
Example 14.22.  Evaluate the first partial derivatives of x y + y z2 + x z at -1, 2, 3.
Solution: Recall that Expr . x1 Æ a1, x2 Æ a2, x3 Æ a3, ...  is the command for substituting x1 by a1, x2 by a2, x3 by a3, .... ,

in Expr.

In[1368]:= Clear[x,y,z]
D[x*y + y*z^2 + x*z,x]/.{x-> -1, y->2, z->3} 

Out[1369]= 5

In[1370]:= Dx  y  y  z^2  x  z, y . x  1, y  2, z  3
Out[1370]= 8

In[1371]:= Dx  y  y  z^2  x  z, z . x  1, y  2, z  3
Out[1371]= 11

Example 14.23.  Let f x, y, z = y ex + x e-y ln z. Find   fx x x, fx y z, fx z z, fz x z , and fz z x.

Solution: First, we define f x, y, z in Mathematica. We can use the ∑Ñ,ÑÑ notation. Since the palette gives only two boxes for

the variables, we need to add one more box. This can be done by using CTRL +, (comma), that is, hold the CONTROL key and

press the COMMA button.  Note also that the command D[f[x,y,z],x,y,z] gives fxyz. We demonstrate both methods.

In[1372]:= Clearx, y, z, f
fx_, y_, z_ : y  x  x  Logz  y

In[1374]:= x,x,x fx, y, z
Out[1374]= x y

In[1375]:= x,y,z fx, y, z

Out[1375]= 
y

z

In[1376]:= x,z,z fx, y, z

Out[1376]= 
y

z2
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In[1377]:= Dfx, y, z, z, x, z

Out[1377]= 
y

z2

In[1378]:= Dfx, y, z, z, z, x

Out[1378]= 
y

z2

Example 14.24.  Let f x, y = x y
x2-y2

x2+y2
 if x, y ∫ 0, 0 and f 0, 0 = 0. 

a) Find fxx, y and fyx, y for x, y ∫ 0, 0.
b) Use the limit definition to find fx0, 0 and fy0, 0.
c) Find fx y x, y and fy xx, y for x, y ∫ 0, 0.
d) Use the limit definition to find fx y0, 0 and fy x0, 0.
Solution: We will first define f  using the If command.

In[1379]:= Clearx, y, f, fx, fy, fxy, fyx

fx_, y_  Ifx, y  0, 0, x y
x2  y2

x2  y2
, 0

Out[1380]= Ifx, y  0, 0, x y x2  y2
x2  y2

, 0

a)  Let fx and fy denote the partial derivatives with respect to x and y, respectively. Then 

In[1381]:= fxx_, y_  Dfx, y, x
fyx_, y_  Dfx, y, y

Out[1381]= Ifx, y  0, 0, 
2 x x2  y2
x2  y22


2 x

x2  y2
x y  y x2  y2

x2  y2
, 0

Out[1382]= Ifx, y  0, 0, 
2 y x2  y2
x2  y22


2 y

x2  y2
x y  x x2  y2

x2  y2
, 0

If we use the FullSimplify command to simplify the preceding output, we get

In[1383]:= FullSimplifyfxx, y
FullSimplifyfyx, y

Out[1383]=

y x44 x2 y2y4
x2y22 x  0  y  0

0 True

Out[1384]=

x x44 x2 y2y4
x2y22 x  0  y  0

0 True

Thus, fxx, y = yx4+4 x3 y2-y4
x2+y22

 and  fyx, y = xx4-4 x2 y2-y4
x2+y22

 if x, y ∫ 0, 0.
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b) We use the limit definition fx0, 0 = limhØ0
f 0+h,0- f 0,0

h
and fy0, 0 = limkØ0

f 0,0+k- f 0,0
k

  to find the partial derivatives at

0, 0.
In[1385]:= Clearh, k

Limit f0  h, 0  f0, 0
h

, h  0
Out[1386]= 0

In[1387]:= Limit f0, 0  k  f0, 0
k

, k  0
Out[1387]= 0

Hence, fx0, 0 = 0 and fy0, 0 = 0.

c) To find the mixed second partial derivatives, we use fx and fy from the outputs in part a).  Note that the FullSimplify com-
mand is used to to get a simplified form of the mixed partial derivatives. 

In[1388]:= fxyx_, y_  FullSimplifyDfxx, y, y
fyxx_, y_  FullSimplifyDfyx, y, x

Out[1388]=

xy xy x410 x2 y2y4
x2y23 x  0  y  0

0 True

Out[1389]=

xy xy x410 x2 y2y4
x2y23 x  0  y  0

0 True

Thus, fx y =
x-y x+y x4+10 x2 y2+y4

x2+y23
 and fy x =

x-y x+y x4+10 x2 y2+y4
x2+y23

 for x, y ∫ 0, 0. Note that these two functions are equal for

x, y ∫ 0, 0 in conformity with Clairaut's Theorem, since both are continuous when x, y ∫ 0, 0.
d) We use the limit definition of a partial derivative to compute fxy0, 0 and fyx0, 0.  Recall that we have defined fx as fx[x,y]

and fy as fy[x,y]. 

Then fxy0, 0 is given by 

In[1390]:= Limit fx0 , 0  k  fx0, 0
k

, k  0
Out[1390]= 1

and fyx0, 0 is given by 

In[1391]:= Limit fy0  h, 0  fy0, 0
h

, h  0
Out[1391]= 1

Thus, fxy0, 0 = -1and fyx0, 0 = 1.  Note that this implies that the mixed partial derivatives are not continuous at x, y = 0, 0.
To see this graphically, first consider the following graph of f , which confirms that f  has partial derivatives everywhere. 
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In[1392]:= Plot3Dfx, y, x, 3, 3, y, 3, 3, ImageSize  250

Out[1392]=

Here are the graphs of fx and fy, which now show why the second mixed partials at the origin are not equal.

In[1393]:= Clearplot1, plot2
plot1  Plot3Dfxx, y, x, 3, 3, y, 3, 3,

PlotStyle  Red, AxesLabel  "Graph of zfx", None, None ;
plot2  Plot3Dfyx, y, x, 3, 3, y, 3, 3, PlotStyle  Blue,

AxesLabel  "Graph of zfy", None, None ;
ShowGraphicsArrayplot1, plot2, ImageSize  420

GraphicsArray::obs : GraphicsArray is obsolete. Switching to GraphicsGrid. à

Out[1396]=

In addition, the graphs of fxy  and fyx  show the mixed partials are not continuous at the origin. This is the main reason why the

inequalities of the mixed partials at the origin does not contradict Clairaut's Theorem.
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In[1397]:= Clearplot1, plot2
plot1  Plot3Dfxyx, y, x, 3, 3, y, 3, 3,

PlotStyle  Red, AxesLabel  "Graph of zfxy", None, None;
plot2  Plot3Dfyxx, y, x, 3, 3, y, 3, 3, PlotStyle  Blue,

AxesLabel  "Graph of zfyx", None, None;
ShowGraphicsArrayplot1, plot2, ImageSize  420

GraphicsArray::obs : GraphicsArray is obsolete. Switching to GraphicsGrid. à

Out[1400]=

ü Exercises

1. Let f x, y = x-y2

x2+y2
.  Find:  

a. fx (1,0) b. fy1, 0 c. fxy d. fyx e.  fxxy

2. Find the first partial derivatives of z = x3 y2 with respect to x and y. 

3. Find the four second partial derivatives of x2 cosy + tanx ey.
4. Evaluate the first partial derivatives of f x, y, z = e-z xy + yz2 + xz at -1, 2, 3.

5. Let f x, y, z = x4 y3

z2+sin x
.  Find fxxx, fxyz, fxzz, fzxz , and fzzx.

6. Let f x, y = x y2

x2+y4
 if x, y ∫ 0, 0 and f 0, 0 = 0. 

a.  Find fxx, y and fyx, y for x, y ∫ 0, 0.
b.  Use the limit definition to find fx0, 0 and fy0, 0.
c.  Find fxy x, y and fyxx, y for x, y ∫ 0, 0.
d.  Use the limit definition to find fxy0, 0 and fyx0, 0.

ü 14.4  Tangent Planes

Students should read Section 14.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Let z = f x, y be a function of two variables.  The equation of the tangent plane at the point a, b, f a, b is given by 

 z = fxa, b x - a + fya, b y - b + f a, b
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Example 14.25.  Let f x, y = x2 + y2.
a) Find the equation of the tangent plane to the graph of f  at the point 2, 1, 3.
b) Plot the graph of f  and its tangent plane at 2, 1, 3.
Solution: Here, a = 2, b = 1.
a)

In[1401]:= Clearf, x, y, z
fx_, y_  x2  y2

Out[1402]= x2  y2

Thus, the equation the of the tangent plane is

In[1403]:= A  x fx, y . x  2, y  1;
B  y fx, y . x  2, y  1;
z  A x  2  B y  1  f2, 1;
Simplifyz

Out[1406]= 5  4 x  2 y

b) Here is a plot of the graph of f:

In[1407]:= plot1  Plot3Dfx, y, z, x, 10, 10, y, 10, 10, PlotStyle  Blue, Green;
plot2  ListPointPlot3D 2, 1, 3, PlotStyle  Red, PointSizeLarge ;
Showplot1, plot2, ImageSize  250, ImagePadding  15, 15, 15, 15

Out[1409]=

Example 14.26.  Let f x, y = x2 y - 6 x y2 + 3 y.  Find the points where  the tangent plane to the graph of f  is parallel to the xy-
plane.

Solution:  For the tangent plane to be parallel to the xy-plane, we must have fx = 0 and fy = 0. 

In[1410]:= Clearf, x, y 
fx_, y_  x2 y  6 x y2  3 y

Out[1411]= 3 y  x2 y  6 x y2

A tangent plane is parallel to the xy-plane at  

In[1412]:= Solve Dfx, y, x  0, Dfx, y, y  0

Out[1412]= y  
1

3
, x  1, y  0, x   3 , y  0, x   3 , y 

1

3
, x  1
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Rotate the following graph to see the points of tangencies.

In[1413]:= Plot3Dfx, y, f1, 1  3, f1, 1  3, x, 1, 1,
y, 1, 1, PlotStyle  LightBlue, Green, Red, PlotRange  All,
ImageSize  250, ImagePadding  15, 15, 15, 15

Out[1413]=

ü Exercises 

1. Let  f x, y = x3 y + x y2 - 3 x + 4.
a) Find a set of parametric equations of the normal line and an equation of the tangent plane to the surface at the point (1, 2).
b) Graph the surface, the normal line, and the tangent plane found in a).

 2. Let f x, y = x2 + y2.
a. Find the equation of the tangent plane to the graph of f  at the point 2, 1, 5.
b. Plot the graph of f  and its tangent plane at 2, 1, 5.
3.  Let f x, y = e-yx.
a. Find the equation of the tangent plane to the graph of f  at the point 1, 0, 1.
b. Plot the graph of f  and its tangent plane at 1, 0, 1.
4.  Let f x, y = cos x y.  Find the points where  the tangent plane to the graph of f  is parallel to the xy-plane.

ü 14.5  Gradient and Directional Derivatives

Students should read Section 14.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Recall that the notation for a vector such as u = 2 i + 5 j - 6 k in Mathematica is {2,5,-6}.  The command for the dot product of

two vectors u and v is obtained by typing u.v.

The gradient of f , denoted by ! f , at a, b can be obtained by evaluating ! f a, b = ∑x f a, b, ∑y f a, b. 
The directional derivative of f  at a, b in the direction of a unit vector u is given by Du f =! f a, b ◊u.

Example 14.27.  Find the gradient and directional derivative of f x, y = x2 sin 2 y at the point  1, p

2
, 0   in the direction of

v =  3

5
, - 4

5
.

Solution:   
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In[1414]:= Clearf, v
fx_, y_ : x2  Sin2 y
v   3

5
,
4

5


Out[1416]=  3
5
, 

4

5


The gradient of f  at 1, p

2
  is 

In[1417]:= !f  x fx, y, y fx, y . x  1, y 


2


Out[1417]= 0, 2
Since v is a unit vector, the directional derivative is given by 

In[1418]:= direcderiv  v.!f

Out[1418]=
8

5

Example 14.28.  Find the gradient and directional derivative of  f x, y, z = x y + y z + x z at the point  (1, 1, 1)  in the direction
of v = 2 i + j - k.

 Solution:

In[1419]:= Clearx, y, z
w  x  y  y  z  x  z

v  2, 1, 1
Out[1420]= x y  x z  y z

Out[1421]= 2, 1, 1
We normalize v:

In[1422]:= unitvector  v  Normv

Out[1422]=  2

3
,

1

6
, 

1

6


The gradient of w = f x, y, z at 1, 1, 1 is 

In[1423]:= !w  Dw, x, Dw, y, Dw, z . x  1, y  1, z  1
Out[1423]= 2, 2, 2
Hence, the directional derivative is given by 

In[1424]:= direcderiv  unitvector.!w

Out[1424]= 2
2

3

Example 14.29.  Plot the gradient vector field and the level curves of the function f x, y = x2 sin 2 y.
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Solution:

In[1425]:= Clearf, fx, fy, x, y
fx_, y_  x2  3 x y  y  y2

fx  Dfx, y, x
fy  Dfx, y, y

Out[1426]= x2  y  3 x y  y2

Out[1427]= 2 x  3 y

Out[1428]= 1  3 x  2 y

Thus,  the  gradient  vector  field is  ! f x, y =  2 x - 3 y, 1 - 3 x - 2 y.   To plot  this  vector  field,  we need to download the

package VectorFieldPlots, which is done by evaluating

In[1429]:= Needs"VectorFieldPlots`"
General::obspkg :

VectorFieldPlots` is now obsolete. The legacy version being loaded may conflict with current Mathematica

functionality. See the Compatibility Guide for updating information. à

Here is a plot of some level curves and the gradient field.  

In[1430]:= Clearplot1, plot2
plot1  ContourPlotfx, y, x, 5, 5, y, 4, 4,

Axes  True, Frame  False, Contours  15, ColorFunction  Hue ;
plot2  VectorFieldPlotfx, fy, x, 5, 5, y, 4, 4,

Axes  True, Frame  False;
Showplot1, plot2, ImageSize  250

Out[1433]=

Example 14.30.  Let the temperature T  at a point x, y on a metal plate be given by Tx, y = x

x2+y2
. 

a) Plot the graph of the temperature. 
b) Find the rate of change of temperature at 3, 4, in the direction of v = i - 2 j.
c) Find the unit vector in the direction of which the temperature increases most rapidly at 3, 4.
d) Find the maximum rate of increase in the temperature at 3, 4. 
Solution: 
a)  Here is the graph of T.
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In[1434]:= Tx_, y_ 
x

x2  y2

Out[1434]=
x

x2  y2

In[1435]:= graphofT 

Plot3DTx, y, x, 5, 5, y, 5, 5, BoxRatios  1, 1, 1, ImageSize  Small

Out[1435]=

b)  Let  u = v

v .   Then u  is  a  unit  vector  and the  rate  of  change in  temperature at  3, 4  in  the  direction of  v  is  given by

Du T3, 4 = ! f 3, 4 ◊u.

