
Chapter 12 Vector Geometry
Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible
to view 3-D plots generated by Mathematica from different perspectives.  First, place your screen cursor over the plot.  Then drag
the mouse while pressing down on the left mouse button to rotate the plot.

ü 12.1  Vectors

Students should read Sections 12.1 - 12.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

A vector is an object that has magnitude and direction.  In physics, these vectors are denoted by arrows, where the magnitude of
the vector is represented by the length of the vector, and the way in which the arrow points indicates its direction.  In mathemat-
ics, these vectors are represented by points in two or three dimensions, where the vector is the arrow that starts at the origin and
ends at the point.  For example, the point (2, 1, 3) could be considered both as a point in 3-D space and as a vector from (0, 0, 0)
to (2, 1, 3). To distinguish a point from a vector, we will use the angled brackets  and  instead of parentheses. Thus, the point (2,
1, 3) is denoted (2, 1, 3) as usual, but the vector from the origin to that point is denoted 2, 1, 3.  

The length or magnitude of a vector v is denoted v, and is read as "norm v."  If  v = a, b, c, then v = a2 + b2 + c2 .  In

two dimensions, if v = a, b, then v = a2 + b2 . 

Vectors and matrices, in Mathematica,  are simply lists.  A vector is a list of numbers within braces, with commas between
numbers, while a matrix is a list of lists (vectors), with each vector list being a row of the matrix (for a complete description of

lists in Mathematica, see Section 1.2.3 of this text).  Of course, all rows must be the same size.  For example, consider the vector

a below:

In[1]:= a  1, 3 , 5
Out[1]= 1, 3, 5

The ith component of the vector a is denoted by ai, or in Mathematica, by a[[i]].  For instance the second component of a, which
is 3, would be obtained by:

In[2]:= a2
Out[2]= 3

All of the usual vector algebra operations are available to us:

Dot Product

The Dot Product of two vectors u = u1, u2, u3 and v = v1, v2, v3 is defined by 

u ◊ v = u1 v1 + u2 v2 + u3 v3.  For example:



In[3]:= a  1, 3, 5
b  1, 2, 3
a.b

Out[3]= 1, 3, 5
Out[4]= 1, 2, 3
Out[5]= 10

or

In[6]:= Dota, b
Out[6]= 10

NOTE: We use the ordinary period symbol on the keyboard for the dot product.

Cross Product

The cross product of two vectors u = u1, u2, u3 and v = v1, v2, v3, is defined as a vector perpendicular to both u and v, and

calculated by the following "right-hand" rule:

u × v = u2v3 - u3v2, u3 v1 - u1 v3 , u1v2 - u2v1
This calculation can be done in Mathematica in two ways.  The first is to use the Cross command:

In[7]:= Crossa, b
Out[7]= 19, 2, 5

The second is by using the multiplication symbol "×".  This special symbol can be entered on the Basic Math Input Palette or

by pushing the escape key, followed by typing the word "cross" and hitting the escape key again:  [esc]cross[esc]

In[8]:= a  b

Out[8]= 19, 2, 5
Recall that the cross product of 2 vectors, a and b creates a vector perpendicular to the plane of the vectors a and b.  In your
Calculus text, the cross product is also defined as the determinant of a special matrix. We will look at this a little later.

Norm (Length) of a Vector

The norm or length of a vector can be calculated in Mathematica by the Norm command

In[9]:= Clearx, y, z
In[10]:= Normx, y, z

Out[10]= Absx2  Absy2  Absz2

In[11]:= Norma
Out[11]= 35

In[12]:= Norm 2 a
Out[12]= 2 35
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In[13]:=

Vector Addition

The sum of two vectors u = u1, u2, u3 and v = v1, v2, v3 is defined to be u + v = u1 v1 + u2 v2 + u3 v3.

In[14]:= 2 a  3 b  1, 1, 1
Out[14]= 0, 13, 2

Example 12.1.  Let a = 1, 2, 3.  Show that a
a is a unit vector.

In[15]:=

Solution:

In[16]:= Norma  Norma
Out[16]= 1

Example 12.2.  Find the equation of a line in 3-space passing through P0 = (3,-1,4) in the direction of  v = 2,7,1 and graph it.

Solution: The line through P0 = x0, y0, z0 in the direction of v = a, b, c is described in vector or parametric form by:

Vector form:  rt = x0, y0, z0 + t a, b, c
Parametric Form:  x = x0 + a t, y = y0 + b t, z = z0 + c t

Thus, the vector description of the line is

In[17]:= Clearr, t;
rt_  3, 1, 4  t 2, 7, 1

Out[18]= 3  2 t, 1  7 t, 4  t
To graph this line we use the ParametricPlot3D command:

ParametricPlot3D fx, fy, fz, u, umin, umax
produces a three-dimensional space curve parametrized by a variable u which runs from
umin to umax. 
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In[19]:= ParametricPlot3Drt, t, 3, 3,
ImageSize  250, ImagePadding  15, 15, 15, 15

Out[19]=

0
5

-20

-10

0

10

20

2
4
6

NOTE: This plot command uses the option ImageSize to specify the size of graphics output.  Settings include Tiny, Small,

Medium, Large, or {pt}, where pt is the number of points.

Example 12.3.  Give the description in vector form of the line that passes through the points P = 1, 0, 4 and Q = 3, 2, 1, then

find the midpoint of the line segment PQ and plot this line segment.

Solution: The line through points P = a1, b1, c1 and Q = a2, b2, c2 has vector form rt = 1 - t a1, b1, c1 + t a2, b2, c2.  In
this parametrization, r0 = P and r1 = Q.  Thus,

In[20]:= rt_  1  t 1, 0, 4  t 3, 2, 1
Out[20]= 1  2 t, 2 t, 4 1  t  t

The midpoint of the line segment PQ is 

In[21]:= r1
2


Out[21]= 2, 1,
5

2


The plot of the line segment is
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In[22]:= ParametricPlot3Drt, t, 0.1, 1.1,
ImageSize  250, ImagePadding  15, 15, 15, 15

Out[22]=
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Example 12.4.  Find the angle between the vectors v = 3,6,2 and w = 6,3,6.

Solution:  Remember that  the  angle  between two vectors,  v  and w,  is  given by  q,  which  is  defined by  q = cos-1 v.w

v w   .

Therefore,

In[23]:= v  3, 6, 2
w  6, 3, 6

Out[23]= 3, 6, 2
Out[24]= 6, 3, 6

In[25]:=   ArcCos v.w

Normv Normw 

Out[25]= ArcCos 16
21



In[26]:= N
Out[26]= 0.704547

Therefore, q = .7045 radians.

ü Exercises 

1. Calculate the length of the vector v = 1, 3, 4.
In Exerices 2 and 3, calculate the linear combinations.
2.   5 2, -2, 5 + 6 1, 3, 8 3.   6 2, 0, -1  - 3 8, 6, 9
4. Find a vector parametrization for the line that passes through P = 1, 2, -6 with direction vector v = 2, 1, 5.
In Exercises 5 and 6, determine whether the two given vectors are orthogonal (v ¦ w iff  v.w = 0):
5.  1, 1, 1,  1, -2, 3 6.  1, 1, 1,  -3, 2, 1
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In Exercises 7 and 8, find the angle between the vectors:
7.  1, 2,  5, 7 8.  2, 4, 1,  1, -3, 5

ü 12.2  Matrices and the Cross Product

Students should read Section 12.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

In order to understand the alternate approach to the cross product alluded to above, we need to define the terms matrix and
determinant.

Matrices

A matrix is a rectangular array of numbers consisting of n rows and m columns (denoted n × m).  We are especially interested in
square matrices where m = n and, in particular, m = 2 or m = 3.  For example:  A 3 × 3 matrix would be

a11 a12 a13

a21 a22 a23

a31 a32 a33

but Mathematica would show this matrix as:

In[27]:= A  Table10 i  j, i, 3, j, 3
Out[27]= 11, 12, 13, 21, 22, 23, 31, 32, 33
In[28]:= B  Tablei  j, i, 2, j, 2
Out[28]= 2, 3, 3, 4
To have Mathematica display a matrix in the traditional way, use the MatrixForm command:

In[29]:= MatrixFormA
MatrixFormB

Out[29]//MatrixForm=

11 12 13
21 22 23
31 32 33

Out[30]//MatrixForm=

 2 3
3 4



Note that in the definition of the matrices A and B, Mathematica treats them as lists and when we use the command Matrix-

Form, we can see the matrices presented in the traditional way.

Determinants

The determinant is a function, Det, which assigns to each square matrix a number which is defined for 2 × 2 and 3 × 3 matrices
as follows:
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In[31]:= Cleara, b;
F  a, b, c, d
MatrixFormF

Out[32]= a, b, c, d
Out[33]//MatrixForm=

 a b
c d



In[34]:= DetF
Out[34]= b c  a d

In[35]:= G  a1, a2, a3, b1, b2, b3, c1, c2, c3
MatrixFormG

Out[35]= a1, a2, a3, b1, b2, b3, c1, c2, c3
Out[36]//MatrixForm=

a1 a2 a3
b1 b2 b3
c1 c2 c3

In[37]:= DetG
Out[37]= a3 b2 c1  a2 b3 c1  a3 b1 c2  a1 b3 c2  a2 b1 c3  a1 b2 c3

Using these definitions, we can now define the cross product of two vectors by the formula

b1, b2, b3μc1, c2, c3 =Det

i j k

b1 b2 b3

c1 c2 c3

where i = 1, 0, 0, j = 0, 1, 0, and k = 0, 0, 1.
Example 12.5.  Calculate the cross product of  v = 1, 3, 6 and w = -2, 8, 5.
In[38]:=

Solution:

In[39]:= Cleari, j, k
g  i, j, k
v  1, 3, 6
w  2, 8, 5
A  g, v, w

Out[40]= i, j, k
Out[41]= 1, 3, 6
Out[42]= 2, 8, 5
Out[43]= i, j, k, 1, 3, 6, 2, 8, 5
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In[44]:= MatrixFormA
Out[44]//MatrixForm=

i j k
1 3 6
2 8 5

In[45]:= v  w
DetA

Out[45]= 33, 17, 14
Out[46]= 33 i  17 j  14 k

Observe that the two previous outputs are equivalent.

ü Exercises 

1.  Calculate the determinants of 

0 5 0

1 3 6

2 5 5

 and of 
3 5

6 2
.

2.  Calculate the cross product of  v = 2, 0, 0 and w = -1, 0, 1.  Do this using the Cross command as well as by the determi-
nant approach. 

3.  Calculate the area of the parallelogram spanned by the vectors v and w above. (Hint: look up the formula for this in your
calculus textbook.)

4.  Calculate the volumn of the parallelepiped spanned by:

      u  =  2, 2, 1,  v  =  1, 0, 3,   and  w  =  0, -4, 2
5.  Show that  väw = -wäv  and that  väv = 0.

ü 12.3  Planes in 3-Space

Students should read Section 12.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Note that a plane in 3-D space is defined as all points P x, y, z such that the line segment P0 P  is perpendicular to a given

vector n, called the normal vector, where the initial point of n is P0 = x0, y0, z0.  In vector notation, this is described by the

equation n ◊ P0 P  = 0, where  P0 P = x - x0, y - y0, z - z0.  Therefore, the equation of the plane through P0 = (x0, y0, z0 with

nonzero normal vector n = a, b, c can be denoted by either of the following:

Vector form: n ◊x, y, z = d
Scalor form: a x + b y + c z = d

Here, d = a x0 + b y0 + c z0 = n ◊x0, y0, z0.
Example 12.6.  Find an equation of the plane determined by the points P = 1, 0, -1, Q = 2, 2, 1, and R = 4, 2, 5.  Then plot
the graph of the plane.

