Mathematica[®] for Rogawski's Calculus

2nd Edition 2010 Based on *Mathematica* Version 7

Abdul Hassen, Gary Itzkowitz, Hieu D. Nguyen, Jay Schiffman

W. H. Freeman and Company New York

© Copyright 2010

Table of Contents

Chapter 1	Introduction	
	1.1	Getting Started
		1.1.1 First-Time Users of <i>Mathematica</i> 7
		1.1.2 Entering and Evaluating Input Commands
		1.1.3 Documentation Center (Help Menu)
	1.2	Mathematica's Conventions for Inputting Commands
		1.2.1 Naming
		1.2.2 Parentheses, Brackets, and Braces
		1.2.3 Lists
		1.2.4 Equal Signs
		1.2.5 Referring to Previous Results
		1.2.6 Commenting
	1.3	Basic Calculator Operations
	1.4	Functions
	1.5	Palettes
	1.6	Solving Equations
Chapter 2	Grapl	ns, Limits, and Continuity of Functions
	2.1	Plotting Graphs
		2.1.1 Basic Plot
		2.1.2 Plot Options
	2.2	Limits
		2.2.1 Evaluating Limits
		2.2.2 Limits Involving Trigonometric Functions
		2.2.3 Limits Involving Infinity
	2.3	Continuity
Chapter 3.	Diffe	rentiation
	3.1	The Derivative

3.1.1 Slope of Tangent

- 3.1.2 Derivative as a Function
- 3.2 Higher-Order Derivatives
- 3.3 Chain Rule and Implicit Differentiation
- 3.4 Derivatives of Inverse, Exponential and Logarithmic Functions
 - 3.4.1 Inverse of a Function
 - 3.4.2 Exponential and Logarithmic Functions
- Chapter 4 Applications of the Derivative
 - 4.1 Related Rates
 - 4.2 Extrema
 - 4.3 Optimization
 - 4.3.1 Traffic Flow
 - 4.3.2 Minimum Cost
 - 4.3.3 Packaging (Minimum Surface Area)
 - 4.3.4 Maximum Revenue
 - 4.4 Newton's Method
 - 4.4.1 Programming Newton's Method
 - 4.4.2 Divergence
 - 4.4.3 Slow Convergence

Chapter 5 Integration

- 5.1 Antiderivatives (Indefinite Integral)
- 5.2 Riemann Sums and the Definite Integral
 - 5.2.1 Riemann Sums Using Left Endpoints
 - 5.2.2 Riemann Sums Using Right Endpoints
 - 5.2.3 Riemann Sums Using Midpoints
- 5.3 The Fundamental Theorem of Calculus
- 5.4 Integrals Involving Trigonometric, Exponential, and Logarithmic Functions
- Chapter 6 Applications of the Integral
 - 6.1 Area Between Curves
 - 6.2 Average Value

- 6.3 Volumes of Solids of Revolution
 - 6.3.1 The Method of Discs
 - 6.3.2 The Method of Washers
 - 6.3.3 The Method of Cylindrical Shells

Chapter 7 Techniques of Integration

- 7.1 Numerical Integration
 - 7.1.1 Trapezoidal Rule
 - 7.1.2 Simpson's Rule
 - 7.1.3 Midpoint Rule
- 7.2 Techniques of Integration
 - 7.2.1 Substitution
 - 7.2.2 Trigonometric Substitution
 - 7.2.3 Method of Partial Fractions
- 7.3 Improper Integrals
- 7.4 Hyperbolic Functions
 - 7.4.1 Hyperbolic Functions
 - 7.4.2 Identities Involving Hyperbolic Functions
 - 7.4.3 Derivatives of Hyperbolic Functions
 - 7.4.4 Inverse Hyperbolic Functions
- Chapter 8 Further Applications of Integration
 - 8.1 Arc Length and Surface Area
 - 8.1.1 Arc Length
 - 8.1.2 Surface Area
 - 8.2 Center of Mass
- Chapter 9 Introduction to Differential Equations
 - 9.1 Solving Differential Equations
 - 9.2 Models of the Form y' = k(y b)
 - 9.2.1 Bacteria Growth
 - 9.2.2 Radioactive Decay