In[1436]:= !T  DTx, y, x, DTx, y, y
v  1, 2
u 

v

v.v

u.!T . x  3, y  4  N

Out[1436]=  2 x2

x2  y22


1

x2  y2
, 

2 x y

x2  y22


Out[1437]= 1, 2

Out[1438]=  1

5
, 

2

5


Out[1439]= 0.0393548

Thus, the rate of change at 3, 4 in the direction v is 0.0393548.  NOTE: The command //N in the last line of the previous input
converts the output to decimal form. 

c) The unit vector in the direction of which the temperature increases most rapidly at 3, 4 is given by 

In[1440]:=
!T

Norm!T . x  3, y  4

Out[1440]=  7

25
, 

24

25


d) The maximum rate of increase in the temperature at (3,4) is the norm of the gradient at this point. This can be obtained by: 
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In[1441]:= Norm!T . x  3, y  4

Out[1441]=
1

25

ü Exercises 

1. Find the gradient and directional derivative of f x, y = sin-1x y at the point  1, 1, p

2
   in the direction of v = 1, -1. 

2. Let  Tx, y = ex y -y2
.

a. Find ! Tx, y.
b. Find the directional derivative of  T x, y at the point 3, 5 in the dierection of u = 1 2 i + 3 2 j.

c. Find the direction of greatest increase in T  from the point 3, 5.
3.  Plot the gradient vector field and the level curves of the function a f  x , y  = cos x sin 2 y.

4.   Find the gradient and directional derivative of  f x, y, z = x y e y z + sin x z  at  the point 1, 1, 0   in the direction of
v = i - j - k.

ü 14.6  The Chain Rule

Students should read Section 14.6 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Example 14.31.  Let x = t2 + s , y = t + s2 and z = x sin y.  Find the first partial derivatives of z with respect to s and t.

Solution:  

In[1442]:= Clearx, y, z, s, t
x  t2  s

y  t  s2

z  x Siny
Out[1443]= s  t2

Out[1444]= s2  t

Out[1445]= s  t2 Sins2  t
In[1446]:= Dz, s
Out[1446]= 2 s s  t2 Coss2  t  Sins2  t
In[1447]:= Dz, t
Out[1447]= s  t2 Coss2  t  2 t Sins2  t
Example 14.32.  Find the partial derivatives of z with respect to x and y assuming that the equation x2 z - y z2 = x y defines z as a
function of x and y.

Solution: 
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In[1448]:= Clearx, y, z, r, t, s
eq  x2 zx, y  y zx, y2  x y

SolveDeq, x, Dzx, y, x
SolveDeq, y, Dzx, y, y

Out[1449]= x2 zx, y  y zx, y2  x y

Out[1450]= z1,0x, y 
y  2 x zx, y
x2  2 y zx, y 

Out[1451]= z0,1x, y 
x  zx, y2

x2  2 y zx, y


Example 14.33.  Let f x, y, z = Fr, where r = x2 + y2 + z2  and F is a twice differentiable function of one variable. 

a) Show that ! f = F ' r 1

r
x i + y j + z k.

b) Find the Laplacian of f .

Solution: 
a) 

In[1452]:= Clearx, y, z, r, f, F
fx_, y_, z_  Fr

r  x2  y2  z2

Out[1453]= Fr

Out[1454]= x2  y2  z2

Here is the gradient of f :

In[1455]:= gradf  Dfx, y, z, x, Dfx, y, z, y, Dfx, y, z, z

Out[1455]=  x F
 x2  y2  z2 
x2  y2  z2

,
y F x2  y2  z2 

x2  y2  z2
,
z F x2  y2  z2 

x2  y2  z2


With r = x2 + y2 + z2 , the preceding output becomes

! f x, y, z =  x F ' r
r

,
y F ' r

r
,

z F ' r
r

 = F ' r 1

r
 x , y , z 

which proves part a).

b) Recall that the Laplacian of f , denoted by D f , is defined by D f = fxx + fyy + fzz. 
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In[1456]:= Dfx, y, z, x, 2  Dfx, y, z, y, 2  Dfx, y, z, z, 2

Out[1456]= 
x2 F x2  y2  z2 
x2  y2  z232


y2 F x2  y2  z2 
x2  y2  z232


z2 F x2  y2  z2 
x2  y2  z232



3 F x2  y2  z2 
x2  y2  z2


x2 F x2  y2  z2 

x2  y2  z2

y2 F x2  y2  z2 

x2  y2  z2

z2 F x2  y2  z2 

x2  y2  z2

We simplify this to get

In[1457]:= Simplify

Out[1457]=

2 F x2  y2  z2 
x2  y2  z2

 F x2  y2  z2 

which is the same as 2

r
F 'r + F ''r.

ü Exercises 

1. Let x = u2 + sin v, y = u evu, and z = y3 ln x .  Find the first partial derivatives of z with respect to u and v.

2. Find the partial derivatives of z with respect to x and y assuming that the equation x2 z - y z2 = x y defines z as a function of x 
and y.

3. Find an equation of the tangent plane to the surface x z + 2 x2 y + y2 z3 = 11 at 2, 1, 1.

ü 14.7  Optimization

Students should read Section 14.7 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Second Derivative Test: Suppose fxa, b = 0 and fya, b = 0.  Define 

Dx, y = fx x fy y -  fx y2

The function D is called the discriminant function. 

i)   If Da, , b > 0 and fx xa, b > 0, then f a, b is a local minimum value.
ii)   If Da, , b > 0 and fx xa, b < 0, then f a, b is a local maximum value.
iii)  If Da, , b < 0, then a, b, f a, b is a saddle point on the graph of f .
iv)  If Da, b = 0, then no conclusion can be drawn about the the point a, b.
Example 14.34.  Let f x, y = x4 - 4 x y + 2 y2. 
a)  Find all critical points of f .
b)  Use the second derivative test to classify the critical points as local minimum, local maximum, saddle point, or neither.

Solution: Since D is used in Mathematica as the command for derivative, we will use disc for the discriminant function D.
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In[1458]:= Clearf, x, y
fx_, y_  x4  4 x y  2 y2

Out[1459]= x4  4 x y  2 y2

a) The critical points are given by

In[1460]:= cp  SolveDfx, y, x  0, Dfx, y, y  0
Out[1460]= y  1, x  1, y  0, x  0, y  1, x  1
b)

In[1461]:= Clearfxx, disc
fxxx_, y_  Dfx, y, x, 2
discx_, y_  Dfx, y, x, 2  Dfx, y, y, 2  DDfx, y, x, y2

Out[1462]= 12 x2

Out[1463]= 16  48 x2

In[1464]:= TableFormTable cpk, 2, 2, cpk, 1, 2 ,
disccpk, 2, 2, cpk, 1, 2, fxxcpk, 2, 2, cpk, 1, 2,
fcpk, 2, 2, cpk, 1, 2, k, 1, Lengthcp,

TableHeadings  , "x ", "y ", " Dx,y ", " fxx ", "fx,y"
Out[1464]//TableForm=

x y Dx,y fxx fx,y
1 1 32 12 1
0 0 16 0 0
1 1 32 12 1

By the second derivative test, we conclude that f  has a local minimum value of -1 at -1, -1 and 1, 1, and a saddle point at
0, 0.  
Here is the graph of f  and the relevant points.
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In[1465]:= Clearplot1, plot2
plot1 

Plot3Dfx, y, x, 2, 2, y, 2, 2, PlotStyle  LightBlue, PlotRange  10;
plot2  Graphics3DPointSizeLarge, Red,

PointTable cpk, 2, 2, cpk, 1, 2 , fcpk, 2, 2, cpk, 1, 2,
k, 1, Lengthcp, PlotRange  10;

Showplot1, plot2, ImageSize  250

Out[1468]=

Example 14.35.  Let f x, y = x3 + y4 - 6 x - 2 y2. 
a)  Find all critical points of f .
b)  Use the second derivative test to classify the critical points as local minimum, local maximum, saddle point, or neither.

Solution: Again, we will use disc to denote the discriminant function D since the letter D is used in Mathematica for the deriva-
tive command. 

In[1469]:= Clearf, x, y
fx_, y_  x3  y4  6 x  2 y2

Out[1470]= 6 x  x3  2 y2  y4

a) The critical points are given by

In[1471]:= cp  SolveDfx, y, x  0, Dfx, y, y  0
Out[1471]= y  1, x   2 , y  1, x  2 , y  0, x   2 ,

y  0, x  2 , y  1, x   2 , y  1, x  2 
b)

In[1472]:= Clearfxx, disc
fxxx_, y_  Dfx, y, x, 2
discx_, y_  Dfx, y, x, 2  Dfx, y, y, 2  DDfx, y, x, y2

Out[1473]= 6 x

Out[1474]= 6 x 4  12 y2
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In[1475]:= TableFormTable cpk, 2, 2, cpk, 1, 2 ,
disccpk, 2, 2, cpk, 1, 2, fxxcpk, 2, 2, cpk, 1, 2,
fcpk, 2, 2, cpk, 1, 2, k, 1, Lengthcp,

TableHeadings  , "x ", "y ", " Dx,y ", " fxx ", "fx,y"
Out[1475]//TableForm=

x y Dx,y fxx fx,y
 2 1 48 2 6 2 1  4 2

2 1 48 2 6 2 1  4 2

 2 0 24 2 6 2 4 2

2 0 24 2 6 2 4 2

 2 1 48 2 6 2 1  4 2

2 1 48 2 6 2 1  4 2

By the second derivative test we conclude that f  has local maximum value of 4 2  at - 2 , 0,  local minimum value of

-1 - 4 2  at  2 , -1 and  2 , 1, and saddle points at - 2 , -1,  2 , 0, and  - 2 , 1.  

Here is the graph of f  and the relevant points.

In[1476]:= Clearplot1, plot2
plot1  Plot3Dfx, y, x, 2.5, 2.5,

y, 2.5, 2.5, PlotStyle  LightBlue, PlotRange  10;
plot2  Graphics3DPointSizeLarge, Red,

PointTable cpk, 2, 2, cpk, 1, 2 , fcpk, 2, 2, cpk, 1, 2,
k, 1, Lengthcp, PlotRange  10;

Showplot1, plot2, ImageSize  250

Out[1479]=

Example 14.36.  Let f x, y = 2 x2 - 3 x y - x + y + y2  and let R be the rectangle in the xy-plane whose vertices are at (0,0),
(2,0), (2,2), and  (0,2). 
a) Find all relative extreme values of f  inside R.
b) Find the maximum and minimum values of f  on R.

Solution:

In[1480]:= Clearf, x, y, disc
fx_, y_  2 x2  3 x  y  x  y  y2  5

Out[1481]= 5  x  2 x2  y  3 x y  y2
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In[1482]:= Solvex fx, y  0, y fx, y  0, x, y
Out[1482]= x  1, y  1

In[1483]:= discx_, y_  x,xfx, y  y,yfx, y  x,yfx, y2

Out[1483]= 1

In[1484]:= x,xfx, y . x  1, y  1
discx, y . x  1, y  1

Out[1484]= 4

Out[1485]= 1

Thus, 1, 1 is the local minimum point of f inside R and its local minimum value is f 1, 1 = 5. Next, we find the extreme values
of f on the boundary of the rectangle. This is done by considering f as a function of one variable corresponding to each side of R.
Let f1 = f x, 0, f2 = f x, 2, for x between 0 and 2, and f3 = f 0, y and f4 = f 2, y, for y between 0 and 2.   We now proceed
as follows:

In[1486]:= Clearf1, f2, f3, f4
f1  fx, 0
f2  fx, 2
f3  f0, y
f4  f2, y

Out[1487]= 5  x  2 x2

Out[1488]= 11  7 x  2 x2

Out[1489]= 5  y  y2

Out[1490]= 11  5 y  y2

In[1491]:= SolveDf1, x  0 

Out[1491]= x 
1

4


In[1492]:= SolveDf2, x  0 

Out[1492]= x 
7

4


In[1493]:= SolveDf3, y  0 

Out[1493]= y  
1

2


In[1494]:= SolveDf4, y  0 

Out[1494]= y 
5

2


Thus, points on the boundary of R that are critical points of f  are  1

4
, 0 and  7

4
, 2.  Observe that the points 0, -1 2 and

2,
5

2
 are outside the rectangle R. The four vertices of R at (0,0), (2,0), (0,2) and (2,2) are also critical points.  Can you explain

why?  We now evaluate f at each of these points and at 1, 1 (the relative minimum point found earlier) using the substitution
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command and compare the results.

In[1495]:= fx, y . x 
1

4
, y  0, x 

7

4
, y  2,

x  0, y  0, x  2, y  0,
x  0, y  2, x  2, y  2, x  1, y  1

Out[1495]=  39
8
,
39

8
, 5, 11, 11, 5, 5

Thus, the minimum value of f is 39 8, which occurs at 1 4, 0 and also at 7 4, 2.  The maximum value of f is 6, which is
attained at 2, 0 and also at 0, 2.  Here is the graph of f  over the rectangle R. 

In[1496]:= Clearplot1, plot2, plot3
plot1  Plot3Dfx, y, 0, x, 0, 2,

y, 0, 2, PlotStyle  Green, Blue, PlotRange  All;
plot2  Graphics3DPointSizeLarge, Red ,

Point 1  4, 0, f1  4, 0, 7  4, 2, f7  4, 2 , PlotRange  All ;
plot3  Graphics3DPointSizeLarge, Black ,

Point 2, 0, f2, 0, 0, 2, f2, 0, PlotRange  All ;
Showplot1, plot2 , plot3, ImageSize  250, ImagePadding  15, 15, 15, 15

Out[1500]=

ü Exercises 

1. Let f x, y = x4 - 4 x y + 2 y2. 
a. Find all critical points of f .
b. Use the second derivative test to classify the critical points as local minimum, local maximum, saddle point, or neither.
c. Plot the graph of f  and the local extreme points and saddle points, if any.

2. Let f x, y = x + y lnx2 + y2, for x, y ∫ 0, 0. 
a. Find all critical points of f .
b. Use the second derivative test to classify the critical points as local minimum, local maximum, saddle point, or neither.
c. Plot the graph of f  and the local extreme points and saddle points, if any.

3. Let f x, y = 2 x2 - 3 x y - x + y + y2 and let R be the rectangle in the xy-plane whose vertices are at 0, 0, 2, 0, 2, 2, and
0, 2. 
a. Find all relative extreme values of f  inside R.
b. Find the maximum and minimum values of f  on  R.
c. Plot the graph of f  and the local extreme points and saddle points, if any.
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ü 14.8  Lagrange Multipliers

Students should read Section 14.8 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Example 14.37.   Let f x, y = x y and gx, y = x2 + y2 - 4.
a) Plot the level curves of f  and g as well as their gradient vectors. 
b) Find the maximum and minimum values of f  subject to the constraint gx, y = 0.

Solution: 
a) We will define f  and g  and compute their gradients. Recall that we need to evaluate the command Needs["`VectorField-

Plots`"] before we plot the gradient fields. 