Solution: The vectors a = PQ  and  b = PR  lie in the plane, so the cross product n = aμb is normal to the plane:
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In[47]:= Cleara, b, n
a  2, 2, 1  1, 0, 1
b  4, 2, 5  1, 0, 1
n  a  b

n . x, y, z  d

Out[48]= 1, 2, 2
Out[49]= 3, 2, 6
Out[50]= 8, 0, 4
Out[51]= 8 x  4 z  d

To compute the value of d,  we choose any point on the plane, that is, we can choose either P,  Q,  or R,  and then compute
d = n ◊ P, d = n ◊Q, or d = n ◊R.  Let us choose P = 1, 0, -1.
In[52]:= d  n . 1, 0, 1
Out[52]= 12

Therefore, the plane we want has equation 8 x - 4 z = 12  and the graph is obtained by using the ContourPlot3D  command
which has the form:

ContourPlot3D f , x, xmin, xmax, y, ymin, ymax, z, zmin, zmax
which produces a three-dimensional contour plot of f as a function of x, y and z. 

or

ContourPlot3D f  g, x, xmin, xmax, y, ymin, ymax, z, zmin, zmax
which plots the contour surface for which f  g. 

In[53]:= ContourPlot3D8 x  4 z  12, x, 2, 2, y, 2, 2, z, 2, 2, ImageSize  250

Out[53]=

In order to see this plane more clearly from a different perspective, move your cursor over the plot.  Then drag the mouse while
pressing and holding the left mouse button to rotate the plot.

ü Exercises 
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1.  Let PL be the plane with equation 7 x - 4 y + 2 z = 10.  Find an equation of the plane QL parallel to                       PL and
passing through Q = 2, 1, 3 and graph it.  

2.  Find the equation of the plane through the points P = 1, 5, 5, Q = 0, 1, 1, and R = 2, 0, 1 and     graph it.

3.  Find the angle between the two planes:  x + 2 y + z = 3 and 4 x + y + 3 z = 2.  (Hint: The angle between two planes is the angle
between their normal vectors.) 

ü 12.4  A Survey of Quadric Surfaces

Students should read Section 12.6 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

A quadric surface is the three-dimensional equivalent of a conic section (i.e., ellipses, hyperbolas, and parabolas).  The basic
types of quadric surfaces are ellipsoids, hyperboloids (of one or two sheets), paraboloids (elliptic or hyperbolic), and cones.

ü 12.4.1  Ellipsoids

The standard ellipsoid is described by x a2 + y b2 + z c2 = 1. To help us visualize it, we are often interested in the mesh of

curves called traces, obtained by intersecting our quadric surface with planes parallel to one of the coordinate planes. In the plot
below, you can see that mesh, and also see that the traces of an ellipsoid are themselves ellipses.

Example 12.7.  Graph the ellipsoid above, with a = 3, b = 4, and c = 5, and describe the traces of this ellipsoid. 

Solution: The correct Mathematica command to use is ContourPlot3D.  This is shown following:

In[54]:= ContourPlot3Dx  3^2  y  4^2  z  5^2  1, x, 6, 6,
y, 6, 6, z, 6, 6, AxesLabel  x, y, z, ImageSize  250

Out[54]=

Again, note that the ellipsoid can be manually rotated to look at it from different perspectives. First, place your screen cursor over
the plot.  Then drag the mouse while pressing down on the left mouse button to rotate the plot.  When you do this, you will note
that, indeed, all of the traces are ellipses.

ü 12.4.2  Hyperboloids
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The three-dimensional hyperbolas are called hyperboloids, and come in two types: the hyperboloid of one sheet, with standard

form x a2 + y b2 = z c2 + 1, and the hyperboloid of two sheets, with standard form x a2 + y b2 = z c2 - 1.  A limiting

case of the hyperboloid is the elliptic cone, defined by the equation x a2 + y b2 = z c2.

Example 12.8.  Describe the traces of the two hyperboloids: x 32 +y 42 = z 52 + 1 and x 32 +y 42 = z 52 - 1.

Solution: First we graph the hyperboloids:

In[55]:= ContourPlot3Dx  3^2  y  4^2  z  5^2  1, x, 6, 6,
y, 6, 6, z, 6, 6, AxesLabel  x, y, z, ImageSize  250

Out[55]=

In this case, the traces parallel with the xy-axis are all ellipses, and the traces parallel wth the xz- and yz-axes are hyperbolas.

In[56]:= ContourPlot3Dx  3^2  y  4^2  z  5^2  1, x, 30, 30,
y, 30, 30, z, 30, 30, AxesLabel  x, y, z, ImageSize  250

Out[56]=

When we look at this plot, we see that the traces are the same as for the previous hyperboloid of one sheet.

Example 12.9.  Graph the cone with a = 3, b = 4, and c = 5, and define its relationship to the hyperboloid of one sheet.
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Solution: We get the graph by using the ContourPlot3D Command: 

In[57]:= ContourPlot3Dx  3^2  y  4^2  z  5^2, x, 30, 30,
y, 30, 30, z, 30, 30, AxesLabel  x, y, z, ImageSize  250

Out[57]=

When we compare this plot with that of the hyperboloid of one sheet (see previous example), we can see clearly that this cone
can be thought of as a limiting case of the hyperboloid of one sheet in which we pinch the waist down to a point.

ü 12.4.3  Paraboloids

The final family of quadric surfaces that we want to consider are the paraboloids, of which there are two types: elliptic and

hyperbolic. Their standard equations are z = x a2 + y b2 (elliptic paraboloid) and z = x a2 - y b2 (hyperbolic paraboloid).

Example 12.10.  Graph the two types of paraboloids for a = 3 and b = 4 and describe their traces.

Solution: Here is the graph of the elliptic paraboloid:

In[58]:= ContourPlot3Dx  3^2  y  4^2  z, x, 30, 30,
y, 30, 30, z, 30, 30, AxesLabel  x, y, z, ImageSize  250

Out[58]=
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Observe that the traces in the direction of the xz- and yz-axes are both parabolas while those in the xy-direction are ellipses, which
can be seen by dragging the plot in the appropriate directions.  Similarly, for the hyperbolic paraboloid:

In[59]:= ContourPlot3Dx  3^2  y  4^2  z, x, 30, 30,
y, 30, 30, z, 30, 30, AxesLabel  x, y, z, ImageSize  250

Out[59]=

Again, by dragging the plot above, we see that the traces in the yz-direction are parabolas while those in the xz-direction are
hyperbolas.

ü 12.4.4  Quadratic Cylinders

The last group of quadric surfaces we will look at are the quadratic cylinders. These are surfaces formed from a two-dimensional
curve (in the xy-plane) along with all vertical lines passing through the curve:

Example 12.11.  Graph a selection of quadratic cylinders.

Solution:

a)  A circular cylinder of radius r:  x2 + y2 = r2.  For the graph, we will use r = 3.
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In[60]:= ContourPlot3Dx^2  y^2  3^2, x, 5, 5, y, 5, 5,
z, 30, 30, AxesLabel  x, y, z, ImageSize  250

Out[60]=

b)  An elliptic with equation x a2 + y b2 = 1. We will use a = 3 and b = 6.

In[61]:= ContourPlot3Dx  3^2  y  6^2  1, x, 5, 5,
y, 8, 8, z, 20, 20, AxesLabel  x, y, z, ImageSize  250

Out[61]=

c) A hyperbolic cylinder with equation x a2 - y b2 = 1.  We will use a = 3 and b = 6.
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In[62]:= ContourPlot3Dx  3^2  y  6^2  1, x, 10, 10,
y, 10, 10, z, 20, 20, AxesLabel  x, y, z, ImageSize  250

Out[62]=

d) A parabolic cylinder with equation y = a x2 with a = 3.

In[63]:= ContourPlot3Dy  3 x^2, x, 3, 3, y, 1, 8,
z, 10, 10, AxesLabel  x, y, z, ImageSize  250

Out[63]=

ü Exercises 

In Exercises 1 through 5, state whether the given equation defines an ellipsoid, hyperboloid, or paraboloid, and of which type.
Then confirm your answer by graphing the quadric surface.

1.   x 52 + y 72 + z 92 = 1

2.   x 52 - y 72 + z 92 = 1
3.    x2 + 5 y2 - 6 z2 = 1

4.    z = x 52 + y 72

5.    z = x 52 - y 72
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In Exercises 6 through 8, state the type of  the quadric surface and graph it, and then describe the trace obtained by intersecting it
with the given plane.

6.   x 52 + y2 + z 92 = 1,  z = 1 4
7.   y = 2 x2,    z = 25

8.   x 52 - y 72 + z 92 = 1,  y = 4

ü 12.5  Cylindrical and Spherical Coordinates

Students should read Section 12.7 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

ü 12.5.1  Cylindrical Coordinates

In cylindrical coordinates, the point P = x, y, z is expressed as r, q, z where r and q are the polar coordinates of x and y.  The
formulas for converting from x, y, z to r, q, z are:

Cylindrical to Rectangular Rectangular to Cylindrical

x = r cos q r = x2 + y2

y = r sin q tan q = y  x
z = z z = z

The commands in Mathematica  to do these conversions must first be loaded into Mathematica  from the "Vector  Analysis"
external package:

In[64]:=  VectorAnalysis`

Example 12.12.  Convert r, q, z = 2, 3 p 4, 5 to rectangular coordinates.

Solution: We use the CoordinatesToCartesian command to convert from cylindrical to rectangular coordinates:

In[65]:= CoordinatesToCartesian2, 3 Pi  4, 5, Cylindrical
Out[65]=  2 , 2 , 5
In[66]:= N
Out[66]= 1.41421, 1.41421, 5.
Example 12.13.  Convert x, y, z = 2, 3, 5 to cyclindrical coordinates.

Solution: We use the CoordinatesFromCartesian command to convert from rectangular to cylindrical coordinates:

In[67]:= CoordinatesFromCartesian2, 3, 5, Cylindrical

Out[67]=  13 , ArcTan 3
2
, 5

In[68]:= N
Out[68]= 3.60555, 0.982794, 5.
Of course, one very strong point for Mathematica is its graphing ability.  It will easily graph functions described in cylindrical

coordinates. The command to do this is RevolutionPlot3D. 
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RevolutionPlot3D fz, t, tmin, tmax, q, qmin, qmax
takes the azimuthal angle q to vary between qmin and qmax.

Example 12.14.  Graph the cylindrical coordinate function z = 2 r2 sin 5 q
1+r2

.

Solution:

In[69]:= Clearr, ;

RevolutionPlot3D2 r
2 Sin5 
1  r2

, r, 0, 5, , 0, 2 , ImageSize  250

Out[70]=

ü 12.5.2  Spherical Coordinates

A point P = x, y, z is described in spherical coordinates by a triple r, q, f where r is the distance of P from the origin, q is the
polar angle of the projection x, y, 0, and f is the angle between the z-axis and the ray from the origin through P. The formulas
for converting between rectangular and spherical coordinates are:

Spherical to Rectangular Rectangular to Spherical

x = r cos q sin f r = x2 + y2 + z2

y = r sin q sin f tan q = y  x
z = r cos f cos f = z  r
These conversions are done in Mathematica using the same commands as with cylindrical coordinates, but with the word spheri-
cal replacing cylindrical.

Example 12.15.  Convert r, q, f = 2, 3 p 4, p 5 to rectangular coordinates.

Solution:

In[71]:= CoordinatesToCartesian2, 3 Pi  4,   5, Spherical

Out[71]=  1  5

2 2
, 2

5

8


5

8
,  2 

In[72]:= N
Out[72]= 1.14412, 0.831254, 1.41421
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Example 12.16.  Convert x, y, z = 2, 3, 5 to spherical coordinates.