- 9.2.3 Annuity
- 9.2.4 Newton's Law of Cooling
- 9.3 Numerical Methods Using Slope Fields
 - 9.3.1 Slope Fields
 - 9.3.2 Euler's Method
- 9.4 The Logistic Equation
- Chapter 10 Infinite Series
 - 10.1 Sequences
 - 10.2 Infinite Series
 - 10.2.1 Finite Sums
 - 10.2.2 Partial Sums and Convergence
 - 10.3 Tests for Convergence
 - 10.3.1 Comparison and Limit Comparison Tests
 - 10.3.2 The Integral Test
 - 10.3.3 Absolute and Conditional Convergence
 - 10.3.4 Ratio Test
 - 10.3.5 Root Test
 - 10.4 Power Series
 - 10.4.1 Taylor Polynomials
 - 10.4.2 Convergence of Power Series
 - 10.4.3 Taylor Series
- Chapter 11 Parametric Equations, Polar Coordinates, and Conic Sections
 - 11.1 Parametric Equations
 - 11.1.1 Plotting Parametric Equations
 - 11.1.2 Parametric Derivatives
 - 11.1.3 Arc Length and Speed
 - 11.2 Polar Coordinates and Curves
 - 11.2.1 Conversion Formulas
 - 11.2.2 Polar Curves

- 11.2.3 Calculus of Polar Curves
- 11.3 Conic Sections
- Chapter 12 Vector Geometry
 - 12.1 Vectors
 - 12.2 Matrices and the Cross Product
 - 12.3 Planes in 3-Space
 - 12.4 A Survey of Quadric Surfaces
 - 12.4.1 Ellipsoids
 - 12.4.2 Hyperboloids
 - 12.4.3 Paraboloids
 - 12.4.4 Quadratic Cylinders
 - 12.5 Cylindrical and Spherical Coordinates
 - 12.5.1 Cylindrical Coordinates
 - 12.5.2 Spherical Coordinates
- Chapter 13 Calculus of Vector-Valued Functions
 - 13.1 Vector-Valued Functions
 - 13.2 Calculus of Vector-Valued Functions
 - 13.3 Arc Length
 - 13.4 Curvature
 - 13.5 Motion in Space
- Chapter 14 Differentiation in Several Variables
 - 14.1 Functions of Two or More Variables
 - 14.1.1 Graphs of Functions of Two Variables
 - 14.1.2 ParametricPlot3D and ContourPlot3D
 - 14.2 Limits and Continuity
 - 14.2.1 Limits
 - 14.2.2 Continuity
 - 14.3 Partial Derivatives
 - 14.4 Tangent Planes

- 14.5 Gradient and Directional Derivatives
- 14.6 Chain Rule
- 14.7 Optimization
- 14.8 Lagrange Multipliers

Chapter 15 Multiple Integration

- 15.1 Double Integration Over a Rectangle
 - 15.1.1 Double Integrals and Riemann Sums
 - 15.1.2 Double Integrals and Iterated Integrals in Mathematica
- 15.2 Double Integrals Over More General Regions
- 15.3 Triple Integrals
- 15.4 Integration in Polar, Cylindrical and Spherical Coordinates
 - 15.4.1 Double Integrals in Polar Coordinates
 - 15.4.2 Triple Integrals in Cylindrical Coordinates
 - 15.4.3 Triple Integrals in Spherical Coordinates
- 15.5 Applications of Multiple Integrals
- 15.6 Change of Variables

Chapter 16 Line and Surface Integrals

- 16.1 Vector Fields
- 16.2 Line Integrals
- 16.3 Conservative Vector Fields
- 16.4 Parametrized Surfaces and Surface Integrals
- 16.5 Surface Integrals of Vector Fields
- Chapter 17 Fundamental Theorems of Vector Analysis
 - 17.1 Green's Theorem
 - 17.2 Stokes' Theorem
 - 17.3 Divergence Theorem

Appendices - Quick Reference Guides

- A. Common Mathematical Operations Traditional Notation versus Mathematica Notation
- B. Useful Command for Plotting, Solving, and Manipulating Mathematical Expressions

- C. Useful Editing and Programming Commands
- D. Formatting Cells in a Notebook
- E. Saving and Printing a Notebook

References