In[1501]:= Clearf, g, fx, fy, gx, gy, x, y
fx_, y_  2 x  3 y

gx_, y_  x2  y2  4

fx  Dfx, y, x
fy  Dfx, y, y
gx  Dgx, y, x
gy  Dgx, y, y

Out[1502]= 2 x  3 y

Out[1503]= 4  x2  y2

Out[1504]= 2

Out[1505]= 3

Out[1506]= 2 x

Out[1507]= 2 y

In[1508]:= Needs"VectorFieldPlots`"
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In[1509]:= Clearplot1, plot2, plot3, plot4
plot1  ContourPlotx2  y2  4, x, 2, 2, y, 2, 2,

Frame  False, Axes  True, ContourShading  False, PlotRange  All;
plot2  ContourPlot2 x  3 y, x, 2, 2, y, 2, 2, Frame  False,

Axes  True, ContourShading  False, PlotRange  All;
plot3  VectorFieldPlotfx, fy, x, 2, 2, y, 2, 2,

Axes  True, Frame  False, ColorFunction  Hue;
plot4  VectorFieldPlotgx, gy, x, 2, 2, y, 2, 2,

Axes  True, Frame  False, ColorFunction  Hue;
Showplot1, plot2, plot3, plot4, ImageSize  250

Out[1514]=

b) Let us use l for l. To solve ! f = l ! g we compute

In[1515]:= Solvefx  l gx, fy  l gy, gx, y  0 

Out[1515]= l  
13

4
, x  

4

13
, y  

6

13
, l 

13

4
, x 

4

13
, y 

6

13


Thus, - 4

13
, - 6

13
 and  4

13
, 6

13
 are the critical points. We evaluate f  at these points to determine the absolute maximum

and the absolute minimum of f  on the graph of gx, y = 0.

In[1516]:= f  4

13
, 

6

13


f 4

13
,

6

13


Out[1516]= 2 13

Out[1517]= 2 13

Hence,  f  attains  its  absolute  minimum value  of  -2 13  at  - 4

13
, - 6

13
  and  absolute  maximum value  of  -2 13  at

 4

13
,

6

13
.

Here is a combined plot of the gradients of f  (in black) and g (in red) at the critical points.  
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In[1518]:= Clearplot1, plot2, plot3, plot4, plot5, plot6
plot1  ContourPlotgx, y, x, 3, 3, y, 3, 3,

Contours  0, Frame  False, Axes  True, ContourShading  False;
plot2  ListPlot  4

13
, 

6

13
,  4

13
,

6

13
;

In[1521]:= plot3  GraphicsArrow

  4

13
, 

6

13
,   4

13
, 

6

13
  fx, fy . x 

4

13
, y 

6

13
 ;

In[1522]:= plot4  Graphics

Arrow  4

13
,

6

13
 ,  4

13
,

6

13
  fx, fy . x 

4

13
, y 

6

13
 ;

In[1523]:= plot5  GraphicsRed, Arrow  4

13
, 

6

13
 ,

  4

13
, 

6

13
  gx, gy . x 

4

13
, y 

6

13
 ;

In[1524]:= plot6  GraphicsRed, Arrow

  4

13
,

6

13
 ,  4

13
,

6

13
  gx, gy . x 

4

13
, y 

6

13
 ;

In[1525]:= Showplot1, plot2, plot3, plot4, plot5, plot6,
PlotRange  All, AspectRatio  Automatic, ImageSize  250

Out[1525]=

ü Exercises 

1.  Let f x, y = 4 x2 + 9 y2 and gx, y = x y - 4.
a. Plot the level curves of f  and g as well as their gradient vectors. 
b. Find the maximum and minimum values of f  subject to gx, y = 0.

2.  Find the maximum and minimum values of f x, y, z = x3 - 3 y2 + 4 z subject to the constraint gx, y, z = x + y z - 4 = 0.
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3.  Find the maximum area of a rectangle that can be inscribed in the ellipse x2

a2
+

y2

b2
= 1.

4.  Find the maximum volume of a box that can be inscribed in the sphere x2 + y2 + z2 = 4.
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Chapter 15 Multiple Integration
Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible
to view 3-D plots generated by Mathematica from different perspectives.  First, place your screen cursor over the plot.  Then drag
the mouse while pressing down on the left mouse button to rotate the plot.

ü 15.1  Double Integral over a Rectangle

Students should read Section 15.1 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Integration can be generalized to functions of two or more variables.  As the integral of a single-variable function defines area of
a plane region under the curve, it is natural to consider a double integral of a two-variable function that defines volume of a solid
under a surface.  This definition can be made precise in terms of double Riemann sums where rectangular columns (as opposed to
rectangles) are used as building blocks to approximate volume (as opposed to area).  The exact volume is then obtained as a limit
where the number of columns increases without bound.

ü 15.1.1  Double Integrals and Riemann Sums

Let  f x, y  be  a  function  of  two  variables  defined  on  a  rectangular  domain  R = a, bä c, d  in  R2.   Let
P = a = x0 < x1 < ... < xm = b, c = y0 < y1 < ... < yn = d be an arbitrary partition of R into a grid of m ÿn rectangles, where m and

n  are integers.  For each sub-rectangle Rij = xi-1, xiä y j-1, y j  denote by  DAij  its area and choose an arbitrary base point

xij, yij œ Rij, where xij œ xi-1, xi and yij œ y j-1, y j.  The product f xij, yijDAij  represents the volume of the ij-rectangular

column situated between the surface and the xy-plane.  We then define the double Riemann sum Sp of f x, y on R with respect

to P to be the total volume of all these columns:

SP =
i=1

m


j=1

n

f xij, yijDAij

Define  P  to be the maximum dimension of all the sub-rectangles.  The double integral of f x, y on the rectangle R is then
defined as the limit of SP as  P Ø 0:

 
R

f x, y „A = lim
PØ0


i=1

m


j=1

n

f xij, yijDAij

If the limit exists regardless of the choice of partition and base points, then the double integral is said to exist.  Otherwise, the
double integral does not exist.

MIDPOINT RULE (Uniform Partitions):  Let  us consider uniform partitions P,  where  the points xi  and y j  are evenly

spaced, that is,  xi = a + iD x, y j = b + jD y for i = 0, 1, ..., m and j = 0, 1, ..., n, and with Dx = b - a m and Dy = d - c n.

Then the corresponding double Riemann sum is

Sm,n =
i=1

m


j=1

n

f xij, yijD xD y

Here is a subroutine called MDOUBLERSUM that calculates the double Riemann sum Sm,n  of f x, y over a rectangle R for

uniform partitions using the center midpoint of each sub-rectangle as base point, that is, xij = xi-1 + xi 2 = a + i - 1 2D x and

yij = y j-1 + y j2 = c +  j - 1 2D y.
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In[1526]:= Clearf
MDOUBLERSUMa_, b_, c_, d_, m_, n_ :

Sumfa  i  1  2  b  a  m, c  j  1  2  d  c  n  b  a  m  d  c  n,
i, 1, m, j, 1, n

Example  15.1.   Approximate  the  volume of  the  solid  bounded  below  the  surface  f x = x2 + y2  and  above  the  rectangle
R = -1, 1ä -1, 1 on the xy-plane using a uniform partition with m = 10 and n = 10 and center midpoints as base points.  Then
experiment with larger values of m and n and conjecture an answer for the exact volume.

Solution: We calculate the approximate volume for m = 10 and n = 10 using the subroutine MDOUBLERSUM:

In[1528]:= fx_, y_  x^2  y^2;

MDOUBLERSUM1, 1, 1, 1, 10, 10

Out[1529]=
66

25

In[1530]:= N
Out[1530]= 2.64

In[1531]:= TableMDOUBLERSUM1, 1, 1, 1, 10  k, 10  k, k, 1, 10

Out[1531]=  66
25

,
133

50
,
1798

675
,
533

200
,
1666

625
,
3599

1350
,
3266

1225
,
2133

800
,
16198

6075
,
3333

1250


In[1532]:= N
Out[1532]= 2.64, 2.66, 2.6637, 2.665, 2.6656, 2.66593, 2.66612, 2.66625, 2.66634, 2.6664
It appears that the exact volume is 8/3.  To prove this, we evaluate the double Riemann sum Sm,n in the limit as m, nØ¶:

In[1533]:= ClearS, m, n;
Sm_, n_  SimplifyMDOUBLERSUM1, 1, 1, 1, m, n

Out[1534]=
4

3
2 

1

m2


1

n2

In[1535]:= LimitLimitSm, n, m  Infinity, n  Infinity

Out[1535]=
8

3

To see this limiting process visually, evaluate the following subroutine, called DOUBLEMIDPT, which plots the surface of the
function corresponding to the double integral along with the rectangular columns defined by the double Riemann sum considered

in the previous subroutine MDOUBLERSUM.
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In[1536]:= Clearf;
DOUBLEMIDPTf_, a_, b_, m_, c_, d_, n_ : Module

dx, dy, i, j, xstar, ystar, mrect, plot,
dx  Nb  a  m;
xstar  Tablea  i  dx, i, 0, m;
dy  Nd  c  n;
ystar  Tablec  j  dy, j, 0, n;
mcolumn  TableCuboidxstari, ystarj, 0,

xstari  1, ystarj  1, fxstari  xstari  1  2,
ystarj  ystarj  1  2, i, 1, m, j, 1, n;

plot  Plot3Dfx, y, x, a, b, y, c, d, Filling  Bottom;
Showplot, Graphics3Dmcolumn, ImageSize  300

In[1538]:= fx_, y_ : x2  y^2;

DOUBLEMIDPTf, 1, 1, 10, 1, 1, 10

Out[1539]=

Here is an animation that demonstrates how the volume of the rectangular columns approach that of the solid in the limit as
m, nØ¶:

Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-

tions generated from the Animate command in this chapter.  If you are reading the electronic version of this publication format-

ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation.  Just click on the
arrow button to start the animation.  To control the animation just click at various points on the sliding bar or else manually drag
the bar.

320   Mathematica for Rogawski's Calculus 2nd Editiion.nb



In[1540]:= AnimateDOUBLEMIDPTf, 1, 1, a, 1, 1, a , a, 5, 50, 5 

Out[1540]=

a

-1.0

-0.5

0.0

0.5

1.0
-1.0

-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5

1.0

ü 15.1.2  Double Integrals and Iterated Integrals in Mathematica 

The Mathematica  command for  evaluating double  integrals is  the same as  that  for  evaluating integrals of  a  single-variable
function, except that two limits of integration must be specified, one for each independent variable.  Thus:

Integrate[f[x,y],{x,a,c},{y,c,d}] analytically evaluates the double integral  R
f x, y „A over the rectangle R = a, bä c, d.  

NIntegrate[f[x,y],{x,a,c},{y,c,d}] numerically evaluates the double integral  R
f x, y „A over the rectangle R = a, bä c, d.  

Iterated Integrals:  In practice, one does not actually use the limit definition in terms of Riemann sums to evaluate double

integrals, but instead apply Fubini's Theorem to easily compute them in terms of iterated integrals:

Fubini's Theorem: (Rectangular Domains) If R = x, y : a § x § b, c § y § d, then

 
R

f x, y „A = 
a

b


c

d

f x, y „ y „ x = 
c

d


a

b

f x, y „ x „ y

Thus, Mathematica will naturally apply Fubini's Theorem whenever possible to analytically determine the answer.  Depending on
the form of the double integral, Mathematica may resort to more sophisticated integration techniques, such as contour integration,
which are beyond the scope of this text.

Example  15.2.   Calculate  the  volume of  the  solid  bounded  below  by  the  surface  f x = x2 + y2  and  above  the  rectangle
R = -1, 1ä -1, 1.
Solution: The volume of the solid is given by the double integral  R

f x, y „A.  To evaluate it, we use the Integrate command:

Mathematica for Rogawski's Calculus 2nd Editiion.nb  321



In[1541]:= fx_, y_ : x^2  y^2;

Integratefx, y, x, 1, 1, y, 1, 1

Out[1542]=
8

3

This confirms the conjecture that we made in the previous example for the exact volume.

NOTE: Observe that we obtain the same answer by explicitly computing this double integral as an integrated integral as follows.
Moreover, for rectangular domains, the order of integration does not matter.

In[1543]:= IntegrateIntegratefx, y, x, 1, 1, y, 1, 1
IntegrateIntegratefx, y, y, 1, 1, x, 1, 1

Out[1543]=
8

3

Out[1544]=
8

3

Example 15.3.  Compute the double integral  R
x e-y2

„A on the rectangle R = 0, 1ä 0, 1.
Solution: Observe that the Integrate command here gives us an answer in terms of the non-elementary error function Erf:

In[1545]:= Integratex  E^y^2, x, 0, 1, y, 0, 1

Out[1545]=
1

4
 Erf1

This is because the function f x, y = x e-y2
 has no elementary anti-derivative with respect to y due to the Gaussian factor e-y2

(bell curve).  Thus, we instead use the NIntegrate Command to numerically approximate the double integral:

In[1546]:= NIntegratex  E^y^2, x, 0, 1, y, 0, 1
Out[1546]= 0.373412

ü Exercises 

1. Consider the function f x, y = 16 - x2 - y2 defined over the rectangle R = 0, 2ä -1, 3.
a. Use the subroutine MDOUBLERSUM to compute the double Riemann sum Sm,n of f x, y over R for m = 2 and n = 2.

b.  Repeat part a)  by generating a table of double Riemann sums for m = 10 k  and n = 10 k  where k = 1, 2, ..., 10.  Make a

conjecture for the exact value of  R
f x, y „A. 

c. Find a formula for Sm,n in terms of m and n.  Verify your conjecture in part b) by evaluating limm,nØ¶Sm,n.

d. Directly compute  R
f x, y „A using the Integrate command.

2. Repeat Exercise 1 but with f x, y = 1 + x 1 + y 1 + x y defined over the rectangle R = 0, 1ä 0, 1.

3. Evaluate the double integral   x4 + y4 „A over the rectangle R = -2, 1ä -1, 2 using both the Integrate and NInte-

grate commands.  How do the two answers compare?

4. Calculate the volume of the solid lying under the surface z = e-yx + y2 and over the rectangle R = 0, 2ä 0, 3.  Then make a

plot of this solid.
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5. Repeat Exercise 4 but with z = sinx2 + y2 and rectangle R = - p , p ä - p , p .
6.  Evaluate  the double integral  R

f x, y „A  where  f x, y = x y cosx2 + y2  and R = -p, pä -p, p.   Does your  answer

make sense?  Make a plot of the solid corresponding to this double integral to intuitively explain your answer.  HINT: Consider
symmetry.

7. Find the volume of solid bounded between the two hyperbolic paraboloids (saddles) z = 1 + x2 - y2 and z = 3 - x2 + y2 over
the rectangle R = -1, 1ä -1, 1.
8. Find the volume of the solid bounded by the planes z = 2 x, z = -3 x + 2, y = 0, y = 1, and z = 0.

ü 15.2  Double Integral over More General Regions

Students should read Section 15.2 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

For domains of integration that are non-rectangular but still simple,  that is,  bounded between two curves, Fubini's  Theorem
continues to hold.  There are two types to consider: 

Fubini's Theorem: (Simple Domains)

Type I (Vertically Simple): If D = x, y : a § x § b, ax § y § bx, then

 
D

f x, y „A = 
a

b


ax

bx
f x, y „ y „ x

The corresponding Mathematica command is Integrate[f[x,y],{x,a,b},{y,a[x],b[x]}].

Type II (Horizontally Simple): If D = x, y : c § y § d, ay § x § by, then

 
D

f x, y „A = 
c

d


ay

by
f x, y „ x „ y

The corresponding Mathematica command is Integrate[f[x,y],{y,c,d},{x,a[y],b[y]}].

Warning: Be careful not to reverse the order of integration prescribed for either type.  For example, evaluating the command

Integrate[f[x,y],{y,a[x],b[x]},{x,a,b}] for Type I (x and y are reversed) will lead to incorrect results.