Solution:

In[73]:= CoordinatesFromCartesian2, 3, 5, Spherical

Out[73]=  38 , ArcCos 5

38
, ArcTan 3

2


In[74]:= N
Out[74]= 6.16441, 0.624754, 0.982794
Again, the main use here of Mathematica is its graphing ability.  It will easily graph functions described in spherical coordinates.

The command to do this is the SphericalPlot3D command. 

SphericalPlot3Dr, q, qmin, qmax, f, fmin, fmax
generates a 3 D plot with a spherical radius r as a function of spherical coordinates  and .

Example 12.17.  Graph the spherical coordinate function r = 1 + sin 6 f 6.

Solution:

In[75]:= SphericalPlot3D   1  Sin6   6, , 0, Pi, , 0, 2 Pi, ImageSize  250

Out[75]=

ü Exercises 

Convert from cylindrical to rectangular:
1.  2, p 3, -4  2.  1, p 2, 3
Convert from rectangular to cylindrical:

3.   2, 2, 5 4.   4, 3 , 8

5.  Plot the surface z2 + r2 = 25 q and describe it.

Convert from spherical to rectangular:

6.    2, p 5, p 3 7.    4, p 6, 5 p 6
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Convert from rectangular to spherical:

8.    2 , 2, 3 9.   4, 3 2, 8 

10.  Plot the surface r sin f = 5 and describe it.
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Chapter 13 Calculus of Vector-Valued Functions
Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible
to view 3-D plots generated by Mathematica from different perspectives.  First, place your screen cursor over the plot.  Then drag
the mouse while pressing down on the left mouse button to rotate the plot.

ü 13.1.  Vector-Valued Functions

Students should read Section 13.1 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

A vector-valued function is a vector where the components of the vector are themselves functions of a common parameter (or

variable). For example, r is a vector-valued function if rt = xt, yt, zt.  If we think of t as the time variable, the rt
describes the motion of a particle through three-dimensional space over time.  What we want to do is to understand what path is
taken.  We do this through graphing in three dimensions. Also, sometimes it is helpful to consider the projections of these curves
onto the coordinate planes.  For example, the projection of rt on the xy-plane is xt, yt, 0.
Example 13.1. Trace the paths of each of the following vector functions and describe its projections onto the xy-, xz-, and yz-
planes:

a)  rt = t, t2, 2 t
b)  rt = cos3 t, sin3 t, sin 2 t 
Solution:  We use the ParametricPlot3D command to trace the path of each curve and to see its projection.

a) First, we look at the plot of rt = t, t2, 2 t:
In[76]:= ParametricPlot3Dt, t2, 2 t, t, 3, 3, PlotStyle  Red, ImageSize  250

Out[76]=

-2
0

2

0

2

4
6

8

-5

0

5

This curve looks very much like a parabola in 3-D space.  To see the projections, we look first at: 
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In[77]:= ParametricPlot3Dt, t2, 0, t, 3, 3,
PlotRange  1, 1, PlotStyle  Orange, ImageSize  250

Out[77]=

-1.0
-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5
1.0

-1.0

-0.5

0.0

0.5

1.0

This is clearly a parabola in the xy-plane.

In[78]:= ParametricPlot3Dt, 0, 2 t, t, 3, 3, Ticks  Automatic, 1, 0, 1, Automatic,
PlotStyle  Orange, ImageSize  250, ImagePadding  15, 15, 15, 15

Out[78]=

-2
0

2
-1

0
1

-5

0

5

And this clearly a line in the xz-plane.  
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In[79]:= ParametricPlot3D0, t2, 2 t, t, 3, 3,
Ticks  1, 0, 1, Automatic, Automatic, PlotStyle  Orange, ImageSize  250

Out[79]=

-1 0 1

0

2

4

6

8

-5

0

5

This last plot is also clearly a parabola, but in the yz-plane.

b)  Next, we look at rt = cos3 t , sin3 t, sin 2 t:
In[80]:= ParametricPlot3DCost3, Sin t3, Sin2 t,

t, 2 , 2 , PlotStyle  Orange, ImageSize  250

Out[80]=

-1.0
-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5
1.0

-1.0

-0.5

0.0

0.5

1.0

Note that since both sine and cosine are periodic with period 2 p, it is not necessary to extend the domain beyond -2 p or +2 p.
The projection in the xy-plane is:
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In[81]:= ParametricPlot3DCost3, Sin t3, 0,
t, 2 , 2 , PlotPoints  100, ImageSize  250

Out[81]=

-1.0
-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5
1.0

-1.0

-0.5

0.0

0.5

1.0

The projection in the xz-plane is:

In[82]:= ParametricPlot3DCost3, 0, Sin2 t, t, 2 , 2 , ImageSize  250

Out[82]=

-1.0
-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5
1.0

-1.0

-0.5

0.0

0.5

1.0

Lastly, the projection in the yz-plane is:
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In[83]:= ParametricPlot3D0, Sin t3, Sin2 t, t, 2 , 2 , ImageSize  250

Out[83]=

-1.0
-0.5

0.0

0.5

1.0

-1.0

-0.5

0.0

0.5
1.0

-1.0

-0.5

0.0

0.5

1.0

Note that the last two projections are almost exactly alike.  This is to be expected because the sine and cosine functions have the
same graph, but p 2 radians apart. 

ü Exercises 

In Exercises 1 through 3,  graph rt and its three projections onto the coordinate planes.

1.  rt = cos 2 t, cos t, sin t 2.  rt = t + 15, e0.08 t cos t, e0.08 t sin t
3.  rt = t, t, 25 t1 + t2
4. Which of the following curves have the same projection onto the xz-plane?  Graph the three projections to check your answer.

a.  r1t = t, et, t2 b.  r2t = et, t, t2 c.  r3t = t, cos t, t2

ü 13.2.  Calculus of Vector-Valued Functions

Students should read Section 13.2 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Since vector-valued functions are differentiated and integrated component by component, Mathematica will handle this easily
since it treats vectors as lists and automatically performs the indicated operation on each element of the list.

The derivative of a vector valued function rt = xt, yt, zt is defined to be

r ' t = x ' t, y ' t, z ' t
while the integral of rt is

 rt „ t =  xt „ t,  yt „ t,  zt „ t.
Similarly, the limit is defined by

limtØa rt = limtØa xt, limtØa yt, limtØa zt.
Example 13.2.  Differentiate and integrate each of the following vector functions:
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a) rt = t, t2, 2 t
b) st = cos3 t , sin3 t, sin 2 t
Solution:

(a)

In[84]:= Clearr, s, t
In[85]:= rt_ : t, t2, 2 t

st_ : Cost3, Sint3, Sin2 t
In[87]:= t rt
Out[87]= 1, 2 t, 2

In[88]:=  rt t

Out[88]=  t
2

2
,
t3

3
, t2

(b)

In[89]:= t st
Out[89]= 3 Cost2 Sint, 3 Cost Sint2, 2 Cos2 t

In[90]:=  st t

Out[90]=  3 Sint
4


1

12
Sin3 t, 

3 Cost
4


1

12
Cos3 t, 

1

2
Cos2 t

Limits are handled the same way both in the calculus of vector-valued functions and in Mathematica:

Example 13.3.  Evaluate limit
hØ0

 rt+h-rt
h

  for rt = t, t2, 2 t.

Solution:

Since rt has been defined in the previous example, we merely evaluate

In[91]:= Limit rt  h  rt
h

, h  0
Out[91]= 1, 2 t, 2
As we would expect, this limit gives us the same answer for r ' t as in the previous example. 

Example 13.4.  Evaluate limit
tØ3

t2, 4 t, 1

t3
.

Solution:
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In[92]:= Limitt2, 4 t,
1

t3
, t  2

Out[92]= 4, 8,
1

8


Derivatives of Dot and Cross Products

Using the formulas of the derivative of the dot and cross products for vector-valued functions is simple in Mathematica. As a
reminder, the formulas are:

d

dt
rt ◊st = rt ◊s ' t + r ' t ◊st and 

d

dt
rtμst = rtμs ' t + r ' tμst

Example 13.5.  Evaluate 
d

dt
rt ◊st and 

d

dt
rtμst for rt = t, t2, 2 t and st = cos3 t , sin3 t, sin 2 t.

Solution:

In[93]:= trt.st
Out[93]= Cost3  4 t Cos2 t  3 t Cost2 Sint  3 t2 Cost Sint2  2 t Sint3  2 Sin2 t
In[94]:= trtst
Out[94]= 2 t2 Cos2 t  6 t Cost Sint2  2 Sint3  2 t Sin2 t,

2 Cost3  2 t Cos2 t  6 t Cost2 Sint  Sin2 t,
2 t Cost3  3 t2 Cost2 Sint  3 t Cost Sint2  Sint3

Tangent Lines

Example 13.6.  Find the vector parametrization of the tangent line to rt = 1 - t2, 5 t, t3 at the point t = 1 and plot it along with

rt.
Solution: Recall that the tangent line at t0 has vector parametrization Lt = rt0 + t r ' t0:
In[95]:= rt_  1  t2, 5 t, t3

r't
Lt_  r1  t  r'1

Out[95]= 1  t2, 5 t, t3
Out[96]= 2 t, 5, 3 t2
Out[97]= 2 t, 5  5 t, 1  3 t
Here is a plot of the curve and the tangent line.
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In[98]:= ParametricPlot3Drt, Lt, t, 2, 4, ImageSize  Small

Out[98]=

-15
-10

-5
0

-10

0

10

20

0

10

20

30

NOTE: Recall that the plot can be rotated to better view it from different perspectives.

ü Exercises 

In Exercises 1 and 2 evaluate the limits

1.  limtØp sin 2 t, cos t, tan 4 t 2.  limtØ0  1

t+1
, et-1

t
, 4 t

In Exercises 3 and 4 compute the derivative and integral.

3.  rt = tan t, 4 t - 2, sin t 4.  rt = et, e2 t
5.  Find a parametrization of the tangent line at the point indicated and plot both the vector-valued curve and the tangent line on
the same set of axes.

6.  Evaluate d

dt
rgt for rt = 4 sin 2 t, 2 cos 2 t and gt = t2.

ü 13.3.  Arc Length

Students should read Section 13.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

The arc length of a path rt = x t, y t, z t for a § t § b is given by

L = a

b  r ' t  „ t = a

b x ' t2 + y ' t2 + z ' t2 „ t 

and like the one-dimensional version is difficult to evaluate by hand.  Thus Mathematica is the perfect tool for calculating this.

Example 13.7.  Compute the arc length of rt = 1 - t2, 5 t, 2 t3  over the interval 1 § t § 2.

Solution:
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In[99]:= rt_ : 1  t2, 5 t, 2 t3
L  

1

2

Normr't t

Out[100]=
1

54




54
134 9 130  18 1234 

8  8  
7

  4 14
EllipticE ArcSinh 3  3 

  4 14

,   4 14

  4 14
 

1   
2

  4 14
EllipticE ArcSinh 3  3 

  4 14

,   4 14

  4 14
 

8  8  
7

  4 14
EllipticE ArcSinh 6  6 

  4 14

,   4 14

  4 14
 

1   
2

  4 14
EllipticE ArcSinh 6  6 

  4 14

,   4 14

  4 14
 

8  8  
7

  4 14
EllipticF ArcSinh 3  3 

  4 14

,   4 14

  4 14
 

224  224  
2

  4 14
EllipticF ArcSinh 3  3 

  4 14

,   4 14

  4 14
 

8  8  
7

  4 14
EllipticF ArcSinh 6  6 

  4 14

,   4 14

  4 14
 

224  224  
2

  4 14
EllipticF ArcSinh 6  6 

  4 14

,   4 14

  4 14


Note that the above output indicates that Mathematica cannot find an antiderivative for the integrand, and thus we need to find

another technique to evaluate this integral.  Hence, we next try the numerical integrate command, NIntegrate, which does give
us our result:

In[101]:= L  NIntegrateNormr't, t, 1, 2
Out[101]= 15.285

Speed

The vector r ' t is also known as the velocity vector as it points in the (instantaneous) direction of motion described by rt.  Its
length or norm, r ' t, gives the speed at time t. 
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Example 13.8.  Compute the speed of rt = 1 - t2, 5 t, 2 t3 when t = 1, 1.5, and 2.