Example 15.4.  Calculate the volume of the solid bounded below by the surface f x, y = 1 - x2 + y2 and above the domain D
bounded by x = 0, x = 1, y = x, and y = 1 + x2.

Solution: We observe that x = 0 and x = 1 represent the left and right boundaries, respectively, of D.  Therefore, we plot the
graphs of the other two equations along the x-interval 0, 2 to visualize D (shaded in the following plot):
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In[1547]:= Clearx, y
plot1  Plotx, 1  x^2, x, 0, 1, Filling  1  2, ImageSize  250

Out[1548]=

Here is a plot of the corresponding solid situated over D:

In[1549]:= fx_, y_  1  x^2  y^2;

plot3  Plot3Dfx, y, x, 0, 1, y, x, 1  x^2, Filling  Bottom,
ViewPoint  1, 1, 1, PlotRange  0, 4, ImageSize  250

Out[1550]=

To compute the volume of this solid given by  D
f x, y „A, we describe D as a vertically simple domain where 0 § x § 1 and

x § y § 1 + x2 and apply Fubini's Theorem to evaluate the corresponding iterated integral 0

1x

1+x2

f x, y „ y „ x (remember to use

the correct order of integration):

In[1551]:= Integratefx, y, x, 0, 1, y, x, 1  x2

Out[1551]=
29

21

Example 15.5.  Evaluate the double integral  D
sin y2 „A, where D is the domain bounded by x = 0, y = 2, and y = x.

Solution: We first plot the graphs of  x = 0, y = 2, and y = x to visualize the domain D:
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In[1552]:= plot1  ContourPlotx  0, y  2, y  x,
x, 0.5, 2.5, y, 0.5, 2.5, ImageSize  250

Out[1552]=

-0.5 0.0 0.5 1.0 1.5 2.0 2.5
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

It follows that D is the triangular region bounded by these graphs, which we shade in the following plot to make clear:

In[1553]:= plot2  Plotx, x, 0, 2, Filling  2;
Showplot1, plot2, ImageSize  250

Out[1554]=

To compute the given double integral, we describe D as a horizontally simple domain, where 0 § y § 2 and 0 § x § y and apply

Fubini's Theorem to evaluate the corresponding iterated integral 0

20

y
siny2 „ x „ y (again, remember to use the correct order of

integration):

In[1555]:= IntegrateSiny^2, y, 0, 2, x, 0, y
Out[1555]= Sin22
In[1556]:= N
Out[1556]= 0.826822

NOTE: It is also possible to view D as a vertically simple domain, where 0 § x § 2 and x § y § 2.  The corresponding iterated

integral 0
2x

2
siny2 „ y „ x gives the same answer, as it should by Fubini's Theorem:

In[1557]:= IntegrateSiny^2, x, 0, 2, y, x, 2
Out[1557]= Sin22

Observe that it is actually impossible to evaluate this iterated integral by hand since there is no elementary formula for the anti-
derivative of  siny2  with respect to  y.   Thus,  if  necessary,  Mathematica  automatically switches the order  of integration by
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converting from one type to the other.

ü Exercises 

In Exercises 1 through 4, evaluate the given iterated integrals and plot the solid corresponding to each one.

1. 0
10

x24 - x2 + y2 „ y „ x 2. 0
40

2-y2

x2 y „ x „ y

3. 0
p0

sin q
r2 cosq „ r „q 4. 0

10
x y

1+x y
„ y „ x

In Exercises 5 through 8, evaluate the given double integrals and plot the solid corresponding to each one.

5.  D
x + y „A,  D = x, y : 0 § x § 3, 0 § y § x 

6.  D
x + y „A,  D = x, y : 0 § x § 1 - y2, 0 § y § 1

7.  D
ex+y „A, where D = x, y : x2 + y2 § 4

8.  D

y

x+1
„A, where D is the following shaded diamond region:

In Exercises 9 through 12, calculate the volume of the given solid S:
9. S is bounded under the paraboloid z = 16 - x2 - y2  and above the region bounded between the line y = x and the parabola
y = 6 - x2.

10. S is bounded under the right circular cone z = x2 + y2  and above the disk x2 + y2 § 1.

11. S is bounbed between the plane z = 5 + 2 x + 2 y and the paraboloid z = 12 - x2 - y2.  HINT: Equate the two surfaces to
obtain the equation of the domain.

12. S is bounded between the cylinders x2 + y2 = 1 and y2 + z2 = 1.

ü 15.3  Triple Integrals

Students should read Section 15.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Once the notion of a double integral is well established, it is straightforward to generalize it to triple (and even higher-order)
integrals for functions of three variables defined over a solid region in space.  Here is the definition of a triple integral in terms of
triple Riemann sums for a function f x, y, z defined on a box region B = x, y, z : a § x § b, c § y § d, p § z § q (refer to your
calculus text for details):

  
B

f x, y „V = lim
PØ¶

i=1

m


j=1

n


k=1

p

f xijk , yijkDVijk

where the notation is analogous to that used for double integrals in Section 15.1 of this text.  Of course, Fubini's Theorem also
generalizes to triple integrals: 
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Fubini's Theorem: (Box Domains) If B = x, y, z : a § x § b, c § y § d, p § z § q, then

  
B

f x, y „V = 
a

b


c

d


p

q

f x, y „ z „ y „ x

The corresponding Mathematica commands are:

Integrate[f[x,y,z],{x,a,c},{y,c,d},{z,e,f}]  analytically  evaluates  the  triple  integral    B
f x, y „V  over  the  box

B = a, bä c, dä e, f .  
NIntegrate[f[x,y],{x,a,c},{y,c,d},{z,e,f}]  numerically  evaluates  the  triple  integral    B

f x, y „V  over  the  rectangle

B = a, bä c, dä e, f .  
NOTE: For box domains, the order of integration does not matter so that it is possible to write five other versions of triple iterated
integrals besides the one given in Fubini's Theorem.

Example 15.6.  Calculate the triple integral    B
x y z „V  over the box B = 0, 1ä 2, 3ä 4, 5.

Solution: We use the Integrate command to calculate the given triple integral.

In[1558]:= Integratex y z, x, 0, 1, y, 2, 3, z, 4, 5

Out[1558]=
45

8

Volume as Triple Integral: Recall that if a solid region W is bounded between two surfaces yx, y and fx, y, where both are
defined on the same domain D with yx, y § fx, y, then its volume V can be expressed by the triple integral

V =   
W

1 „V =  
D

yx,y

fx,y
1 „ z „A

Example 15.7.  Calculate the volume of the solid bounded between the surfaces z = 4 x2 + 4 y2  and z = 16 - 4 x2 - 4 y2  on the
rectangular domain -1, 1ä -1, 1.
Solution: Here is a plot of the solid:

In[1559]:= Plot3D4 x^2  4 y^2, 16  4 x^2  4 y^2, x, 1, 1, y, 1, 1,
Filling  1  8, 2  8, ImageSize  250, ImagePadding  15, 15, 15, 15

Out[1559]=

The volume of the solid is given by the triple iterated integral -1
1 -1

1 4 x2+4 y2

16-4 x2-4 y2

1 „ z „ y „ x:
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In[1560]:= Integrate1, x, 0, 1, y, 1, 0, z, 4 x^2  4 y^2, 16  4 x^2  y^2

Out[1560]=
35

3

ü Exercises 

In Exercises 1 through 4, evaluate the given iterated integrals:

1. 0
10

x0
y2x + y + z „ z „ y „ x 2. 0

30
sin y0

y +z
x y z „ x „ z „ y 

3. 0
p0

q0
r cos q

r z2 „ z „ r „q 4. 0
1 x

1 0
1-y

z log1 + x y „ z „ y „ x

In Exercises 5 through 8, evaluate the given triple integrals:

5.   W
x + y z „V , where W = x, y, z : 0 § x § 1, 0 § y § x , 0 § z § y2.

6.    W
sin y „V ,  where  W  lies under  the plane z = 1 + x + y  and above the triangular region bounded by  x = 0,  x = 2,  and

y = 3 x. 

7.   W
z „V , where W  is bounded by the paraboloid z = 4 - x2 - y2 and z = 0.

8.   W
f x, y, z „V , where f x, y, z = z2 and W  is bounded between the cone z = x2 + y2  and z = 9.

9. The triple integral 0

1x2
1-x20

2-x-2 y
„ z „ y „ x represents the volume of a solid S.  Evaluate this integral.  Then make a plot of S

and describe it.

10. Midpoint Rule for Triple Integrals:

a. Develop a subroutine called MTRIPLERSUM to compute the triple Riemann sum of the triple integral   B
f x, y, z „V

over the box domain B = x, y, z : a § x § b, c § y § d, p § z § q for uniform partitions and using the center midpoint of each

sub-box as base point.  HINT: Modify the subroutine MDOUBLERSUM in Section 15.1 of this text.  

b. Use your subroutine MTRIPLESUM in part a) to compute the triple Riemann sum of   B
x2 + y2 + z232 „V  over the box

B = x, y, z : 0 § x § 1, 0 § y § 2, 0 § z § 3 by dividing B into 48 equal sub-boxes, that is, cubes having side length of 1/2.

c. Repeat part b) by dividing B into cubes having side length of 1/4 and more generally into cubes having side length of 1 2n for
n sufficiently large in order to obtain an approximation accurate to 2 decimal places.

d. Verify your answer in part c) using Mathematica's NIntegrate command.

ü 15.4  Integration in Polar, Cylindrical, and Spherical Coordinates

Students should read Section 15.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

ü 15.4.1  Double Integrals in Polar Coordinates

The following Change of Variables Formula converts a double integral in rectangular coordinates to one in polar coordinates:

Change of Variables Formula (Polar Coordinates):

I. Polar Rectangles: If R = r, q : q1 § q § q2, r1 § r § r2, then
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R

f x, y „A = 
q1

q2


r1

r2

f r cos q, r sin q r „ r „q

II. Polar Regions: If D = r, q : q1 § q § q2, aq § r § bq, then

 
D

f x, y „A = 
q1

q2


aq

bq
f r cos q, r sin q r „ r „q

Example 15.8.  Calculate the volume of the solid region bounded by the paraboloid f x = 4 - x2 - y2  and the xy-plane using
polar coordinates.

Solution: We first plot the paraboloid:

In[1561]:= fx_, y_  4  x^2  y^2

Plot3Dfx, y, x, 2, 2, y, 2, 2, PlotRange  0, 4, ImageSize  250
Out[1561]= 4  x2  y2

Out[1562]=

The circular domain D  can be easily described in polar coordinates by the polar rectangle R = r, q : 0 § r § 2, 0 § q § 2 p.
Thus, the volume of the solid is given by the corresponding double integral 0

2 p0

2
f r cos q, r sin q r „ r „q in polar coordinates:

In[1563]:= Clearr, ;
Integrater  fr  Cos, r  Sin, r, 0, 2, , 0, 2 Pi

Out[1564]= 8 

Observe that here f x, y simplifies nicely in polar coordinates:

In[1565]:= fr  Cos, r  Sin
Simplify

Out[1565]= 4  r2 Cos2  r2 Sin2
Out[1566]= 4  r2

NOTE: Evaluating the same double integral in rectangular coordinates by hand would be quite tedious.  This is not a problem
with Mathematica, however:

In[1567]:= Integratefx, y, x, 2, 2, y, Sqrt4  x^2, Sqrt4  x^2
Out[1567]= 8 
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ü 15.4.2  Triple Integrals in Cylindrical Coordinates

The following Change of Variables Formula converts a triple integral in rectangular coordinates to one in cylindrical coordinates:

Change of Variables Formula (Cylindrical Coordinates): If a solid region W is described by q1 § q § q2, aq § r § bq, and
z1r, q § z § z2r, q, then 

  
W

f x, y, z „V = 
q1

q2


aq

bq


z1r,q

z2r,q
f r cos q, r sin q, z r „ z „ r „q

Example 15.9.  Use cylindrical coordinates to calculate the triple integral   W
z „V , where W is the solid region bounded above

by the plane z = 8 - x - y, below by the paraboloid z = 4 - x2 - y2, and inside the cylinder x2 + y2 = 4.

Solution: Since W lies inside the cylinder x2 + y2 = 4, this implies that it has a circular base on the xy-plane given by the same
equation, which can be described in polar coordinates by 0 § q § 2 p and 0 § r § 2.  Here is a plot of all three surfaces (plane,
paraboloid, and cylinder):

In[1568]:= plotplane  Plot3D8  x  y, x, 2, 2, y, 2, 2;
plotparaboloid  Plot3D4  x^2  y^2, x, 2, 2, y, 2, 2;
plotcylinder 

ParametricPlot3D2  Cos, 2  Sin, z, , 0, 2 , z, 0, 12;
Showplotplane, plotparaboloid, plotcylinder, PlotRange  All, ImageSize  250

Out[1571]=

Since W is bounded in z by 4 - x2 - y2 § z § 8 - x - y, or in cylindrical coordinates,  4 - r cos q - r sin q § z § 4 - r2, it follows
that the given triple integral transforms to

0

2 p0

24-r2

4-r cos q-r sin q
z r „ z „ r „q

Evaluating this integral in Mathematica yields the answer

In[1572]:= Integratez  r, , 0, 2 , r, 0, 2,
z, 4  r  Cos  r  Sin, 8  r  Cos  r  Sin

Out[1572]= 96 

ü 15.4.3  Triple Integrals in Spherical Coordinates

The following Change of Variables Formula converts a triple integral in rectangular coordinates to one in spherical coordinates:

Change of  Variables  Formula (Spherical  Coordinates):  If  a  solid region W  is  described by  q1 § q § q2,  f1 § f § f2,  and
r1q, f § r § r2q, f, then 
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W

f x, y, z „V = 
q1

q2


f1

f2


r1q,f

r2q,f
f r cos q sin f, r sin q sin f, r cos f r2 sinf „ r „f „q

Example 15.10.  Use spherical coordinates to calculate the volume of the solid W lying inside the sphere x2 + y2 + z2 = z and

above the cone z = x2 + y2 .

Solution: In spherical coordinates, the equation of the sphere is given by

r 2 = r cos f

or equivalently, r = cos f.  Similarly, the equation of the cone transforms to

r cos f = r cos q sin f2 + r sin q sin f2 = r sin f

It follows that cos f = sin f, or f = p 4.  Therefore, the cone makes an angle of 45 degrees with respect to the z-axis, as shown in
the following plot along with the top half of the sphere:

In[1573]:= Clear
plotcone  ParametricPlot3D Cos SinPi  4,  Sin SinPi  4,  CosPi  4,

, 0, 2 Pi, , 0, Sqrt2  2;
plotsphere  ParametricPlot3DCos Cos Sin,

Cos Sin Sin, Cos Cos, , 0, 2 Pi, , 0, Pi  4;
Showplotcone, plotsphere, PlotRange  All, ViewPoint  1, 1, 1  4,
ImageSize  250

Out[1576]=

It is now clear that the solid W is described by 0 § q § 2 p, 0 § f § p 4, and 0 § r § cos f.  Thus, its volume is given by the triple
integral


0

2 p


0

p4


0

cos f

r2 sin f „ r „f „q

which in Mathematica evaluates to

In[1577]:= Integrate^2  Sin, , 0, 2 Pi, , 0, Pi  4, , 0, Cos

Out[1577]=


8

ü Exercises 

In Exercises 1 through 4, evaluate the given double integral by converting to polar coordinates:

1. -1

1 
- 1-x2

1-x2 1 - x2 - y2 „ y „ x 2. 0

20

4-x2

e-x2+y2 „ y „ x

Mathematica for Rogawski's Calculus 2nd Editiion.nb  331



3.  D
x log y „A, where D is the annulus (donut-shaped region) with inner radius 1 and outer radius 3.

4.  D
arctan

y

x
„A, where D is the region inside the cardioid r = 1 + cos t.