Solution: 

The following output gives a list of speeds of r ' t at the three given times using the Norm command, which calculates the norm
of a vector:

In[102]:= rt_ : 1  t2, 5 t, 2 t3
Speed  Normr'1, Normr'1.5, Normr'2

Out[103]=  65 , 14.7054, 617 
In[104]:= N
Out[104]= 8.06226, 14.7054, 24.8395
Observe that the speed is increasing as we move along the path of rt from t = 1 to t = 2.  This can be seen graphically by
plotting the speed:

In[105]:= Normr't
PlotNormr't, t, 1, 2

Out[105]= 25  4 Abst2  36 Abst4

Out[106]=

1.2 1.4 1.6 1.8 2.0

15

20

25

NOTE: Observe how the Norm command inserts absolute values around each vector component in the formula for r ' t, which
seems redundant since each component is squared.  This is done because in Mathematica vector components are allowed to be
complex-valued, in which case absolute values are needed to refer to their magnitudes. 

ü Exercises 

In Exercises 1 and 2, compute the length of curve over the given interval.

1.  rt = 2 sin t, 6 t, 2 cos t,   -6 § t § 6 2.  rt = 12 t, 8 t32, 3 t2,   0 § t § 1

In Exercises 3 and 4, find the speed of a particle moving along the curve rt at the given value of t.

3.  rt = et-2, 15 t, 5  t,    t = 1 4.  rt = sin 2 t, cos 4 t, sin 6 t,   t = p 2 

5. Compute st = 0

t  r ' u  „u for rt = t2, 2 t2, t3 and interpret Mathematica's result.  
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6. For rt = 4 t, 1 - 3 t, 24 t, compute s t as in the previous exercise.  Then use s t to find an arc length parametrization of

rt, that is, find js = t, where j is the inverse of s t, and check to see that rj s has unit speed, that is, r ' j s  = 1.
Lastly, plot rt and rj s and compare them.

7.  Consider the helix rt = a sin t, a cos t, c t. 
a. Find a formula for the arc length of one revolution of rt.
b. Suppose a helix has radius 10, height 5, and makes three revolutions.  What is its arc length?

8. The Cornu spiral is defined by rt = xt, yt, where xt = 0
t
sin u2

2
 „u and yt = 0

t
cos u2

2
 „u.

a.  Plot the Cornu spiral over various intervals for t.
b.  Find a formula for its arc length along the interval -a § t § a, where a is a positive real number.
c.  What is its arc length in the limit as aØ¶?

ü 13.4.  Curvature

Students should read Section 13.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Vector tools previously studied including arc length enables one to study the idea of curvature, which serves as a measure of how
a curve bends, that is, the rate of change in direction of a curve.  In arriving at a definition of curvature, consider a path in vector
form and parametrized by

rt = x t, y t, z t
The parametrization is classified as regular if r ' t ∫ 0 for all  values of t and for which r t is defined.  Assume then that rt is
regular and define the unit tangent vector in the direction of r ' t, denoted T t, as follows:

Tt = r' t
r' t .

This unit tangent vector T at any point enables us to determine the direction of the curve at that point, so one may define the
curvature k (Greek letter kappa) at a point as

k =  dT

ds
 = T' t

r' t ,

which represents the magnitude of the rate of change in the unit tangent vector with respect to arc length. One denotes the vector
dT ds  as the curvature vector.  Its scalar length therefore measures curvature.  For example, a straight line has k = 0 (zero
curvature) as one would expect.  For a circle of radius r, we have k = 1  r (reciprocal of r).  This makes sense since a larger
circle should have smaller curvature.  In general, if we were to secure a circle, called the osculating circle, that best fits a curve at
a specific point on the curve, then curvature of the curve at such a point should agree with the curvature of the osculating circle,
that is, 

k = 1

r

Moreover, the radius r of this circle is called the radius of curvature. Note that the equations linking k and r illustrate their
inverse relationship: 

k = 1

r
 and r = 1

k

Example 13.9.  Compute the curvature k for a circle of radius r defined by 
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rt = r cos t, r sin t

Solution: We first compute the unit tangent vector T using the formula Tt = r' t
r' t :

In[107]:= Clearr, T, t, 
In[108]:= rt_   Cost,  Sint

r't
Tt_  r't  SimplifyNormr't

Out[108]=  Cost,  Sint
Out[109]=  Sint,  Cost

Out[110]=   Sint
Abs Cost2  Abs Sint2

,
 Cost

Abs Cost2  Abs Sint2


Observe that in this output Mathematica is not able to reduce the expression inside the radical, which simplifies to r as a result of

the fundamental trigonometric identity cos2 x + sin2 x = 1.  This is due to the Norm command, which employs absolute values.

To remedy this, we use the formula r ' t = r ' t ◊r ' t  instead of the Norm command.

In[111]:= Tt_  r't  SqrtSimplifyr't.r't

Out[111]=   Sint
2

,
 Cost

2


We then compute the curvature using the formula k = T' t
r' t :

In[112]:=   SqrtSimplifyT't.T't  Simplifyr't.r't

Out[112]=
1

2

Since the radius r is assumed to be positive, we conclude that k = 1

r2
=  1

r
 = 1

r
 as expected.

Example 13.10.  Compute the curvature k for the curve defined by f x = x2 at the point 3, 9.
Solution: Observe that the graph of a function y = f x can be parametrized by x = t and y = f t and hence rt = t, f t. In
this case the formula for curvature reduces to 

In[113]:= Clearr, t, f
rt_  t, ft

Out[114]= t, ft
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In[115]:= Tt_ 
r't

Sqrtr't.r't
  SqrtSimplifyT't.T't  Simplifyr't.r't

Out[115]=  1

1  ft2
,

ft
1  ft2



Out[116]=
ft2

1  ft23

which is the same as k =
f '' x

1+ f ' x232 . With f x = x2, we get

In[117]:= ft_  t2



Out[117]= t2

Out[118]= 2
1

1  4 t23

At x = t = 3, the curvature becomes

In[119]:=  . t  3

Out[119]=
2

37 37

Here is a plot of the curvature along with the function.

In[120]:= Plotft, , t, 0, 3

Out[120]=

0.5 1.0 1.5 2.0 2.5 3.0

2

4

6

8

Example 13.10.  Compute the curvature k and the radius of curvature r for the curve defined by 
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rt = 1 - t, t2 + 1, 2

3
t3 + 1 at t = 1 2.

Solution: Again we begin by computing the unit tangent vector T: 

In[121]:= Clearr, T, t, 
In[122]:= rt_  1  t, t^2  1, 2  3 t^3  1

r't
Tt_  r't  SqrtSimplifyr't.r't

Out[122]= 1  t, 1  t2, 1 
2 t3

3


Out[123]= 1, 2 t, 2 t2

Out[124]=  1

1  2 t22
,

2 t

1  2 t22
,

2 t2

1  2 t22


We then compute the curvature using the same formula as in the previous example and evaluate it at t = 1 2:

In[125]:=   SqrtSimplifyT't.T't  Simplifyr't.r't
 . t  1  2

Out[125]= 2
1

1  2 t24

Out[126]=
8

9

Hence, the curvature k = 8 9 at t = 1 2 and the corresponding radius of curvature is r = 1 k = 9 8.

Curvature Formula (Cross Product)

There is an alternative formula for calculating the curvature of space curves that involves the cross product and eliminates the
need to compute the unit tangent vector function:

k =  r'' t μ r' t 
 r' t 3 =  at μ vt 

 vt 3  

Example 13.11.  Compute the curvature kt and the radius of curvature for the helix defined by rt = cos t, sin t, t for any real
number t.

Solution: We first find the derivative of the unit tangent vector with respect to t. 

In[127]:= Clearr, T, t, 
rt_  Cost, Sint, t
r't
r''t

Out[128]= Cost, Sint, t
Out[129]= Sint, Cost, 1
Out[130]= Cost, Sint, 0
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In[131]:= t_  SqrtSimplifyCrossr''t, r't.Crossr''t, r't 
SqrtSimplifyr't.r't3

Out[131]=
1

2

It follows that k = 1

2
 and r = 2 for all values of t.  Hence, our helix is a curve of constant curvature.

ü Exercises

In Exercises 1 and 2, find r ' t and Tt and evaluate T2.
1.  rt = 3 + 2 t i + 2 - 5 t j + 9 t k 2. vt = sin t, cos t, 1
3. Use Mathematica  to find the curvature function kx  for y = cos x.  Also plot kx  for 0 § x § 1. Where does the curvature
assume its maximum value?

4. Determine the unit normal vectors to rt = t i + sin t j at t = p

4
 and t = 3 p

4
.

5. Determine the curvature of the vector-valued function rt = 3 + 2 t i + 6 t j + 5 - t k.   

6. Find a formula for the curvature of the general helix rt = a cos t i + a sin t j + c t k.   

ü 13.5.  Motion in Three Space

Students should read Section 13.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Recall that the velocity vector is the rate of the change of the position vector with respect to time while the acceleration vector
represents the rate of change of the velocity vector with respect to time.  Moreover, speed is defined to be the absolute value of
the velocity vector. In short, we have the following:

vt = r ' t, st = vt and at = v ' t = r '' t
One can secure the velocity vector and the position function if the acceleration vector is known via integration.  More specifically:

vt = 0
t
au „u + v0 where v0 represents the initial velocity vector and rt = 0

t
vu „u + v0 t + r0 where r0 is the initial position.

Example  13.12.   Find  the  velocity  vector,  the  speed,  and  the  acceleration  vector  for  the  vector-valued  function
rt = t3 i + 1 - t j + 4 t2 k at time t = 1.

Solution: 
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In[132]:= Clearr, v, s, a
rt_  t^3, 1  t, 4 t^2
vt_  r't
st_  Sqrtvt.vt
at_  r''t
v1
s1
a1

Out[133]= t3, 1  t, 4 t2
Out[134]= 3 t2, 1, 8 t

Out[135]= 1  64 t2  9 t4

Out[136]= 6 t, 0, 8
Out[137]= 3, 1, 8
Out[138]= 74

Out[139]= 6, 0, 8

Thus, v1 = r ' 1 = 3 i - j + 8 k, s1 = 74 , and a1 = 6 i + 8 k. 

Example 13.13.  Find rt and vt if a t = t i+4 j subject to the initial conditions v0 = 3 i - 2 j and r0 = 0.

Solution: We first solve for vt by integrating at:
In[140]:= Clearr, v, a

at_  t, 4
vt_  Integrateau, u, 0, t  v01, v02

Out[141]= t, 4

Out[142]=  t
2

2
 v01, 4 t  v02

Here, the constant vector of integration v0 = v01, v02 = 3, -2 equals the initial velocity:

In[143]:= Solvev0  3, 2, v01, v02
Out[143]= v01  3, v02  2

Thus, vt = t2

2
i + 4 t j + 3 i - 2 j.

In[144]:= vt_  vt . v01  3, v02  2

Out[144]= 3  t2

2
, 2  4 t

Next, we solve for rt by integrating vt:
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In[145]:= rt_  Integratevu, u, 0, t  r01, r02

Out[145]= r01  3 t  t3

6
, r02  2 t  2 t2

Again, the constant vector of integration r0 = r01, r02 = 0, 0 equals the initial position:

In[146]:= Solver0  0, 0, r01, r02
Out[146]= r01  0, r02  0

Hence, rt =  t3

6
+ 3 t i + 2 t2 - 2 t j.