5. Use polar coordinates to calculate the volume of the solid that lies below the paraboloid z = x2 + y2  and inside the cylinder
x2 + y2 = 2 y.

6. Evaluate the triple integral 0

20

4-x2 0

4-x2-y2 x2 + y2 „ z „ y „ x by converting to cylindrical coordinates.

7. Use cylindrical coordinates to calculate the triple integral   W
x2 + y 2 „V , where W is the solid bounded between the two

paraboloids z = x2 + y2 and z = 8 - x2 - y2.

8. Evaluate the triple integral -2

2 
- 4-x2

4-x2 
x2+y2

4-x2-y2 x2 + y2 + z2 „ z „ y „ x by converting to spherical coordinates.

9. The solid defined by the spherical equation r = sin f is called the torus.
a. Plot the torus.
b. Calculate the volume of the torus.

10. Ice-Cream Cone: A solid W in the shape of an ice-cream cone is bounded below by the cylinder z = x2 + y2  and above by

the sphere x2 + y2 + z2 = 8.  Plot W and determine its volume.

ü 15.5  Applications of Multiple Integrals

Students should read Section 15.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Mass as Double Integral: Consider a lamina (thin plate) D in  R2 with continous mass density rx, y.  Then the mass of D is
given by the double integral

M =  
D
rx, y „A

where the domain of integration is given by the region that describes the lamina D.

Example 15.11.  Calculate the mass of the lamina D bounded between the parabola y = x2 and y = 4 with density rx, y = y.

Solution: Here is a plot of the lamina D (shaded):

In[1578]:= Plotx^2, 4, x, 2, 2, ImageSize  250, Filling  2  1

Out[1578]=

We can view D as a Type I region described by -2 § x § 2 and x2 § y § 4.  Thus. the mass of the lamina is given by the double
integral: 
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In[1579]:= Integratey, x, 2, 2, y, x^2, 4

Out[1579]=
128

5

NOTE: Mass of a lamina can also be interpreted as the volune of the solid bounded by its density function over D as shown in the
following plot:

In[1580]:= Plot3Dy, x, 2, 2, y, 0, 4, RegionFunction  1^2  2  4 &,
Filling  Bottom, Mesh  None, ImageSize  250

Out[1580]=

Example  15.12.   Suppose  a  circular  metal  plate  D,  bounded  by   x2 + y2 = 9,  has  electrical  charge  density

rx, y = 9 - x2 - y2 .  Calculate the total charge of the plate.

Solution: Here is a plot of the metal plate D (shaded):

In[1581]:= Integratey, x, 2, 2, y, x^2, 4

Out[1581]=
128

5

In[1582]:= PlotSqrt9  x^2, Sqrt9  x^2, x, 3, 3,
ImageSize  250, Filling  2  1, AspectRatio  1

Out[1582]=

We shall calculate the total charge of the plate using polar coordinates, which will simplify the corresponding double integral.

Since rr, q = 9 - r2 and D is a simple polar region described by r = 3, the total charge is
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In[1583]:= IntegrateSqrt9  r^2  r, r, 0, 3, theta, 0, 2 Pi
Out[1583]= 18 

Mass as Triple Integral: We can extend the notion of mass to a solid region W in R3.  Suppose W is bounded between two
surfaces  z = yx, y  and z = fx, y,  where  both  are  defined  on the  same domain D  with  yx, y § fx, y,  and  has  density
rx, y, z.  Then the mass of W can be expressed by the triple integral

M =   
W
rx, y, z „V =  

D

yx,y

fx,y
rx, y, z „ z „A

Example 15.13.   Calculate the mass of the solid region W  bounded between the planes z = 1 - x - y  and z = 1 + x + y  and
situated  over  the  triangular  domain  D  bounded  by  x = 0,  y = 0,  and  y = 1 - x.   Assume  the  density  of  W  is  given  by
rx, y, z = 1 + x2 + y2.

Solution: Here is a plot of the solid region W:

In[1584]:= Plot3D1  x  y, 1  x  y, x, 0, 1, y, 0, 1  x, ViewPoint  1, 1, 1,
Filling  1  1, 2  1, Ticks  Automatic, Automatic, 1, 2,
ImageSize  250, ImagePadding  15, 15, 15, 15

Out[1584]=

The mass of the solid is given by the triple iterated integral 0

10

1-x1-x-y

1+x+y1 + x2 + y2 „ z „ y „ x:

In[1585]:= Integrate1  x^2  y^2, x, 0, 1, y, 0, 1  x, z, 1  x  y, 1  x  y

Out[1585]=
14

15

Center of Mass: Given a lamina D in R2, its center of mass xCM, yCM (or balance point) is defined as the ratio of its moments
(with respect to the coordinate axes) to its mass:

xCM =
My

M
, yCM =

Mx

M

where the moments My and Mx are defined by

My =
1

A
 

D
x rx, y „A, Mx =

1

A
 

D
y rx, y „A

NOTE: In case the lamina has uniform density, that is, rx, y = 1, then the center of mass is the same as the centroid whose
coordinates represent averages of the coordinates over the lamina.

Center of mass (and centroid) can be naturally extended to solid objects in R3.  Refer to your textbook for further details.
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Example 15.14.   Calculate the mass of the solid region W  bounded between the planes z = 1 - x - y  and z = 1 + x + y  and
situated  over  the  triangular  domain  D  bounded  by  x = 0,  y = 0,  and  y = 1 - x.   Assume  the  density  of  W  is  given  by
rx, y, z = 1 + x2 + y2.

ü Exercises 

In Exercises 1 and 2, find the mass of the given lamina D.
1. D is bounded between y = sin p x and y = 0 along the interval 0, 1 and has density rx, y = x1 - x .
2. D is bounded by the lines y = x + 1, y = -2 x - 2, and x = 1 and has density rx, y = 1 + y2 .

3. Find the center of mass of the lamina D in Exercises 1 and 2.

4. Find the centroid of the lamina in Exercises 1 and 2.  Compare the centroid of each lamina with its center of mass.

In Exercises 5 and 6, find the mass of the given solidi object W.
5.  W  is  the  interior  of  the  tetrahedron  enclosed  by  the  planes  x = 0,  y = 0,  z = 0,  and  z = 1 - x - y  and  has  density
rx, y, z = 1 - z.

6.  W  is the ice-cream cone bounded below by the cylinder z = x2 + y2  and above by the sphere x2 + y2 + z2 = 8 and has

density rx, y, z = z2.

7. Find the center of mass of the tetrahedron in Exercises 5 and 6.  Refer to your textbook for appropriate formulas.

8. Find the centroid of the tetrahedron in Exercises 5 and 6.  Compare this with its center of mass.  Refer to your textbook for
appropriate formulas.

ü 15.6  Change of Variables

Students should read Section 15.6 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

A change of variables is often useful for simplifying integrals of a single variable (commonly referred to as u-substitution):


a

b

f x „ x = 
c

d

f gu g ' u „u

where x = gu, a = gc, and b = gd.  This substitution formula allows one to transformation an integral in the variable x to one
in a new variable u.  Observe that the interval c, d is mapped to interval a, b under the function g.

This technique can be extended to double integrals of the form  D
f x, y „ x „ y, where a change of variables is described by a

transformation Gu, v = x, y, which maps a region D0 in the uv-coordinate plane to the region D in the xy-coordinate plane.

The following Change of Variables Formula converts a double integral from the xy-coordinate system to a new coordinate system
defined by u and v:

Change of Variables Formula (Coordinate Transformation): If Gu, v = xu, v, yu, v is a C1-mapping from D0 to D, then

 
D

f x, y „ x „ y =  
D0

f xu, v, yu, v ∑ x, y
∑ u, v „u „v

where 
∑x,y
∑u,v , referred to as the Jacobian of G and also denoted by Jac(G), is given by
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JacG = ∑ x, y
∑ u, v =

∑x

∑u

∑x

∑v
∑y

∑u

∑y

∑v

=
∑ x

∑u

∑ y

∑v
-
∑ x

∑v

∑ y

∑u

The Jacobian relates the area of any infinitesimal region inside D0 with the corresponding region inside D =GD0.  In fact, if G
is a linear map, then Jac(G) is constant and is equal in magnitude to the ratio of the areas of D to that of D0:

Jacobian of a Linear Map: If Gu, v = A u + C v, B u + D v is a linear mapping from D0  to D, then Jac(G) is constant with
value

JacG = A C

B D
= A D - B C

Moreover,

AreaD = JacG AreaD0
Refer to your textbook for a detailed discussion of transformations of plane regions.

Example 15.12.  Make an appropriate changes of variables to calculate the double integral  D
x y „A, where D is the region

bounded by the curves x y = 1, x y = 2, x y2 = 1, and x y2 = 2.

Solution: Here is a plot of the shaded region D bounded by the four given curves: 

In[1586]:= plot1  ContourPlotx  y  1, x  y  2, x  y^2  1, x  y^2  2,
x, 0, 5, y, 0, 5, AspectRatio  Automatic, ImageSize  250;

plot2  ContourPlot1, x, 0, 5, y, 0, 5, AspectRatio  Automatic,
RegionFunction  Functionx, y, 1  x y  2 && 1  x y^2  2,
ImageSize  250, PlotPoints  100;

Show
plot1,
plot2

Out[1588]=

0 1 2 3 4 5
0

1

2

3

4

5

Observe that D is rather complicated.  Since D can be described by the inequalities 1 < x y < 2 and 1 < x y2 < 2, we make the
natural change of variables u = x y and v = x y2, which transforms D to a simple square region D0  in the uv-plane bounded by
u = 1, u = 2, v = 1, and v = 2:
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In[1589]:= ContourPlot1, u, 0, 3, v, 0, 3, ImageSize  250,
RegionFunction  Functionu, v, 1  u  2 && 1  v  2

Out[1589]=

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

To find the formula for our transformation Gu, v = xu, v, yu, v that maps D0 to D, we solve for x and y in terms of u and v:

In[1590]:= Clearsol, x, y, u, v
sol  Solveu  x  y, v  x  y^2, x, y

Out[1591]= x 
u2

v
, y 

v

u


It follows that Gu, v = u2 v, v u and the corresponding Jacobian is

In[1592]:= x  sol1, 1, 2
y  sol1, 2, 2
Jac  Dx, u  Dy, v  Dx, v  Dy, u

Out[1592]=
u2

v

Out[1593]=
v

u

Out[1594]=
1

v

Thus, the given integral transforms to  D
x y „A =  D0

u

v
„A = 1

21
2 u

v
„v „u with value

In[1595]:= Integrateu  v, u, 1, 2, v, 1, 2

Out[1595]=
3 Log2

2

ü Exercises 

1. Consider the transformation Gu, v = 2 u + v, u - 3 v.
a. Set D =GD0 where D0 = 0 § u § 1, 0 § v § 2.  Make a plot of D and describe its shape.
b. Compute JacG.
c. Compare the area of D with that of D0.  How does this relate to JacG?
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2. Compute the area of the ellipse x2

4
+

y2

9
= 1 by viewing it as a transformation of the unit circle u2 + v2 = 1 under a linear map

Gu, v = xu, v, yu, v and using the area relationship described by Jac(G).

3. Evaluate the integral  D
x y „A, where D is the region in the first quadrant bounded by the equations y = x, y = 4 x, x y = 1,

and x y = 4.  HINT: Consider the change of variables u = x y and v = y.

4.  Evaluate  the  integral   D
x + y  x - y „A,  where  D  is  the  parallelogram  bounded  by  the  lines  x - y = 1,  x - y = 3,

2 x + y = 0, and 2 x + y = 2.  HINT: Consider the change of variables u = x - y and v = 2 x + y.

5. Evaluate the integral  D

y

x
„A, where D is the region bounded by the circles x2 + y2 = 1, x2 + y2 = 4 and lines y = x, y = 3 x.

HINT: Consider the change of variables u = x2 + y2 and v = y  x.
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Chapter 16 Line and Surface Integrals
Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible
to view 3-D plots generated by Mathematica from different perspectives.  First, place your screen cursor over the plot.  Then drag
the mouse while pressing down on the left mouse button to rotate the plot.

ü 16.1  Vector Fields

Students should read Section 16.1 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Let F1, F2, and F3 be functions of x, y, and z. The vector-valued function

Fx, y, z = F1x, y, z, F2x, y, z, F3x, y, z
is called a vector field. We have already encountered a vector field in the form of the gradient of a function. Other useful exam-
ples of vector fields are the gravitational force, the velocity of fluid, magnetic fields, and electric fields. 

We use the Mathematica  commands VectorFieldPlot and VectorFieldPlot3D  to plot the graphs of vector fields.  However,

before using these commands, it is advisable to load the VectorFieldPlots package. This is done by evaluating

In[1596]:= Needs"VectorFieldPlots`"
Example 16.1.  Draw the following vector fields.
a) Fx, y = sin y, cos x b)   F x, y, z = y, x + z, 2 x - y    
Solution:
a) 

In[1597]:= ClearF, x, y, z
Fx_, y_  Siny, Cosx

Out[1598]= Siny, Cosx
In[1599]:= VectorFieldPlotFx, y, x, 5, 5, y, 4, 4, ImageSize  250 

Out[1599]=

Here is another display of the preceding vector field with some options specified. 
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In[1600]:= VectorFieldPlotFx, y, x, 5, 5, y, 4, 4, Axes  True,

AxesOrigin  0, 0, Frame  False, ColorFunction  Hue, ImageSize  250

Out[1600]=
-4 -2 2 4

-4

-2

2

4

To see other available options of VectorFieldPlot, evaluate the command Options[VectorFieldPlot].

b) We shall use two of the options of VectorFieldPlot3D, which does not have as many options as VectorFieldPlot. (Again, you

can find these by evaluating Options[VectorFieldPlot3D].)

In[1601]:= ClearF, x, y, z
Fx_, y_, z_  y z2, x z2, 2 x y z
VectorFieldPlot3DFx, y, z, x, 3, 3, y, 3, 3, z, 3, 3,
ColorFunction  Hue, VectorHeads  True, ImageSize  250

Out[1602]= y z2, x z2, 2 x y z

Out[1603]=
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Example 16.2.  Draw the unit radial vector fields:

a) Fx, y =  x

x2+y2
,

y

x2+y2
 b)   F x, y, z =  x

x2+y2+z2
,

y

x2+y2+z2
, z

x2+y2+z2
    

Solution: For convenience, we define both vector fields to be 0 at the origin. We shall use the If command to do so. 

a)

In[1604]:= ClearF, x, y
Fx_, y_  Ifx2  y2  0,

x, y
x2  y2

, 0, 0

VectorFieldPlotFx, y, x, 3, 3, y, 3, 3, ImageSize  250

Out[1605]= Ifx2  y2  0,
x, y
x2  y2

, 0, 0

Out[1606]=

b) 
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In[1607]:= ClearF, x, y, z
Fx_, y_, z_  Ifx2  y2  z2  0,

x, y, z
x2  y2  z2

, 0, 0, 0

VectorFieldPlot3DFx, y, z, x, 3, 3, y, 3, 3, z, 3, 3,
ColorFunction  Hue, VectorHeads  True, ImageSize  250

Out[1608]= Ifx2  y2  z2  0,
x, y, z
x2  y2  z2

, 0, 0, 0

Out[1609]=

ü Exercises 

In Exercise 1 through 4, draw the given vector fields.