Components of Acceleration

There are two components of acceleration: tangential and normal.  More precisely, the acceleration vector a can be decomposed

as  a = aT T + aN N,  where  aT =
d2 s

dt2
= a ◊ v

 v   is  the  tangential  component  and  aN = k ds

dt
2
= a ¥ v 

 v   is  the  normal  component.

Moreover, one has aT
2 + aN

2 = a2 so that aN =  a 2 -aT
2  and aT =  a 2 -aN

2 .

Example 13.14.  Determine the tangential and normal components of acceleration for the vector function r t = t3, t2, t.
Solution: 

In[147]:= Clearr, v, s
rt_  t^3, t^2, t
r't
r''t

Out[148]= t3, t2, t
Out[149]= 3 t2, 2 t, 1
Out[150]= 6 t, 2, 0
In[151]:= speed  SimplifySqrtr't.r't

Out[151]= 1  4 t2  9 t4

The result in the last output represents the speed at time t.  In order to secure the tangential component of the acceleration, we
differentiate the previous output: 

In[152]:= at  Dspeed, t

Out[152]=
8 t  36 t3

2 1  4 t2  9 t4

The normal component of the acceleration is
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In[153]:= an  r''t.r''t  at2

Out[153]= 4  36 t2 
8 t  36 t32

4 1  4 t2  9 t4

In[154]:= Simplifyan

Out[154]= 2
1  9 t2  9 t4

1  4 t2  9 t4

NOTE: The components of acceleration can also be found through the formulas aT =
a ◊ v

 v   and aN =
a ¥ v 
 v  ,  confirmed using

Mathematica as follows:

In[155]:= at  r''t.r't  Sqrtr't.r't
an  SqrtCrossr''t, r't.Crossr''t, r't  Sqrtr't.r't

Out[155]=
4 t  18 t3

1  4 t2  9 t4

Out[156]=
4  36 t2  36 t4

1  4 t2  9 t4

ü Exercises 

In Exercises 1 and 2, calculate the velocity and acceleration vectors and the speed at the time indicated:
1.  rt = t2 i + 1 - t j + 5 t2 k, t = 2. 2.  rt = cos t i + sin t j + tan 2 t k, t = p

6
.

3.  Sketch the path rt = 1 - t2 i + 1 - t j for -3 § t § 3 and compute the velocity and acceleration vectors at t = 0, t = 1, and
t = 2.

4.  Find vt given at and the initial velocity v0.

a.  at = t i + 3 j, v0 = 1

2
i + 2 j b.  at = e2 t i + 0 j + t + 2 k, v0 = i - 3 j + 2 k

5.  Find rt and vt given at together with the initial velocity and position at rest:
a.  at = e3 t i + 4 t j + t - 2 k, v0 = 0 i + 0 j + k, r0 = 0 i + 3 j + 4 k
b. at = 0 i + 0 j + sin t k, v0 = i + j, r0 = i.

6.  Find the decomposition of at into its tangential and normal components at the indicated point:
a.  rt = 3 - 4 t i + t + 1 j + t2 k at t = 1
b.  rt = t i + e-t j + t e-t k at t = 0

7.  Show that the tangential and normal components of acceleration of the helix given by rt = cos t i + sin t j + t k are equal
to 0 and 1, respectively.
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Chapter 14  Differentiation in Several Variables
Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible
to view 3-D plots generated by Mathematica from different perspectives.  First, place your screen cursor over the plot.  Then drag
the mouse while pressing down on the left mouse button to rotate the plot.

ü 14.1  Functions of Two or More Variables

Students should read Section 14.1 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

ü 14.1.1 Plotting Level Curves using ContourPlot

We begin with plotting level curves f x, y = c of a function of two variables. The command to plot level curves is Contour-

Plot[f,{x,a,b},{y,c,d}].

Most of the options for ContourPlot are the same as those for Plot.  In the following example, we consider the option Image-

Size. 

Example 14.1.  Plot the level curves of f x, y = x2 + x y - y2 .

Solution:  Let us first plot the level curves using the default settings of Mathematica. 

In[157]:= Clearx, y, f
fx_, y_ : x2  x y  y2

In[159]:= ContourPlotfx, y, x, 5, 5, y, 5, 5, ImageSize  250

Out[159]=

To get the level curves on the xy-plane without the shading, the colors, and the frame, but with the coordinate axes, we use the

following options of ContourPlot.  
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In[160]:= ContourPlotfx, y, x, 5, 5, y, 5, 5, Frame  False,

Axes  True, ContourShading  False, ImageSize  250

Out[160]=

Contours is an option of ContourPlot that can be used in two different ways: ContourØn displays n equally spaced contour

curves while ContourØlist plots level curves f x, y = c where c is an element of the list list. 

To plot 15 level curves, we evaluate

In[161]:= ContourPlotfx, y, x, 1, 1, y, 1, 1, Contours  15, ImageSize  250 

Out[161]=

Here is an example when list = -10, -5, -2, -1, 0, 1, 2, 5, 10. 
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In[162]:= ContourPlotfx, y, x, 5, 5, y, 5, 5,
Contours  10, 5, 2, 1, 0, 1, 2, 5, 10, ImageSize  250

Out[162]=

ü 14.1.2  Plotting Surfaces using Plot3D

Plot3D  is the three-dimensional analog of the Plot  command. Given an expression in two variables and the domain for the

variables, Plot3D produces a surface plot. 

The basic syntax to plot the graph of a function of two variables is Plot3D[ f,{x, a, b},{y, c, d}], where f is a function of x and y
with  a § x § b and c § y § d.

The command to plot the graphs of two or more functions on the same coordinate axes is Plot3D[{f, g, h, .... }, {x, a, b}, {y, c,

d}], where f, g, h, ...  are the functions to be plotted. 

We will begin with the default settings of plotting a graph of a function of two variables.

Example 14.2.  Plot f x, y = sinx - cos y.
Solution:

In[163]:= Plot3DSinx  Cosy, x, 3, 3, y, 3, 3

Out[163]=

Example 14.3.  Plot the graphs of f x, y = 3 x + 4 y - 3 and g x, y = 10 sinxy on the same axes.
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Solution:  We will use red color for the graph of f  and blue for that of g. This is given using the option PlotStyle.

In[164]:= Plot3D3 x  4 y  3, 10 Sinx y, x, 5, 5,
y, 5, 5, PlotStyle  Green, Blue, ImageSize  250

Out[164]=

NOTE: One of  the most significant improvements of  Mathematica  7.0 over the previous editions is its  graphics capability.

Plot3D has many options.  Evaluate the command Options[Plot3D] to see the many options you have to plot a nice graph. 

We will discuss some of these options below.

ViewPoint

In Mathematica 7.0, we can rotate the graph of a function of two variables by simply clicking on the graph and dragging the
mouse around to see the graph from any point of view.

The option ViewPoint specifies the point in space from which the observer looks at a graphics object. The syntax for choosing a

view point of a surface is Plot3D[f[x, y], {x, a, b}, {y, c, d}, ViewPointÆ{A, B, C} ]. The default value for {A, B, C}   is
{1.3,-2.4,2.0}. This may be changed by entering values directly.  

To view a graph from directly in front 0, -2, 0; in front and up 0, -2, 2; in front and down 0, -2, -2; left hand corner
 -2, -2, 0;  directly above  0, 0, 2. 
Plot3D[ f[x, y], {x, a, b}, {y, c, d}, ViewPoint Æ view ] produces a plot viewed from view. The possible values of view are

Above (along positive z-axis), Below (along negative z-axis), Front (along negative y-axis), Back (along  positive y-axis), Left

(along the negative x-axis), and Right (along the positive x-axis).

Example 14.4.  Plot f x, y = cos x sin y using ViewPoint option to view the graph from various view points.

Solution: We leave it to the reader to navigate all of the above choices. We will consider a few of them. 

In[165]:= Clearf
fx_, y_  Cosx Siny

Out[166]= Cosx Siny
Here is a plot of the graph using the default setting for ViewPoint: 
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In[167]:= Plot3D fx, y, x, 2 Pi, 2 Pi, y, 2 Pi, 2 Pi , PlotRange  All,

ImageSize  250 

Out[167]=

View from directly in front:

In[168]:= Plot3D fx, y, x, 2 Pi, 2 Pi, y, 2 Pi, 2 Pi, ViewPoint  Front ,
PlotRange  All , ImageSize  250

Out[168]=

View from in front and up:

In[169]:= Plot3D fx, y, x, 2 Pi, 2 Pi, y, 2 Pi, 2 Pi, ViewPoint  0, 2, 2,
PlotRange  All, ImageSize  250

Out[169]=

View from in front and down:
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In[170]:= Plot3D fx, y, x, 2 Pi, 2 Pi, y, 2 Pi, 2 Pi, ViewPoint  0, 2, 2,
PlotRange  All, ImageSize  250

Out[170]=

View from directly above:

In[171]:= Plot3D fx, y, x, 2 Pi, 2 Pi, y, 2 Pi, 2 Pi, ViewPoint  Above,

PlotRange  All, Ticks  Automatic, Automatic, 1, 0, 1,
ImageSize  250

Out[171]=

View from the right:

In[172]:= Plot3D fx, y, x, 2 Pi, 2 Pi, y, 2 Pi, 2 Pi, ViewPoint  Right,
PlotRange  All, ImageSize  250

Out[172]=
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NOTE: As we pointed out earlier, we can also select different viewpoints by clicking on the graph and dragging the mouse
around until we get the desired viewpoint.

Mesh, MeshStyle, MeshShading 

The option Mesh specifies the type of mesh that should be drawn.

The option MeshStyle specifies the style in which a mesh should be drawn. 

The option MeshShading is an option for specifying a list of colors to be used between mesh divisions.

We illustrate some uses of these options in the example below. 

Example 14.5.  Plot f x, y = cos x sin y using various options involving Mesh. 

Solution: 

In[173]:= Clearf
fx_, y_  Cosx Siny

Out[174]= Cosx Siny
To plot a graph without a mesh we use the setting MeshØNone.

In[175]:= Plot3D fx, y, x, 2 Pi, 2 Pi, y, 2 Pi, 2 Pi , Mesh  None,

ImageSize  250 

Out[175]=

MeshØn plots a surface with only nμn meshes. 
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In[176]:= Plot3D fx, y, x, 2 Pi, 2 Pi, y, 2 Pi, 2 Pi , Mesh  8 ,

ImageSize  250

Out[176]=

We can choose the color of the mesh using MeshStyle. 

In[177]:= Plot3D fx, y, x, 2 Pi, 2 Pi, y, 2 Pi, 2 Pi , MeshStyle 

Red, Black, ImageSize  250 

Out[177]=

Here is another use of MeshStyle:

In[178]:= Plot3D fx, y, x, 2 Pi, 2 Pi, y, 2 Pi, 2 Pi , MeshStyle 

Dashing0.01, None, ImageSize  250 

Out[178]=
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To display a plot with selected colors between meshes we use MeshShading:

In[179]:= Plot3Dfx, y, x, 2 Pi, 2 Pi, y, 2 Pi, 2 Pi,
MeshShading  Blue, Red, White, Purple, Green, Black, ImageSize  250 

Out[179]=

Here is a neat example in Mathematica 7.0:

In[180]:= Plot3Dx^2  y^2  x^2  y^2^2, x, 1.5, 1.5, y, 1.5, 1.5,
BoxRatios  Automatic, PlotPoints  25, MeshFunctions  3 &,
MeshStyle  Purple, MeshShading  None, Green, None, Yellow, ImageSize  250

Out[180]=

BoxRatios

The option BoxRatios specifies the ratio of the lengths of the sides of the box. This is analogous to specifying the AspectRatio

of a two-dimensional plot.  For Plot3D, the default setting is BoxRatiosØAutomatic. 