1.   Fx, y =  y2 - 2 xy, xy + 6 x2 2.   F x, y, z = sin x, cos y , xz   
3.   Fx, y =  - y

x2+y2
, x

x2+y2
 4,   F x, y, z =  x + cos xz, y sin xy, xz cos yz     

In Exerices 5 and 6, calculate and plot the gradient vector field for each of the following functions.
5.   f x, y = lnx + y2  6.  f x, y, z = sin x cos z  y   

ü 16.2  Line Integrals

Students should read Section 16.2 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Suppose C is a smooth curve in space whose parametric equations are given by 

x = xt, y = yt, z = zt
where  a § t § b.   Let  C1, C2, C3, .... , CN  be  a  partition of  the  curve  C  with  arc  length  Ds1, Ds2, Ds3, ... , DsN  and let
P1, P2, P3, ... , PN  be points on the subarcs.  

If f x, y, z is a function that is continuous on the curve C, then the line integral of f  is defined by 

C
f x, y, z „ s = limDsiØ0 i=1

N f PiDsi
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NOTE: If c t = xt, yt, zt is the vector equation of the curve C, then it can be shown (refer to your calculus textbook) that 

C
f x, y, z „ s = a

b
f ct c ' t „ t

In addition, if Fx, y, z = F1, F2, F3 is a vector field that is continuous on C, then the line integral of F over C is given by 

C
Fx, y, z ◊„ s = C

F ◊ T „ s = a
b
F ct ◊c ' t „ t

where T is the unit vector T = c' t
c' t  and F ◊ T is the dot product of F and T.

Example 16.3.  Find C
f x, y, z „ s, where f x, y, z = x y + z2 and C is given by  x = t, y = t2, and z = t3, for 0 § t § 1.

Solution: 

In[1610]:= Clearx, y, z, t, f, c
fx_, y_, z_  x 2 y  x z

xt_  t

yt_  t2

zt_  t3

ct_  xt, yt, zt
Out[1611]= x2 y  x z

Out[1612]= t

Out[1613]= t2

Out[1614]= t3

Out[1615]= t, t2, t3
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In[1616]:= 
0

1

fxt, yt, zt Normc't t

Out[1616]= 
1

76545 7
2
2   5 

2 114 84 987 134 2   5  532  14 EllipticEArcSin 3  3 

2 2   5 
,

2   5

2   5
  266 70 EllipticEArcSin 3  3 

2 2   5 
, 2   5

2   5
 

415  14 EllipticFArcSin 3  3 

2 2   5 
, 2   5

2   5
 

266 70 EllipticFArcSin 3  3 

2 2   5 
, 2   5

2   5


Here is a numerical approximation of the preceding line integral.

In[1617]:= NIntegratefxt, yt, zt Normc't, t, 0, 1
Out[1617]= 1.16521

Example 16.4.  Find C
Fx, y, z ◊„ s, where Fx, y, z =  x z, z y2, y x2 and the curve C  is given by  x = 2 t, y = sin t, and

z = cos t, 0 § t § 2 p.

Solution: 
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In[1618]:= Clearx, y, z, t, f, c
Fx_, y_, z_  x z, z y2, y x2
xt_  2 t

yt_  Sint
zt_  Cost
ct_  xt, yt, zt

Out[1619]= x z, y2 z, x2 y
Out[1620]= 2 t

Out[1621]= Sint
Out[1622]= Cost
Out[1623]= 2 t, Sint, Cost

In[1624]:= 
0

2 Pi

Fxt, yt, zt.c't t

Out[1624]=
9 

4

16 3

3

In[1625]:= N
Out[1625]= 158.298

ü Exercises 

1.  Find C
f x, y, z „ s, where:

a.  f x, y, z = x y2 - 4 zy and C is given by  x = 2 t, y = t23, and z = 1 - 3 t2, for 0 § t § 1.

b.  f x, y, z = yz

x
 and C is given by  x = ln t, y = t2, and z = 3 t, for 3 § t § 5.

2.   Find C
Fx, y ◊„ s, where:

a.   Fx, y =  e3 x-2 y, e2 x+3 y and C is given by  x = 2 t, y = sin t,  0 § t § p

b.  Fx, y = x2, yx + y2 and C is the unit circle center at the origin.

3.  Find C
Fx, y, z ◊„ s, where:

a.   Fx, y, z = xyz, -xz, xy  and C is given by  x = t, y = 2 t2, z = 3 t  0 § t § 1

b.   Fx, y, z = xy3, z + x2, z3 and C is the line segment joining -1, 2, -1 and 1, 3, 4.

ü 16.3  Conservative Vector Fields

Students should read Section 16.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Let Fx, y, z = F1, F2, F3 be a vector field. Let C1 and C2 be any two different curves with the same initial point P and end

point Q.  We say that the vector field F is path independent if 

C1
Fx, y, z ◊„ s = C2

Fx, y, z ◊„ s
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A vector field that is path independent is called conservative.  

NOTE 1: A vector field F is conservative if  


C

Fx, y, z ◊„ s = 0

for every closed curve C.

NOTE 2: If F = !u is the gradient of a function u = ux, y, z, then we say that u is the potential of F.  Moreover, if the end
points of C are P and Q, we have 


C

Fx, y, z ◊„ s = uP - uQ

In particular, if the curve is closed, that is, if P =Q, then 


C

Fx, y, z ◊„ s = 0

Therefore, gradient is conservative. The converse of this statement is true if its domain is an open connected domain.  

NOTE 3: Let F = F1, F2.  If F =!u =  ∑ u

∑ x
, ∑ u

∑ y
, then F1 =

∑ u

∑ x
 and F2 =

∑ u

∑ y
. Taking the partial derivative of F1with respect to y

and that of F2 with respect to x and using the fact that ∑2 u

∑ x ∑ y
= ∑2 u

∑ y ∑ x
, we see that F1 and F2 must satisfy 

∑ F1

∑ y
=

∑ F2

∑ x

This equation is used to check if a vector field is conservative.  In that case, we solve F1 =
∑ u

∑ x
 for u by integrating with respect to

x and then use the equation F2 =
∑ u

∑ y
 to find the constant of integration. Here is an example.

Example 16.5.  Show that the vector function F = 3 x2 - 2 xy + 2, 6 y2 - x2 + 3  is conservative and find its potential.

Solution: Here, F1 = x y2 and F2 = x2 y. We now compare 
∑ F1

∑ y
 and 

∑ F2

∑ x
 to verify if F is conservative.

In[1626]:= Clearx, y, F1, F2
F1x_, y_  3 x2  2 x y  2

F2x_, y_  6 y2  x2  3

Out[1627]= 2  3 x2  2 x y

Out[1628]= 3  x2  6 y2

In[1629]:= DF1x, y, y
DF2x, y, x

Out[1629]= 2 x

Out[1630]= 2 x

Thus, the vector field is conservative. To find its potential u, we integrate F1 =
∑ u

∑ x
 with respect to x to get 
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In[1631]:= Clearh, u
u  IntegrateF1x, y, x  hy

Out[1632]= 2 x  x3  x2 y  hy
Note that the addition of hy is necessary because the constant of integration may depend on y.  We now solve the equation

F2 =
∑ u

∑ y
 for h ' y.

In[1633]:= Clearsol
sol  SolveDu, y  F2x, y, h'y

Out[1634]= hy  3 1  2 y2
This means that h ' y = 3 1 + 2 y2.
In[1635]:= Integratesol1, 1, 2, y
Out[1635]= 3 y  2 y3

Hence, hy = 3 y + 2 y2  and so ux, y = 2 x + x3 - x2 y + 3 y + 2 y3 is the potential of F.

NOTE 4: Let F = F1, F2, F3.  If F =!u =  ∑ u

∑ x
,
∑ u

∑ y
,
∑ u

∑ z
, then F1 =

∑ u

∑ x
, F2 =

∑ u

∑ y
 and F3 =

∑ u

∑ z
. Taking the partial derivative of

F1with respect to y and that of F2 with respect to x and using the fact that 
∑2 u

∑x ∑y
= ∑2 u

∑y ∑x
, we see that F1 and F2 must satisfy 

∑ F1

∑ y
=

∑ F2

∑ x

Taking the partial derivative of F1with respect to z and that of F3 with respect to x and using the fact that ∑
2 u

∑x ∑z
= ∑2 u

∑z ∑x
, we see that

F1 and F3 must satisfy 

∑ F1

∑ z
=

∑ F3

∑ x

The preceding two equations can be used to check if a vector field is conservative. If this the case, we solve F1 =
∑ u

∑ x
 for u by

integrating with respect to x and then use F2 =
∑ u

∑ y
 to find the constant of integration. We show this by the following example.

Example 16.6.  Show that the vector function F = yz + yz cos xy , xz + xz cos xy , xy + sin xy  is conservative and find its
potential. 

Solution: Here, F1 = y z + y z cos x y ,  F2 = x z + x z cos x y,  and F3 = x y + sinx y .  

In[1636]:= Clearx, y, F1, F2, F3
F1x_, y_, z_  y z  y z Cosx y
F2x_, y_, z_  x z  x z Cosx y
F3x_, y_, z_  x y  Sinx y

Out[1637]= y z  y z Cosx y
Out[1638]= x z  x z Cosx y
Out[1639]= x y  Sinx y

 We now compare 
∑ F1

∑ y
 and 

∑ F2

∑ x
:
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In[1640]:= DF1x, y, z, y
DF2x, y, z, x

Out[1640]= z  z Cosx y  x y z Sinx y
Out[1641]= z  z Cosx y  x y z Sinx y

Next, we compare 
∑ F1

∑ z
 and 

∑ F2

∑ x
:

In[1642]:= DF1x, y, z, z
DF3x, y, z, x

Out[1642]= y  y Cosx y
Out[1643]= y  y Cosx y

Thus, the vector field is conservative. To find its potential u, we integrate F1 =
∑ u

∑ x
 with repsetct to x to get 

In[1644]:= Clearu, h
u  IntegrateF1x, y, z, x  hy, z

Out[1645]= x y z  hy, z  z Sinx y
Note that the addition of hy, z is necessary because the constant of intgeration can depend on y and z.  We now solve the

equation F2 =
∑ u

∑ y
 for ∑ h

∑ y
.

In[1646]:= Clearsol
sol  SolveDu, y  F2x, y, z, y hy, z

Out[1647]= h1,0y, z  0

This means that ∑ h

∑ y
= 0 and hence h is a function of z only.   Next, we solve the equation F3 =

∑ u

∑ z
 for ∑ h

∑ z
.

In[1648]:= Clearsol2
sol2  SolveDu, z  F3x, y, z, z hy, z

Out[1649]= h0,1y, z  0

Hence, ∑ h

∑ z
= 0 and we can take h = 0. Therefore, u = x y z + z sin x y is the potential for the vector field F.

ü Exercises 

1. Show that the vector field F =  y3 - 3 x2 y, 3 xy2 - x3  is conservative and find its potential. 

2. Show that the vector field F = y z +
2 xy

z
, xz + x2

z
, xy -

x2 y

z2
  is conservative and find its potential. 

3. Determine whether the vector field F = x2, yx + ez, y ez  is conservative.  If it is, find its potential. 

ü 16.4  Parametrized Surfaces and Surface Integrals

Students should read Section 16.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.
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A parametrized surface is a surface whose points are given in the form

Gu, v = xu, v, yu, v, zu, v
where u and v (called parameters) are independent variables used to describe a domain D (called the parameter domain).

The command for plotting parametrized surfaces is ParametricPlot3D.  This command has been discussed in Section 14.1.2 of
this text.
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Example  16.7.   Plot  the  parametrized  surface  defined  by  Gu, v = cos u sin v, 4 sin u cos v, cos v  over  the  domain
D = u, v 0 § u § 2 p, 0 § v § 2 p.
Solution:

In[1650]:= ParametricPlot3D Cosu Sinv, 4 Sinu Cosv, Cosv,
u, 0, 2 Pi, v, 0, 2 Pi, ImageSize  250

Out[1650]=

Example  16.8.   Plot  the  parametrized  surface  defined  by  Gu, v = u cos v, u sin v, 1 - u2  over  the  domain

D = u, v 0 § u § 1, 0 § v § 2 p.
Solution:

In[1651]:= ParametricPlot3Du Cosv , u Sinv , 1  u2, u, 0, 1,
v, 0, 2 Pi, ColorFunction  "BlueGreenYellow", ImageSize  250,
ImagePadding  15, 15, 15, 15

Out[1651]=

NOTE: On a parametrized surface Gu, v = xu, v, yu, v, zu, v,  if  we fix one of the variables, we get a  curve on the
surface.  The plot following shows the curves corresponding to u = 3 4 (latitude) and v = 5 p 3 (longitude).
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In[1652]:= Clearplot1, plot2, plot3
plot1  ParametricPlot3Du Cosv , u Sinv , 1  u2,

u, 0, 1, v, 0, 2 Pi, ColorFunction  "BlueGreenYellow";
plot2  ParametricPlot3D 3  4 Cosv , 3  4 Sinv , 7  16,

v, 0, 2 Pi, PlotStyle  Thickness0.01, Red;
plot3  ParametricPlot3D u Cos5 Pi  3 , u Sin5 Pi  3 , 1  u2,

u, 0, 1, PlotStyle  Thickness0.01, Blue;
Showplot1, plot2, plot3, PlotRange  All, ImageSize  250,
ImagePadding  15, 15, 15, 15

Out[1656]=

Let P =Gu0, v0 be a point on the parametrized surface S.  For fixed v = v0, the tangent vector to the curve Gu, v0 at u0, v0  is
given by 

Tu =
∑G

∑u
u0, v0

while the tangent vector for  Gu0, v corresponding to a fixed u = u0 is given by 

Tv =
∑G

∑v
u0, v0

These two vectors are tangent to the surface S.  Thus, the normal vector n to the tangent plane at Gu0, v0 is given by 

n P = n u0, v0 = TuμTv

Example 16.9.  Consider the parametrized surface Gu, v =  u cos v, u sin v, 1 - v2.
a) Find Tu, Tv, and n.
b) Find the equation of the tangent plane at 1 2, 5 p 3.
c) Plot the tangent plane and surface.

Solution:  Let us define G as a function of u and v in Mathematica. 