Example 14.6.  Plot f x, y = e1-x2-y2
 using the BoxRatio option.

Solution:
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In[181]:= Clearf
fx_, y_  E1x

2 y2

Out[182]= 1x
2y2

In[183]:= Plot3D fx, y, x, 2, 2, y, 2, 2, ImageSize  250

Out[183]=

In[184]:= Plot3D fx, y, x, 2, 2, y, 2, 2, BoxRatios  1, 1, 0.62`,
ImageSize  250

Out[184]=

AxesLabel

The option AxesLabel  is a command used to label the axes in plotting.

Example 14.7.  Plot f x, y = 9 - x2 - y2  using the AxesLabel option.

Solution:

In[185]:= Clearf
fx_, y_  9  x2  y2

Out[186]= 9  x2  y2
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In[187]:= Plot3Dfx, y, x, 3, 3, y, 3, 3, AxesLabel  "x ", "y ", "z ",
ImageSize  250, ImagePadding  15, 15, 15, 15

Out[187]=

NOTE: To label a graph, use the PlotLabel option as shown following:

In[188]:= Plot3Dfx, y, x, 3, 3, y, 3, 3, AxesLabel  "x ", "y ", "z ",
PlotLabel  "Upper hemisphere", BoxRatios  Automatic, ImageSize  250,
ImagePadding  15, 15, 15, 25

Out[188]=

ColorFunction

The option ColorFunction specifies a function to apply to the values of the function being plotted to determine the color to use

for a particular region on the xy-plane. It is an option for Plot3D,  ListPlot3D,  DensityPlot,  and ContourPlot.   The default

setting for ColorFunction is ColorFunctionØAutomatic.  ColorFunctionØHue yields a range of colors.

Example 14.8.  Plot f x, y = sinx2 + y2 + e1- x 2-y2
 in various colors using the ColorFunction option.  

Solution:
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In[189]:= Clearf, x, y
fx_, y_  Sinx2  y2  E1x

2 y2

Out[190]= 1x
2y2  Sinx2  y2

In[191]:= Plot3Dfx, y, x, Pi, Pi, y, Pi, Pi, ColorFunction  Hue,
ImageSize  250

Out[191]=

Here are other ways to use ColorFunction.

In[192]:= Plot3Dfx, y, x, Pi, Pi, y, Pi, Pi, ColorFunction  "Rainbow",
ImageSize  250 

Out[192]=
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In[193]:= Plot3Dfx, y, x, Pi, Pi, y, Pi, Pi, ColorFunction 

"BlueGreenYellow", ImageSize  250

Out[193]=

NOTE: We can use PlotStyle option to select color for graphs. The plot below uses this option. 

In[194]:= Plot3Dfx, y, x, Pi, Pi, y, Pi, Pi, PlotStyle  Yellow,

ImageSize  250 

Out[194]=

RegionFunction

The option RegionFunction specifies the region to include in the plot drawn.

Example 14.9.  Plot f x, y =  10 sin 3 x - y, if x2 + y2 < 4;

x2 + y2 - 5, otherwise
.   

Solution: We will use the command RegionFunction to specify the domain x2 + y2 < 4 as follows.  Note that we have used

Show to display the graphs.  
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In[195]:= Clearplot1, plot2
plot1  Plot3D10 Sin3 x  y, x, 4, 4, y, 4, 4, PlotStyle  Blue,

RegionFunction  Functionx, y, z, x^2  y^2  4;
plot2  Plot3D x2  y2  5, x, 4, 4, y, 4, 4, PlotStyle  Red,

RegionFunction  Functionx, y, z, x^2  y^2  4;
Showplot1, plot2, ImageSize  250

Out[198]=

If we want to focus on a particular part of a surface defined by a function, we can use the option RegionFunction. The following
example shows this point.  

Example 14.10.  Plot the graph of f x, y = x2 - 3 x y - 2 y2  and show the portion of the surface direclty above the unit circle
centered at the origin.

Solution: We will use the option ViewPoint.

In[199]:= Clearplot1, plot2, f, x, y
fx_, y_  x2  3 x y  2 y2

plot1  Plot3Dfx, y, x, 4, 4, y, 4, 4, PlotStyle  Blue,
RegionFunction  Functionx, y, z, x^2  y^2  1 ;

plot2  Plot3Dfx, y , x, 4, 4, y, 4, 4, PlotStyle  Red,
RegionFunction  Functionx, y, z, x^2  y^2  1 ;

Showplot1, plot2 , ViewPoint  Front, ImageSize  250 
Out[200]= x2  3 x y  2 y2

Out[203]=

ü  14.1.3  Plotting Parametric Surfaces using ParametricPlot3D

ParametricPlot3D is a direct analog of ParametricPlot.  Depending on the input, ParametricPlot3D  produces a space curve

or a surface. ParametricPlot3D[{f, g, h}, {t, a, b }] produces a three-dimensional space curve parametrized by the variable t,

which runs from  a to b. ParametricPlot3D[{f, g, h}, {t, a, b },{u, c, d}] produces a two-dimensional surface parametrized by t
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and u. Options are given to ParametricPlot3D the same way as for  Plot3D. Most of the options are the same.

Example 14.11.  Plot the curve that is parametrized by x = sin t, y = cos t and z = t 3 with 0 § t § 2 p.  

Solution:

In[204]:= ParametricPlot3DSint, Cost, t

3
, t, 0, 2 , ImageSize  250,

ImagePadding  15, 15, 15, 15

Out[204]=

-1.0
-0.5

0.0
0.5

1.0

-1.0

-0.5

0.0

0.5
1.0

0.0

0.5

1.0

1.5

2.0

Example  14.12.   Plot  the  surface  that  is  parametrized by   x = u cos u 4 + cos u + v,  y = u sin u 4 + cos u + v,  and
z = u sin u + v.
Solution:

In[205]:= ParametricPlot3Du Cosu 4  Cosu  v, u Sinu 4  Cosu  v, u Sinu  v,
u, 0, 4 , v, 0, 2 , ImageSize  250

Out[205]=

ü  14.1.4  Plotting Level Surfaces using ContourPlot3D

ContourPlot3D  is  the  command  used  to  plot  level  surfaces  of  functions  of  three  variables.   Its  syntax  is  Contour-

Plot3D[f,{x,a,b}, {y,c,d},{z,e,f}].  Most of the Options for ContourPlot3D are the same as those of Plot3D.  Below we will

consider the option Contours of ContourPlot3D. 
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 Example 14.13.  Plot level surfaces of f x, y, z = x2 + y2 + z2.

In[206]:= Clearx, y, z, f
fx_, y_, z_  x2  y2  z2

ContourPlot3Dfx, y, z, x, 3, 3, y, 3, 3, z, 3, 3, ImageSize  250
Out[207]= x2  y2  z2

Out[208]=

The following displays five (5) equally spaced contour surfaces of f . 

In[209]:= ContourPlot3Dfx, y, z, x, 3, 3, y, 3, 3, z, 3, 3,
Contours  5, ImageSize  250

Out[209]=

The following  displays three level surfaces f x, y, z = c, where c = 1, 4, 9. 
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In[210]:= ContourPlot3Dfx, y, z, x, 3, 3, y, 3, 3, z, 3, 3,
Contours  1, 4, 9, ImageSize  250

Out[210]=

Notice that we only see one sphere. The other two are enclosed in the sphere of radius 3 corresponding to c = 9.  One way to

remedy this is to plot the level surfaces one by one. For this we use the GraphicsArray command. First, let us define the level
surfaces as function of c: 

In[211]:= Clearc, plot
plotc_ : ContourPlot3Dfx, y, z, x, 3, 3, y, 3, 3, z, 3, 3,

Contours  c
Here are the three level surfaces corresponding to c = 1, 4, 9. 

In[213]:= ShowGraphicsArrayplot1, plot4, plot9
GraphicsArray::obs : GraphicsArray is obsolete. Switching to GraphicsGrid. à

Out[213]=

ü Exercises 

In Exercises 1 through 4, plot the level curves and the graphs of the given functions.
1.  f x, y = x y5 - x5 y for -10 § x § 10, -10 § y § 10

2.  f x, y = x2+2 y

1+x2+y2
 for -10 § x § 10, -10 § y § 10

3.  f x, y = sin y  ecos x for -2 p § x § 2 p, -2 p § y § 2 p
4.  f x, y = sinx + siny for -4 p § x § 4 p, -4 p § y § 4 p

In Exercises 5 through 7, use at least two nondefault options to plot the given functions.
5.  f x, y = sin x - 2 y e1y-x for  -2 p § x § 2 p, -2 p § y § 2 p
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6.  f x, y = 4 - 3 x -2 y  for -10 § x § 10, -10 § y § 10

7.  f x, y = tanh-1x  y for -5 § x § 5, -5 § y § 5 

 8.  Plot f x, y =  x2 + y2 - 4 if x2 + y2 < 4

4 - x2 + 3 y2 otherwise
  

9.  Plot the portion of the helicoid (spiral ramp) that is defined by:
x = u cos v,  y = u sin v, z = v for 0 § u § 3 and  -2 p § v § 2 p

10. Use ContourPlot3D to plot the level surfaces of the function f x, y, z = 9 - x2 - y2 - z2.

ü 14.2  Limits and Continuity

Students should read Section 14.2 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

ü 14.2.1  Limits

If f x, y is a function of x and y, and if the domain of f  contains a circle around the point a, b, we say that the limit of f  at
a, b is L if and only if f x, y can be arbitrarily close to L for all x, y arbitrarily close a, b.  
More precisely, for a given e > 0, there exists a d > 0 such that for every x, y is in the domain of f ,

0 < x - a2 + y - b2 < d ï  f x, y - L < e
If this is the case, we write

   limx,yØa,b f x, y = L

The Limit command of Mathematica is restricted to functions of one variable. However, we can use it twice to find the limit of
function of two variables provided the limit exists.

Example 14.14.  Find limx,yØ3,4 x2 + y2.
Solution: We can easliy determine that the limit exists. We can find the limit by evaluating

In[214]:= LimitLimitx2  y2, x  3, y  4
Out[214]= 25

The plot following confirms this. 
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In[215]:= Clearplot1, plot2
plot1  Plot3Dx2  y2, x, 1, 4, y, 3, 5;
plot2  Graphics3DRed, PointSize.025, Point3, 4, 25;
Showplot1, plot2, ImageSize  250, ImagePadding  15, 15, 15, 15

Out[218]=

Example 14.15.   Find limx,yØ4,1
3 x+y2

x-4 y
.

Solution: We will evaluate the limit in two different orders. The limit in which we use limit with x first and then with y is 

In[219]:= Clearf, x, y

fx_, y_ 
3 x  y2

x  4 y

Out[220]=
3 x  y2

x  4 y

The limit in which we use limit with x first and then with y is 

In[221]:= LimitLimitfx, y, x  4, y  1
Out[221]= 

The limit in which we use limit with y first and then with x is 

In[222]:= LimitLimitfx, y, y  1, x  4
Out[222]= 

Here is the plot of the graph near the point 4, 1. Observe that the graph of the function is in green and the point 4, 1, 0 is in
red. For a better comaprison, we have colored the xy-plane light blue. You may need to rotate the graph to see the point 4, 1, 0
on the xy-plane and see how the graph behaves when x, y is close to 4, 1.
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In[223]:= Clearplot1, plot2
plot1  Plot3Dfx, y, 0, x, 3, 5,

y, 0, 2, PlotStyle  Green, LightBlue, PlotPoints  100;
plot2  Graphics3DRed, PointSize.025, Point4, 1, 0;
Showplot1, plot2, ImageSize  250,
ImagePadding  15, 15, 15, 15

Out[226]=

Here is the animation with x as the animation parameter.

Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-

tions generated from the Animate command in this chapter.  If you are reading the electronic version of this publication format-

ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation.  Just click on the
arrow button to start the animation.  To control the animation just click at various points on the sliding bar or else manually drag
the bar.
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In[227]:= AnimatePlotfx, y, y, 0, 3, PlotRange  20, 20, x, 3, 5

Out[227]=

x

0.5 1.0 1.5 2.0 2.5 3.0

-20

-10

10

20

Example 14.16.  Find limx,yØ0,0
sin x sin y

x y
.

Solution: We will evaluate the limit in two different orders. 

In[228]:= Clearf, x, y
fx_, y_ 

Sinx y
x y

Out[229]=
Sinx y

x y

In[230]:= LimitLimitfx, y, x  0, y  0
Out[230]= 1

In[231]:= LimitLimitfx, y, y  0, x  0
Out[231]= 1

Here is the plot of the graph and the point 0, 0, 1.   
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In[232]:= Clearplot1, plot2
plot1  Plot3Dfx, y, x, 1, 1, y, 1, 1, PlotStyle  Green;
plot2  Graphics3DRed, PointSize.02, Point0, 0, 1;
Showplot1, plot2, ImageSize  250

Out[235]=

If we rotate this graph to a suitable position, we notice that the limit exists.  Here are animations with x and y as animation
parameters, respectively.

In[236]:= AnimatePlotfx, y, x, 2, 2, PlotRange  0, 1, y, 2, 2

Out[236]=

y

-2 -1 0 1 2

0.2

0.4

0.6

0.8

1.0
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In[237]:= AnimatePlotfx, y, y, 2, 2, PlotRange  0, 1, x, 2, 2

Out[237]=

x

-2 -1 0 1 2

0.2

0.4

0.6

0.8

1.0

Example 14.17.  Find limx,yØ0,0 x ln y.

Solution:

In[238]:= Clearf, x, y
fx_, y_  x Logy

Out[239]= x Logy
In[240]:= LimitLimitfx, y, x  0, y  0
Out[240]= 0

In[241]:= LimitLimitfx, y, y  0, x  0
Out[241]= Indeterminate
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In[242]:= Clearplot1, plot2
plot1 

Plot3Dfx, y, 0, x, 1, 1, y, 1, 1, PlotStyle   Green, LightBlue;
plot2  Graphics3DRed, PointSize.025, Point0, 0, 0;
Showplot1, plot2, ImageSize  250,
ImagePadding  15, 15, 15, 15

Out[245]=

Here is the animation with x as the animation parameter.
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In[246]:= AnimatePlotfx, y, y, 2, 2, PlotRange  10, 10, x, 2, 2

Out[246]=

x

-2 -1 1 2

-10

-5

5

10

Example 14.18.  Consider the function f x, y = x y2

x2+y4
. Show that limx,yØ0,0 f x, y does not exist. 

Solution:

In[247]:= Clearf, x, y

fx_, y_ 
x y2

x2  y4

Out[248]=
x y2

x2  y4

In[249]:= LimitLimitfx, y, x  0, y  0
Out[249]= 0

In[250]:= LimitLimitfx, y, y  0, x  0
Out[250]= 0

In[251]:= LimitLimitfx, y, y  m x, x  0
Out[251]= 0
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However, note that the limit along the curve y = x  is  

In[252]:= LimitLimitfx, y, y  x , x  0

Out[252]=
1

2

Hence, the limit does not exist.  Here is the plot of the function:

In[253]:= Plot3Dfx, y, x, 1, 1, y, 1, 1, ImageSize  250

Out[253]=

ü 14.2.2  Continiuty

Recall that a function f  of two variables x and y is continuous at the point a, b if and only if limix,yØa,b f x, y = f a, b.

Example 14.19.  Let f x, y =  1 - x2 - y2, if x2 + y2 < 1

0, if x2 + y2 ¥ 1
.  Is f  continuous?

Solution: Clearly, f  is continuous at all points inside and outside the circle of radius 1.  To check continuity on the unit circle,
we let x = r cos t and y = r sin t. We then let rØ 1.

In[254]:= Clearx, y, r, s, t, f
fx_, y_  1  x2  y2

Out[255]= 1  x2  y2

In[256]:= x  r Cost
y  r Sint

Out[256]= r Cost
Out[257]= r Sint
In[258]:= Simplifyfx, y

Out[258]= 1  r2

In[259]:= Limitfx, y, r  1
Out[259]= 0
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The command below evaluates f on the circle.

In[260]:= Simplifyfx, y . r  1
Out[260]= 0

Thus, the limit and the value of f  are equal at all points on the unit circle. Hence, f  is continuous everywhere.  Here is the graph.

In[261]:= Clearplot1, plot2
plot1  Plot3Dfx, y, x, 5, 5, y, 5, 5, PlotStyle  Red,

RegionFunction  Functionx, y, z, x^2  y^2  1, Mesh  None;
plot2  Plot3D 0, x, 5, 5, y, 5, 5, PlotStyle  LightBlue,

RegionFunction  Functionx, y, z, x^2  y^2  1, Mesh  None;
Showplot1, plot2, ImageSize  250

Out[264]=

ü Exercises 

In Exercises 1 through 4, find the limit, if it exists.

1.  limx,yØ1,-1 2 x2 y + x y2 2. limx,yØ1,1
3 x2+y2

x2-y

3.   limx,yØ0,0
tan x sin y

x y
 4.  limx,yØ0,0 sin x ln y

5. Consider the function f x, y = x2 +y2

x2+y4
. Show that limx,yØ0,0 f x, y does not exist. 

6.  Let f x, y =  x2 - y2, if x + y < 0

2 x + y, if x + y ¥ 0
.

Is f  continuous?

7.  Let f x, y = x y

x2+y2
. The domain of f  is the whole plane without the origin. Is it possible to define f 0, 0 so that f  is continu-

ous everywhere? Plot the graph of f  to support your conclusions. 

8.  The domain of f x, y = x y

x+y
  is the whole plane without the line y = -x.   Is it possible to define f 0, 0 so that f  is continu-

ous everywhere? Plot the graph of f  to support your conclusions. 

ü 14.3  Partial Derivatives
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Students should read Section 14.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Recall that the Mathematica command for the partial derivative of a function f with respect to x is D[f, x], and D[f,{x,n}] gives

the nth partial derivative of  f  with respect to x.  The multiple (mixed) partial derivative of f  with respect to x1, x2, x3, ...  is

obtained by Df, x1, x2, x3, ....  We can access this command from  BasicMathInput. The symbols are ∑Ñ Ñ and ∑Ñ,ÑÑ .

Example 14.20.  Find the first partial derivatives of x3 + y2 with respect to x and y .

Solution:  We give two methods of input.

Method 1: We can type all the inputs and the command as follows: 

In[265]:= Clearx, y
Dx^3  y^2, x

Out[266]= 3 x2

In[267]:= Dx^3  y^2, y
Out[267]= 2 y

Method 2:  We can use the BasicInput palette to enter the inputs.

In[268]:= x x3  y2
Out[268]= 3 x2

In[269]:= y x3  y2
Out[269]= 2 y

Example 14.21.  Find the four second partial derivatives of x3 siny + ex y.  

Solution: Let z = x3 sin y + ex y.  We again demonstrate two methods of input.

Method 1:

We can find zxx by 

In[270]:= Clearx, y
Dx^3  Siny  E^x  y, x, 2

Out[271]= x y y2  6 x Siny
We can find zyy by 

In[272]:= Dx^3  Siny  E^x  y, y, 2
Out[272]= x y x2  x3 Siny
We can find zxy by 

In[273]:= Dx^3  Siny  E^x  y, x, y
Out[273]= x y  x y x y  3 x2 Cosy
zyx  is given by  
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In[274]:= Dx^3  Siny  E^x  y, y, x
Out[274]= x y  x y x y  3 x2 Cosy
NOTE: Clairaut's Theorem states that if the mixed partial derivatives fx y  and fy x  are continuous at a point x, y, then they are

equal: fx y = fy x.  The last two outputs confirm Clairaut's Theorem for this particular example. 

Method 2: Here is the input using the palette symbol ∑Ñ,ÑÑ:

In[275]:= Clearx, y
x,xx3  Siny  xy
y,yx3  Siny  xy
x,yx3  Siny  xy
y,xx3  Siny  xy

Out[276]= x y y2  6 x Siny
Out[277]= x y x2  x3 Siny
Out[278]= x y  x y x y  3 x2 Cosy
Out[279]= x y  x y x y  3 x2 Cosy
Example 14.22.  Evaluate the first partial derivatives of x y + y z2 + x z at -1, 2, 3.
Solution: Recall that Expr . x1 Æ a1, x2 Æ a2, x3 Æ a3, ...  is the command for substituting x1 by a1, x2 by a2, x3 by a3, .... ,

in Expr.

In[280]:= Clear[x,y,z]
D[x*y + y*z^2 + x*z,x]/.{x-> -1, y->2, z->3} 

Out[281]= 5

In[282]:= Dx  y  y  z^2  x  z, y . x  1, y  2, z  3
Out[282]= 8

In[283]:= Dx  y  y  z^2  x  z, z . x  1, y  2, z  3
Out[283]= 11

Example 14.23.  Let f x, y, z = y ex + x e-y ln z. Find   fx x x, fx y z, fx z z, fz x z , and fz z x.

Solution: First, we define f x, y, z in Mathematica. We can use the ∑Ñ,ÑÑ notation. Since the palette gives only two boxes for

the variables, we need to add one more box. This can be done by using CTRL +, (comma), that is, hold the CONTROL key and

press the COMMA button.  Note also that the command D[f[x,y,z],x,y,z] gives fxyz. We demonstrate both methods.

In[284]:= Clearx, y, z, f
fx_, y_, z_ : y  x  x  Logz  y

In[286]:= x,x,x fx, y, z
Out[286]= x y
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In[287]:= x,y,z fx, y, z

Out[287]= 
y

z

In[288]:= x,z,z fx, y, z

Out[288]= 
y

z2

In[289]:= Dfx, y, z, z, x, z

Out[289]= 
y

z2

In[290]:= Dfx, y, z, z, z, x

Out[290]= 
y

z2

Example 14.24.  Let f x, y = x y
x2-y2

x2+y2
 if x, y ∫ 0, 0 and f 0, 0 = 0. 

a) Find fxx, y and fyx, y for x, y ∫ 0, 0.
b) Use the limit definition to find fx0, 0 and fy0, 0.
c) Find fx y x, y and fy xx, y for x, y ∫ 0, 0.
d) Use the limit definition to find fx y0, 0 and fy x0, 0.
Solution: We will first define f  using the If command.

In[291]:= Clearx, y, f, fx, fy, fxy, fyx

fx_, y_  Ifx, y  0, 0, x y
x2  y2

x2  y2
, 0

Out[292]= Ifx, y  0, 0, x y x2  y2
x2  y2

, 0

a)  Let fx and fy denote the partial derivatives with respect to x and y, respectively. Then 

In[293]:= fxx_, y_  Dfx, y, x
fyx_, y_  Dfx, y, y

Out[293]= Ifx, y  0, 0, 
2 x x2  y2
x2  y22


2 x

x2  y2
x y 

y x2  y2
x2  y2

, 0

Out[294]= Ifx, y  0, 0, 
2 y x2  y2
x2  y22


2 y

x2  y2
x y  x x2  y2

x2  y2
, 0

If we use the FullSimplify command to simplify the preceding output, we get
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In[295]:= FullSimplifyfxx, y
FullSimplifyfyx, y

Out[295]=

y x44 x2 y2y4
x2y22 x  0  y  0

0 True

Out[296]=

x x44 x2 y2y4
x2y22 x  0  y  0

0 True

Thus, fxx, y = yx4+4 x3 y2-y4
x2+y22

 and  fyx, y = xx4-4 x2 y2-y4
x2+y22

 if x, y ∫ 0, 0.

b) We use the limit definition fx0, 0 = limhØ0
f 0+h,0- f 0,0

h
and fy0, 0 = limkØ0

f 0,0+k- f 0,0
k

  to find the partial derivatives at

0, 0.
In[297]:= Clearh, k

Limit f0  h, 0  f0, 0
h

, h  0
Out[298]= 0

In[299]:= Limit f0, 0  k  f0, 0
k

, k  0
Out[299]= 0

Hence, fx0, 0 = 0 and fy0, 0 = 0.

c) To find the mixed second partial derivatives, we use fx and fy from the outputs in part a).  Note that the FullSimplify com-
mand is used to to get a simplified form of the mixed partial derivatives. 