In[1657]:= ClearG, u, v
Gu_, v_  u Cosv, u Sinv, 1  u2

Out[1658]= u Cosv, u Sinv, 1  u2
a) We use Tu for Tu and Tv for Tv. We evaluate these as functions of u and v.
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In[1659]:= ClearTu, Tv, n
Tuu_, v_  DGu, v, u
Tvu_, v_  DGu, v, v
nu_, v_  CrossTuu, v, Tvu, v

Out[1660]= Cosv, Sinv, 2 u
Out[1661]= u Sinv, u Cosv, 0
Out[1662]= 2 u2 Cosv, 2 u2 Sinv, u Cosv2  u Sinv2
b) The normal vector to the tangent plane at 1 2, 5 p 3 is 

In[1663]:= Clearnormal
normal  n1  2, 5 Pi  3

Out[1664]=  1
4
, 

3

4
,
1

2


The tangent plane passes through the point

In[1665]:= Clearpoint
point  G1  2, 5 Pi  3

Out[1666]=  1
4
, 

3

4
,
3

4


Thus, the equation of the tangent plane is given by 

In[1667]:= Cleartplane
tplane  normal.x, y, z  point  0

Out[1668]=
1

4

1

4
 x 

1

4
3

3

4
 y 

1

2

3

4
 z  0

which simplifies to 

In[1669]:= Simplifytplane
Out[1669]= 2 x  4 z  5  2 3 y

c) Here is the plot of the surface and the tangent plane. Observe that we have used ColorFunction and ColorFunctionScaling
options.
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In[1670]:= Clearplot1, plot2
plot1  ParametricPlot3DGu, v,

u, 0, 1, v, 0, 2 Pi, ColorFunction  "BlueGreenYellow";
plot2  ContourPlot3D2 x  4 z  5  2 3 y, x, 3, 3, y, 3, 3,

z, 4, 4, ColorFunction  Functionx, y, z, HueModz, 1,
ColorFunctionScaling  False;

Showplot1, plot2, ImageSize  250, ImagePadding  15, 15, 15, 15

Out[1673]=

NOTE: The area AS of a parametrized surface S: Gu, v = xu, v, yu, v, zu, v, where u, v œ D, is given by  

AS =  D
 nu, v  „u „v 

If f x, y, z is continuous at all points of S, then the surface area of f  over S is given by 

 S
f x, y, z „S =  D

f Gu, v  nu, v  „u „v

Example 16.10.  Show the following:
a) The area of the cylinder of height h  and radius r is 2 p rh.
b) The area of the sphere of radius r is 4 p r2.

Solution: 
a) A parametric equation of the cylinder of height h  and radius r can be given by  

 x = r cos v, y = r sin v, and z = u, where  0 § v § 2 p , 0 § u § h

Thus, the cylinder is given by Gu, v = r cos u, r sin u, v. 
In[1674]:= Clear G, u, v, r

Gu_, v_  r Cosv, r Sinv, u
Out[1675]= r Cosv, r Sinv, u
Here is a plot of the cylinder with r = 3 and h = 5:
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In[1676]:= r  3; h  5;

ParametricPlot3DGu, v, u, 0, h, v, 0, 2 Pi

Out[1677]=

To compute the surface area of the cylinder, we need to compute its normal vector. 

In[1678]:= ClearTu, Tv, n, r, h
Tuu_, v_  DGu, v, u;
Tvu_, v_  DGu, v, v;
nu_, v_  CrossTuu, v, Tvu, v

Out[1681]= r Cosv, r Sinv, 0
Here is a plot of the cylinder with its normal vector for  r = 3 and h = 5:

354   Mathematica for Rogawski's Calculus 2nd Editiion.nb



In[1682]:= r  3; h  5;

Clearplot1, plot2
plot1  ParametricPlot3DGu, v, u, 0, h, v, 0, 2 Pi;
plot2  VectorFieldPlot3Dnu, v, u, 0, h,

v, 2 Pi, 2 Pi, z, 3, 3, VectorHeads  True, PlotPoints  15;
Showplot1, plot2, ImageSize  250
Clearr, h

Out[1686]=

The surface area is 

In[1688]:= SArea  
0

h


0

2 Pi

Normnu, v v u
Out[1688]= 2 h  Absr
Since r > 0, r = r and hence the preceding output is 2 p r h .

b) A parametric equation of the sphere of radius r is

 x = r cos u sin v, y = r sin u sin v, z = r cos v

where 0 § u § 2 p and 0 § v § p.  Thus, the sphere is given by Gu, v = r cos u sin v, r sin u sin v, r cos v. 
In[1689]:= Clear G, u, v, r

Gu_, v_  r Cosu Sinv, r Sinu Sinv, r Cosv
Out[1690]= r Cosu Sinv, r Sinu Sinv, r Cosv
Here is a plot of the sphere with r = 3. 
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In[1691]:= r  3;

ParametricPlot3DGu, v, u, 0, 2 Pi, v, 0, Pi, ImageSize  250

Out[1692]=

To compute the surface area of the sphere, we need to compute its normal vector. 

In[1693]:= ClearTu, Tv, n, r
Tuu_, v_  DGu, v, u;
Tvu_, v_  DGu, v, v;
nu_, v_  CrossTuu, v, Tvu, v

Out[1696]= r2 Cosu Sinv2, r2 Sinu Sinv2,
r2 Cosu2 Cosv Sinv  r2 Cosv Sinu2 Sinv

Here is a plot of the sphere with its normal vector for  r = 3.  

In[1697]:= r  3; h  5;

Clearplot1, plot2
plot1  ParametricPlot3DGu, v, u, 0, 2 Pi, v, 0, h;
plot2  VectorFieldPlot3Dnu, v, u, 2 Pi, 2 Pi,

v, 0, h, z, 3, 3, VectorHeads  True, PlotPoints  10;
Showplot1, plot2, ImageSize  250
Clearr, h

Out[1701]=

The surface area is 
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In[1703]:= SArea  
0

Pi


0

2 Pi

Normnu, v u v
Out[1703]= 4  r Conjugater
For a real number r, the conjugate of r is r and hence the preceding output is 4 p r2.

Example 16.11.  Consider the parametrized surface S defined by Gu, v =  u cos v, u sin v, v, where 0 § u § 1, 0 § v § 2 p.
a) Find the surface area of S.

b) Evaluate  S
xyz „S.

Solution:
a)

In[1704]:= Clear G, u, v
Gu_, v_  u Cosv, u Sinv, v

Out[1705]= u Cosv, u Sinv, v
In[1706]:= ClearTu, Tv, n

Tuu_, v_  DGu, v, u
Tvu_, v_  DGu, v, v
nu_, v_  CrossTuu, v, Tvu, v

Out[1707]= Cosv, Sinv, 0
Out[1708]= u Sinv, u Cosv, 1
Out[1709]= Sinv, Cosv, u Cosv2  u Sinv2
  The surface area AS is given by 

In[1710]:= SArea  
0

1


0

2 Pi

Normnu, v v u

Out[1710]=   2  ArcSinh1
which is approximately equal to  

In[1711]:= N
Out[1711]= 7.2118

b) We define f :

In[1712]:= Clearf
fx_, y_, z_  x y z

Out[1713]= x y z

The surface integral of f  is

In[1714]:= 
0

1


0

2 Pi

fGu, v1, Gu, v2, Gu, v3 Normnu, v v u

Out[1714]= 
1

16
 3 2  ArcSinh1
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Or numerically,

In[1715]:= N
Out[1715]= 0.659983

ü   Exercises 

1. Plot the parametrized surface Gu, v = eu sin v, eu cos v, v over the domain D = u, v -1 § u § 1, 0 § v § 2 p. 
2. Plot the parametrized surface Gu, v = 3 sin u cos v, sin u sin v, cos v + 3 cos u over the domain 
D = u, v 0 § u § 2 p, 0 § v § 2 p.
3. Consider the parametrized surface Gu, v = e-u cos v, eu sin v, eu cos v.
a.  Find Tu, Tv, and n.
b.  Find the equation of the tangent plane at 0, p  2.
c.  Plot the tangent plane and surface.

4. Consider the parametrized surface S: Gu, v =  u - v , 3 u + v, u2 - 2 u v + 6 v2, where 0 § u § 1, 0 § v § 1.

a.  Find the surface area of S. (Use NIntegrate for faster integration.)

b.  Evaluate  S
3 x + 2 y2 - z2 „S.

ü 16.5  Surface Integrals of Vector Fields

Students should read Section 16.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this

section.

An orientation of a surface S is a continuously varying choice of the unit normal vector enP at each point of the surface.  Thus,
en is given by either  

enP = nP
nP    or   enP = - nP

nP

If Fx, y, z is continuous at all points of a parametrized surface S, then the surface integral of F over S is given by 

 S
F ÿ„S =  S

F ÿen „S

where en is the unit normal determined by an orientation. The surface integral of F is also called the flux of F across S.

The surface integral of F over a parametrized surface S given by Gu, v = xu, v, yu, v, zu, v, where u, v œ D, is given by 

 S
F ÿ„S =  S

F ÿen „S =  D
FGu, v ◊nu, v „u „v

Example 16.12.  Find  S
F ◊„S, where Fx, y, z = x z, z , y x and S is given by  Gu, v = u - v2, u v, u2 - v, 0 § u § 2, and

1 § v § 3.

Solution:
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In[1716]:= ClearF, G, x, y, z, u, v
Fx_, y_, z_  x z, z, y x
Gu_, v_  u  v2, u v, u2  v

Out[1717]= x z, z, x y
Out[1718]= u  v2, u v, u2  v
In[1719]:= ClearTu, Tv, n

Tuu_, v_  DGu, v, u
Tvu_, v_  DGu, v, v
nu_, v_  CrossTuu, v, Tvu, v

Out[1720]= 1, v, 2 u
Out[1721]= 2 v, u, 1
Out[1722]= 2 u2  v, 1  4 u v, u  2 v2

In[1723]:= Flux  
0

2


1

3

FGu, v1, Gu, v2, Gu, v3 .nu, v v u

Out[1723]= 
6928

15

Example  16.13.   Find   S
F ◊„S,  where  Fx, y, z = x2, z2 , y + x2  and  S  is  the  upper  hemisphere  x2 + y2 + z2 = 4  with

outward normal orientation.

Solution:   First, we find the parametric equation of the cylinder.  This can be given by x = 2 cos u sin v,  y = 2 sin u sin v, and
z = 2 cos v, where 0 § u § 2 p and 0 § v § p 2. 

For the hemisphere to have the outward orientation, we note that n = TvμTu. With this in mind we compute the flux of F across
S through the following steps.

In[1724]:= ClearF, G, x, y, z, u, v
Fx_, y_, z_   x2, z2, x2  y  z3
Gu_, v_   2 Cosu Sinv , 2 Sinu Sinv , Cosv 

Out[1725]= x2, z2, x2  y  z3
Out[1726]= 2 Cosu Sinv, 2 Sinu Sinv, Cosv
In[1727]:= ClearTu, Tv, n

Tuu_, v_  DGu, v, u
Tvu_, v_  DGu, v, v
nu_, v_  CrossTvu, v, Tuu, v

Out[1728]= 2 Sinu Sinv, 2 Cosu Sinv, 0
Out[1729]= 2 Cosu Cosv, 2 Cosv Sinu, Sinv
Out[1730]= 2 Cosu Sinv2, 2 Sinu Sinv2, 4 Cosu2 Cosv Sinv  4 Cosv Sinu2 Sinv
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In[1731]:= Flux  
0

Pi2

0

2 Pi

FGu, v1, Gu, v2, Gu, v3 .nu, v u v

Out[1731]=
28 

5

ü  Exercises 

1. Find  S
F ◊„S, where Fx, y, z =  ez, z, y x and S is given by Gu, v = u v, u - v, u, 0 § u § 2, and -1 § v § 1, and 

oriented by n = TuμTv.

2. Find  S
F ÿ„S, where Fx, y, z =  z, x , y  and S is the portion of the ellipsoid  x2

16
+

y2

9
+ z2

4
= 1 for which x § 0,   y § 0, and 

z § 0 with outward normal orientation.

3. Let S be given by Gu, v = 1 + v cos u

2
 cos u, 1 + v cos u

2
 sin u , v sin u

2
, 0 § u § 2 p, and -1

2
§ v § 1

2
.

a. Plot the surface S. (S is an example of a Mobius strip.)
b. Find the surface area of S.

c. Evaluate  S
x2 + 2 y2 + 3 z2 „S.

d. Find the intersection points of S and the xy-plane.

e. For each of the points on the intersection of S and the xy-plane, find the normal vector n.

f. Show that n varies continuously but that n2 p, 0 = -nu, 0. (This shows that S is not orientable and hence it is impossible to 
integrate a vector field over S.) 

Chapter 17 Fundamental Theorems of Vector 
Analysis
Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible
to view 3-D plots generated by Mathematica from different perspectives.  First, place your screen cursor over the plot.  Then drag
the mouse while pressing down on the left mouse button to rotate the plot.

NOTE: In order to perform the operations of curl and divergence on vector fields discussed in this section using Mathematica, it

is necessary to first load the VectorAnalysis package:

In[1732]:= Needs"VectorAnalysis`"
The Fundamental Theorem of Calculus for functions of a single variable states that the integral of a function f x over an interval
a, b (domain) can be calculated as the difference of its anti-derivative Fx at the endpoints (boundary) of the interval:


a

b

f x „ x = Fb - Fa

This integral relationship between domain and boundary can be generalized to vector fields involving the operations of curl and
divergence and is made precise by three theorems that will be discussed in this chapter: Green's Theorem, Stoke's Theorem, and
Divergence Theorem.  

ü 17.1  Green's Theorem

Students should read Section 17.1 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
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g p
section.

Let  Fx, y = Px, y, Qx, y a vector field continuous on an oriented curve C.  Recall that the line integral of F along C  is
denoted by 

C
Fx, y, z ◊„ s = C

P „ x +Q „ y

If c t = xt, yt, zt is the vector equation of the curve C, then

C
P „ x +Q „ y = a

bPxt, yt d x

d t
+Qxt, yt d y

d t
 d t

The following is a generalization of the Fundamental Theorem of Calculus to two dimensions, which relates a double integral
over a region with a corresponding line integral along its boundary.

Green's Theorem: If C  is a simple closed curve oriented counterclockwise and D is the region enclosed, and if P and Q are
differentiable and have continuous first partial derivatives, then  

C
P „ x +Q „ y =  D

 ∑Q

∑ x
- ∑ P

∑ y
 „A

Refer to your textbook for a detailed discussion and proof of Green's Theorem.

Example 17.1. Compute the line integral C
e2 x+y „ x + e-y „ y, where C is the boundary of the square with vertices 0, 0, 1, 0,

1, 1, 1, 0 oriented counterclockwise.

Solution: We will use Green's Theorem.  Thus, we need to verify that the hypotheses of Green's Theorem hold. To this end, we
define the function P and Q and compute their partial derivatives.   

In[1733]:= Clearx, y, P, Q
Px_, y_  E2 xy

Qx_, y_  Ey

Out[1734]= 2 xy

Out[1735]= y

In[1736]:= DPx, y, x
DPx, y, y
DQx, y, x
DQx, y, y

Out[1736]= 2 2 xy

Out[1737]= 2 xy

Out[1738]= 0

Out[1739]= y

The partial derivatives are continuous inside the square and the curve is oriented counterclockwise. Thus, the hypotheses of
Green's Theorem are satisfied.  Note that the region D enclosed by C is given by 0 § x § 1 and 0 § y § 1.

In[1740]:= 
0

1


0

1

DQx, y, x  DPx, y, y y x

Out[1740]= 
1

2
1  2 1  
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In[1741]:= N
Out[1741]= 5.4891

NOTE: If we were to solve this using the definition of line integral as discussed in Chapter 16 of this text, we would then need to
consider four pieces of parametrization of C and then sum the four integrals.   Toward this end, let us use C1 for the lower edge,
C2 for the right edge, C3 for the top edge, and C4 for the left edge of the square.  Here are the parametrizations followed by their
line integrals.

In[1742]:= Clearx1, x2, x3, x4, y1, y2, y3, y4, t, F, c1, c2, c3, c4
Fx_, y_  Px, y, Qx, y 
x1t_  t

y1t_  0

c1t_  x1t, y1t

x2t_  1

y2t_  t

c2t_  x2t, y2t

x3t_  1  t

y3t_  1

c3t_  x3t, y3t

x4t_  0

y4t_  1  t

c4t_  x4t, y4t
Out[1743]= 2 xy, y
Out[1744]= t

Out[1745]= 0

Out[1746]= t, 0
Out[1747]= 1

Out[1748]= t

Out[1749]= 1, t
Out[1750]= 1  t

Out[1751]= 1

Out[1752]= 1  t, 1
Out[1753]= 0

Out[1754]= 1  t

Out[1755]= 0, 1  t
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In[1756]:= 
0

1

Fx1t, y1t.c1't t  
0

1

Fx2t, y2t.c2't t 


0

1

Fx3t, y3t.c3't t  
0

1

Fx4t, y4t.c4't t

Out[1756]= 1 
1



1  



1

2
1  2  1

2
 1  2

In[1757]:= N
Out[1757]= 5.4891

ü  Exercises 

In Exercises 1 through 4, use Green's Theorem to evaluate the given line integral.

1. C
y2 sin x „ x + x y „ y, where C is the boundary of the triangle with vertices 0, 0, 1, 0, 1, 1, oriented counterclockwise.

2. C
2 x2 y „ x + x3 „ y, where C is the circle x2 + y2 = 4, oriented counterclockwise.

3. C
x2 + y2 „ x + y ex „ y, where C is the boundary of the region bounded between the parabola y = 5 - x2 and the line 

y = 2 x - 3, oriented clockwise.

4. C
x

x2+y2
„ x -

y

x2+y2
„ y, where C is the boundary of the quarter-annulus situated between the circles x2 + y2 = 1 and x2 + y2 = 9 

in the first quadrant (see plot below), oriented counterclockwise.

5. Let Fx, y = 2 x y + y3, x2 + 3 x y + 2 y.  Use Green's Theorem to demonstrate that the line integral C
Fx, y, z ◊„ s = 0 for 

every simple closed curve C.  What kind of a vector field do we call F?

ü 17.2  Stokes's Theorem

Students should read Section 17.2 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Let Fx, y, z = F1, F2, F3 be a vector field.  The curl of F, denoted by curlF or ! μF, is defined by 

curlF =! μF =

i j k
∑

∑x

∑

∑y

∑

∑z

F1 F2 F3

=  ∑F3

∑y
-

∑F2

∑z
,
∑F1

∑z
-

∑F3

∑x
,
∑F2

∑x
-

∑F1

∑y


Here, we are using the del or symbol ! (nabla) to denote the vector operator ! =  ∑

∑x
, ∑

∑y
, ∑

∑z
.

The Mathematica command for computing the curl of a vector field F is Curl[F,coordsys], where coordsys is the coordinate
system of the vector field.  This is demonstrated in the next example.

The following is a generalization of the Fundamental Theorem of Calculus three dimensions, which relates a surface integral
involving curl with a corresponding line integral along its boundary.

Stokes's Theorem: If  Fx, y, z a vector field with continuous partial derivatives and if S is an oriented surface S with boundary
∑S,  then 
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∑S
F ÿ„S =  S

curlF ◊„S

If S is closed, then it has no boundary and hence both integrals are equal to 0.

NOTE: Recall that if the surface S  is given by Gu, v = xu, v, yu, v, zu, v, where u, v œ D, then S
curlF ÿ„S is given

by 

 S
curlF ◊„S =  D

curlF Gu, v ◊nu, v „u „v

Refer to your textbook for a detailed discussion and proof of Stokes's Theorem.

Example 17.2.  Find the curl of the vector field Fx, y, z =  x sin y z, ex y z , y x2.
Solution: We use the Curl command:

In[1758]:= ClearF, F1, F2, F3, x, y, z
F1  x Siny z
F2  Exy z
F3  x 2 y

F  F1, F2, F3
Out[1759]= x Siny z
Out[1760]= xy z

Out[1761]= x2 y

Out[1762]= x Siny z, xy z, x2 y
In[1763]:= CurlF, Cartesianx, y, z

Out[1763]= xy  x2, 2 x y  x y Cosy z, xy z
y

 x z Cosy z

NOTE: We obtain the same answer for the curl of F using the explicit formula:

In[1764]:= curl  y F3  zF2, zF1  xF3, xF2  yF1

Out[1764]= xy  x2, 2 x y  x y Cosy z, xy z
y

 x z Cosy z

Or equivalently,

In[1765]:= CurlF  DF3, y  DF2, z, DF3, x  DF1, z, DF2, x  DF1, y

Out[1765]= xy  x2, 2 x y  x y Cosy z, xy z
y

 x z Cosy z

Example 17.3.  Let f x, y, z be a function of three variables with continuous first and second partial derivatives and let F =! f

be the gradient of f .  Find the curl of the vector field F.  

Solution: 
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In[1766]:= Clearf, F1, F2, F3, x, y, z
F1  Dfx, y, z, x
F2  Dfx, y, z, y
F3  Dfx, y, z, z
F  F1, F2, F3

Out[1767]= f1,0,0x, y, z
Out[1768]= f0,1,0x, y, z
Out[1769]= f0,0,1x, y, z
Out[1770]= f1,0,0x, y, z, f0,1,0x, y, z, f0,0,1x, y, z
Then the curl of F is 

In[1771]:= CurlF, Cartesianx, y, z
Out[1771]= 0, 0, 0
To see why the curl is zero, let us examine each partial derivative used in computing the curl of F.  

In[1772]:= DF3, y
DF2, z

Out[1772]= f0,1,1x, y, z
Out[1773]= f0,1,1x, y, z
NOTE: Here, f 0,1,1x, y, z stands for the second partial derivative fyz. Thus, the two partial derivatives that appear in the x-

component of the curl of F are equal and hence their difference is zero. Similarly, we have 

In[1774]:= DF3, x
DF1, z

Out[1774]= f1,0,1x, y, z
Out[1775]= f1,0,1x, y, z
and 

In[1776]:= DF2, x
DF1, y

Out[1776]= f1,1,0x, y, z
Out[1777]= f1,1,0x, y, z
Example 17.4.  Compute ∑S

F ÿ„S, where Fx, y, z =  x y z, z + 3 x - 3 y , y 2 x and S is the upper hemisphere of radius 4.

Solution:  Note  that  ∑S  is  a  circle  of  radius  4  lying  on  the  xy-plane.  Hence,  ∑S  can  be  parametrized  by  the  curve
ct = xt, yt, zt where

 x = 4 cos t, y = 4 sin t, z = 0, where  0 § t § 2 p

We then use this parametrization to evaluate the line integral ∑S
F ÿ„S =0

2 p
Fxt, yt, zt ÿc ' t „ t:
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In[1778]:= ClearF, x, y, z, t, c, curlF
Fx_, y_, z_  x y z, z  3 x  3 y, y2 x
xt_  4 Cost
yt_  4 Sint
zt_  0

ct_  xt, yt, zt
Out[1779]= x y z, 3 x  3 y  z, x y2
Out[1780]= 4 Cost
Out[1781]= 4 Sint
Out[1782]= 0

Out[1783]= 4 Cost, 4 Sint, 0

In[1784]:= 
0

2 Pi

Fxt, yt, zt.c't t
Out[1784]= 48 

Next, we use Stokes's Theorem to obtain the same answer via the corresponding surface integral.  The parametrization of the
upper hemisphere of radius 4 is given by Su, v = xu, v, yu, v, zu, v, where

 x = 4 cos u sin v,  y = 4 sin u sin v, and z = 4 cos v,    where    0 § u § 2 p, 0 § v § p 2

We now compute the normal of the upper hemisphere:

In[1785]:= ClearS, u, v, Tu, Tv, n
Su_, v_ :  4 Cosu Sinv, 4 Sinu Sinv, 4 Cosv 
Tuu_, v_ : DSu, v, u
Tvu_, v_ : DSu, v, v
nu_, v_  CrossTvu, v, Tuu, v

Out[1789]= 16 Cosu Sinv2, 16 Sinu Sinv2,
16 Cosu2 Cosv Sinv  16 Cosv Sinu2 Sinv

The curl of F is 

In[1790]:= curlFx_, y_, z_  CurlFx, y, z, Cartesianx, y, z
Out[1790]= 1  2 x y, x y  y2, 3  x z
Thus, the surface integral is given by 

In[1791]:= 
0

Pi2

0

2 Pi

curlFSu, v1, Su, v2, Su, v3 .nu, v u v
Out[1791]= 48 

This answer agrees with the one obtained using the line integral definition.

Example 17.5.  Find the flux of the curl of the vector field Fx, y, z =  x2, z2 , y + x2 across S, where S is the part of the cone

z2 = x2 + y2 for which 1 § z § 4 with outward normal orientation.
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Solution:  First, we will need the following parametric equations to describe the cone S: x = u cos v , y = u sin v, and z = u, where
0 § v § 2 p and 1 § u § 4. 

For the cone to have outward orientation, we set n = TvμTu  (right-hand rule) since Tv  points in the horizontal direction around
the cone and Tu points in the direction along the length of the cone.

In[1792]:= ClearF, S, u, v, Tu, Tv, n
Fx_, y_, z_  x2  y2, x  z2, 0
Su_, v_ :  u Cosv , u Sinv , u 
Tuu_, v_ : DSu, v, u
Tvu_, v_ : DSu, v, v
nu_, v_  CrossTvu, v, Tuu, v

Out[1793]= x2  y2, x  z2, 0
Out[1797]= u Cosv, u Sinv, u Cosv2  u Sinv2
 We now compute the flux of curl F across S through the following steps.

In[1798]:= curlFx_, y_, z_  CurlFx, y, z, Cartesianx, y, z
Out[1798]= 2 z, 0, 1  2 y

In[1799]:= Flux  
1

4


0

2 Pi

curlFSu, v1, Su, v2, Su, v3.nu, v v u
Out[1799]= 15 

ü  Exercises 

NOTE: In order to perform the curl operation in Mathematica, it is necessary to first load the VectorAnalysis package.  See
instructions given at the beginning of this chapter.

In Exercises 1 and 2, find the curl of the given vector field.

1. Fx, y, z =  ln x2 + y2 + z2, x  z , ex sin y z
2. Fx, y, z = - x

x2+y2+z232 , -
y

x2+y2+z232 , - z

x2+y2+z232 

In Exercises 3 and 4, verify Stokes's Theorem for the given vector field F and surface S.

3. Fx, y, z =  x3 e - 3 x y + z3, 2 z3 - x z2 + y4, 6 y + 2 z3 x2 and S is the part of the paraboloid z = x2 + y2 for which z § 9 and 

with outward normal orientation.
4. Fx, y, z =  x y z, x y, x + y + z and S is the elliptical region in the plane y + z = 2 whose boundary is the intersection of the 
plane with the cylinder x2 + y2 = 1 and with upward normal orientation.

In Exercises 5 and 6, use Stokes's Theorem to compute the flux of the curl of the vector field F across the surface S.

5. Fx, y, z =  tanx y z, ey-x z, secy2 x and S is the upper hemisphere of radius 4.

6. Fx, y, z =  x2 z, x y2, z2 and S consists of the top and four sides of the cube (excluding the bottom) with vertices at 0, 0, 0, 
1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1.

ü 17.3  Divergence Theorem

Students should read Section 17.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
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section.

Let Fx, y, z = F1, F2, F3 be a vector field.  The divergence of F, denoted by divF or ! ◊ F, is defined by 

divF = ! ◊ F =
∑F1

∑x
+

∑F2

∑ y
+

∑F3

∑z

where ! =  ∑

∑x
, ∑

∑y
, ∑

∑z
.

The Mathematica command for computing the divergence of a vector field F is Div[F,coordsys], where coordsys is the coordi-
nate system of the vector field.  This is demonstrated in the next example.

The following is another generalization of the Fundamental Theorem of Calculus three dimensions, which relates a triple integral
of a solid object involving divergence with a corresponding surface integral along its boundary.

Divergence Theorem: Let W  be a region in R3 whose boundary ∑W  is a piecewise smooth surface, oriented so that the normal
vectors to ∑W  point outside of W , and Fx, y, z be a vector field with continuous partial derivatives whose domain contains W .
Then

 ∑W
F ◊„S =   W

divF „V

Refer to your textbook for a detailed discussion and proof of the Divergence Theorem.

Example 17.8.  Find the divergence of the vector field Fx, y, z =  x sin yz, ex y z , yx2.
Solution: 

In[1800]:= ClearF1, F2, F3, x, y, z
F1  x Siny z
F2  Exy z
F3  x 2 y

F  F1, F2, F3
Out[1801]= x Siny z
Out[1802]= xy z

Out[1803]= x2 y

Out[1804]= x Siny z, xy z, x2 y
Then the divergence of F is 

In[1805]:= DivF, Cartesianx, y, z

Out[1805]= 
xy x z

y2
 Siny z

NOTE: Again we obtain the same answer for the divergence of F using the explicit formula:

In[1806]:= DF1, x  DF2, y  DF3, z

Out[1806]= 
xy x z

y2
 Siny z

Example 17.9.  Find  S
F ◊„S, where Fx, y, z =  x , y2, y + z and S = ∑W  is the boundary of the region W contained in the
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cylinder  x2 + y2 = 4 between the plane z = x and z = 8.

Solution: If S is the boundary of the solid W , then W  is given by

W = x, y, z : -2 § x § 2, - 4 - x2 § y § 4 - x2 , x § z § 8
In[1807]:= ClearF, divF, x, y, z

Fx_, y_, z_  x, y2, y  z
divF  DivFx, y, z, Cartesianx, y, z

Out[1808]= x, y2, y  z
Out[1809]= 2  2 y

By the Divergence Theorem, we see that  S
F ÿ„S is given by 

In[1810]:= 
2

2


 4x2

4x2


x

8

divF z y x

Out[1810]= 64 

ü  Exercises 

NOTE: In order to perform the divergence operation in Mathematica, it is necessary to first load the VectorAnalysis package.
See instructions given at the beginning of this chapter.

In Exercises 1 and 2, find the divergence of the given vector field F.

1. Fx, y, z =  x y z, x2 + y2 + z2, x y + y z + x z
2. Fx, y, z =  ex y cos z, ey z sin z, z2
In Exercises 3 and 4, verify the Divergence Theorem for the given vector field F and solid region W.

3. Fx, y, z = x2 y, y2 z, z2 x  and W = x, y, z : x2 + y2 + z2 < 1 is the unit ball. 

4. Fx, y, z = ex cos y, ex sin y, x y z  and W is the region bounded by the paraboloid z = x2 + y2 and z = 4.

In Exercises 5 and 6, use the Divergence Theorem to calculate the flux of the vector field F across the surface S.

5. Fx, y, z =  x ez , y2, y + z x and S is tetrahedron bounded by the plane 3 x + 4 y + 5 z = 15 and the coordinate planes in the 

first octant.

6. Fx, y, z =  x y z, x2 + y2 + z2, x y + y z + x z  and S is the unit cube with vertices at 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 
0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1.
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