In[300]:= fxyx_, y_  FullSimplifyDfxx, y, y
fyxx_, y_  FullSimplifyDfyx, y, x

Out[300]=

xy xy x410 x2 y2y4
x2y23 x  0  y  0

0 True

Out[301]=

xy xy x410 x2 y2y4
x2y23 x  0  y  0

0 True

Thus, fx y =
x-y x+y x4+10 x2 y2+y4

x2+y23
 and fy x =

x-y x+y x4+10 x2 y2+y4
x2+y23

 for x, y ∫ 0, 0. Note that these two functions are equal for

x, y ∫ 0, 0 in conformity with Clairaut's Theorem, since both are continuous when x, y ∫ 0, 0.
d) We use the limit definition of a partial derivative to compute fxy0, 0 and fyx0, 0.  Recall that we have defined fx as fx[x,y]

and fy as fy[x,y]. 

Then fxy0, 0 is given by 

In[302]:= Limit fx0 , 0  k  fx0, 0
k

, k  0
Out[302]= 1
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and fyx0, 0 is given by 

In[303]:= Limit fy0  h, 0  fy0, 0
h

, h  0
Out[303]= 1

Thus, fxy0, 0 = -1and fyx0, 0 = 1.  Note that this implies that the mixed partial derivatives are not continuous at x, y = 0, 0.
To see this graphically, first consider the following graph of f , which confirms that f  has partial derivatives everywhere. 

In[304]:= Plot3Dfx, y, x, 3, 3, y, 3, 3, ImageSize  250

Out[304]=

Here are the graphs of fx and fy, which now show why the second mixed partials at the origin are not equal.

In[305]:= Clearplot1, plot2
plot1  Plot3Dfxx, y, x, 3, 3, y, 3, 3,

PlotStyle  Red, AxesLabel  "Graph of zfx", None, None ;
plot2  Plot3Dfyx, y, x, 3, 3, y, 3, 3, PlotStyle  Blue,

AxesLabel  "Graph of zfy", None, None ;
ShowGraphicsArrayplot1, plot2, ImageSize  420
GraphicsArray::obs : GraphicsArray is obsolete. Switching to GraphicsGrid. à

Out[308]=

In addition, the graphs of fxy  and fyx  show the mixed partials are not continuous at the origin. This is the main reason why the

inequalities of the mixed partials at the origin does not contradict Clairaut's Theorem.
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In[309]:= Clearplot1, plot2
plot1  Plot3Dfxyx, y, x, 3, 3, y, 3, 3,

PlotStyle  Red, AxesLabel  "Graph of zfxy", None, None;
plot2  Plot3Dfyxx, y, x, 3, 3, y, 3, 3, PlotStyle  Blue,

AxesLabel  "Graph of zfyx", None, None;
ShowGraphicsArrayplot1, plot2, ImageSize  420
GraphicsArray::obs : GraphicsArray is obsolete. Switching to GraphicsGrid. à

Out[312]=

ü Exercises

1. Let f x, y = x-y2

x2+y2
.  Find:  

a. fx (1,0) b. fy1, 0 c. fxy d. fyx e.  fxxy

2. Find the first partial derivatives of z = x3 y2 with respect to x and y. 

3. Find the four second partial derivatives of x2 cosy + tanx ey.
4. Evaluate the first partial derivatives of f x, y, z = e-z xy + yz2 + xz at -1, 2, 3.

5. Let f x, y, z = x4 y3

z2+sin x
.  Find fxxx, fxyz, fxzz, fzxz , and fzzx.

6. Let f x, y = x y2

x2+y4
 if x, y ∫ 0, 0 and f 0, 0 = 0. 

a.  Find fxx, y and fyx, y for x, y ∫ 0, 0.
b.  Use the limit definition to find fx0, 0 and fy0, 0.
c.  Find fxy x, y and fyxx, y for x, y ∫ 0, 0.
d.  Use the limit definition to find fxy0, 0 and fyx0, 0.

ü 14.4  Tangent Planes

Students should read Section 14.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.
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Let z = f x, y be a function of two variables.  The equation of the tangent plane at the point a, b, f a, b is given by 

 z = fxa, b x - a + fya, b y - b + f a, b
Example 14.25.  Let f x, y = x2 + y2.
a) Find the equation of the tangent plane to the graph of f  at the point 2, 1, 3.
b) Plot the graph of f  and its tangent plane at 2, 1, 3.
Solution: Here, a = 2, b = 1.
a)

In[313]:= Clearf, x, y, z
fx_, y_  x2  y2

Out[314]= x2  y2

Thus, the equation the of the tangent plane is

In[315]:= A  x fx, y . x  2, y  1;
B  y fx, y . x  2, y  1;
z  A x  2  B y  1  f2, 1;
Simplifyz

Out[318]= 5  4 x  2 y

b) Here is a plot of the graph of f:

In[319]:= plot1  Plot3Dfx, y, z, x, 10, 10, y, 10, 10, PlotStyle  Blue, Green;
plot2  ListPointPlot3D 2, 1, 3, PlotStyle  Red, PointSizeLarge ;
Showplot1, plot2, ImageSize  250, ImagePadding  15, 15, 15, 15

Out[321]=

Example 14.26.  Let f x, y = x2 y - 6 x y2 + 3 y.  Find the points where  the tangent plane to the graph of f  is parallel to the xy-
plane.

Solution:  For the tangent plane to be parallel to the xy-plane, we must have fx = 0 and fy = 0. 

In[322]:= Clearf, x, y 
fx_, y_  x2 y  6 x y2  3 y

Out[323]= 3 y  x2 y  6 x y2
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A tangent plane is parallel to the xy-plane at  

In[324]:= Solve Dfx, y, x  0, Dfx, y, y  0

Out[324]= y  
1

3
, x  1, y  0, x   3 , y  0, x   3 , y 

1

3
, x  1

Rotate the following graph to see the points of tangencies.

In[325]:= Plot3Dfx, y, f1, 1  3, f1, 1  3, x, 1, 1,
y, 1, 1, PlotStyle  LightBlue, Green, Red, PlotRange  All,
ImageSize  250, ImagePadding  15, 15, 15, 15

Out[325]=

ü Exercises 

1. Let  f x, y = x3 y + x y2 - 3 x + 4.
a) Find a set of parametric equations of the normal line and an equation of the tangent plane to the surface at the point (1, 2).
b) Graph the surface, the normal line, and the tangent plane found in a).

 2. Let f x, y = x2 + y2.
a. Find the equation of the tangent plane to the graph of f  at the point 2, 1, 5.
b. Plot the graph of f  and its tangent plane at 2, 1, 5.
3.  Let f x, y = e-yx.
a. Find the equation of the tangent plane to the graph of f  at the point 1, 0, 1.
b. Plot the graph of f  and its tangent plane at 1, 0, 1.
4.  Let f x, y = cos x y.  Find the points where  the tangent plane to the graph of f  is parallel to the xy-plane.

ü 14.5  Gradient and Directional Derivatives

Students should read Section 14.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Recall that the notation for a vector such as u = 2 i + 5 j - 6 k in Mathematica is {2,5,-6}.  The command for the dot product of

two vectors u and v is obtained by typing u.v.

The gradient of f , denoted by ! f , at a, b can be obtained by evaluating ! f a, b = ∑x f a, b, ∑y f a, b. 
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The directional derivative of f  at a, b in the direction of a unit vector u is given by Du f =! f a, b ◊u.

Example 14.27.  Find the gradient and directional derivative of f x, y = x2 sin 2 y at the point  1, p

2
, 0   in the direction of

v =  3

5
, - 4

5
.

Solution:   

In[326]:= Clearf, v
fx_, y_ : x2  Sin2 y
v   3

5
,
4

5


Out[328]=  3
5
, 

4

5


The gradient of f  at 1, p

2
  is 

In[329]:= !f  x fx, y, y fx, y . x  1, y 


2


Out[329]= 0, 2
Since v is a unit vector, the directional derivative is given by 

In[330]:= direcderiv  v.!f

Out[330]=
8

5

Example 14.28.  Find the gradient and directional derivative of  f x, y, z = x y + y z + x z at the point  (1, 1, 1)  in the direction
of v = 2 i + j - k.

 Solution:

In[331]:= Clearx, y, z
w  x  y  y  z  x  z
v  2, 1, 1

Out[332]= x y  x z  y z

Out[333]= 2, 1, 1
We normalize v:

In[334]:= unitvector  v  Normv

Out[334]=  2

3
,

1

6
, 

1

6


The gradient of w = f x, y, z at 1, 1, 1 is 

In[335]:= !w  Dw, x, Dw, y, Dw, z . x  1, y  1, z  1
Out[335]= 2, 2, 2
Hence, the directional derivative is given by 
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In[336]:= direcderiv  unitvector.!w

Out[336]= 2
2

3

Example 14.29.  Plot the gradient vector field and the level curves of the function f x, y = x2 sin 2 y.

Solution:

In[337]:= Clearf, fx, fy, x, y
fx_, y_  x2  3 x y  y  y2

fx  Dfx, y, x
fy  Dfx, y, y

Out[338]= x2  y  3 x y  y2

Out[339]= 2 x  3 y

Out[340]= 1  3 x  2 y

Thus,  the  gradient  vector  field is  ! f x, y =  2 x - 3 y, 1 - 3 x - 2 y.   To plot  this  vector  field,  we need to download the

package VectorFieldPlots, which is done by evaluating

In[341]:= Needs"VectorFieldPlots`"
General::obspkg :

VectorFieldPlots` is now obsolete. The legacy version being loaded may conflict with current Mathematica

functionality. See the Compatibility Guide for updating information. à

Here is a plot of some level curves and the gradient field.  

In[342]:= Clearplot1, plot2
plot1  ContourPlotfx, y, x, 5, 5, y, 4, 4,

Axes  True, Frame  False, Contours  15, ColorFunction  Hue ;
plot2  VectorFieldPlotfx, fy, x, 5, 5, y, 4, 4, Axes  True, Frame  False;
Showplot1, plot2, ImageSize  250

Out[345]=
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Example 14.30.  Let the temperature T  at a point x, y on a metal plate be given by Tx, y = x

x2+y2
. 

a) Plot the graph of the temperature. 
b) Find the rate of change of temperature at 3, 4, in the direction of v = i - 2 j.
c) Find the unit vector in the direction of which the temperature increases most rapidly at 3, 4.
d) Find the maximum rate of increase in the temperature at 3, 4. 
Solution: 
a)  Here is the graph of T.

In[346]:= Tx_, y_ 
x

x2  y2

Out[346]=
x

x2  y2

In[347]:= graphofT 

Plot3DTx, y, x, 5, 5, y, 5, 5, BoxRatios  1, 1, 1, ImageSize  Small

Out[347]=

b)  Let  u = v

v .   Then u  is  a  unit  vector  and the  rate  of  change in  temperature at  3, 4  in  the  direction of  v  is  given by

Du T3, 4 = ! f 3, 4 ◊u.

In[348]:= !T  DTx, y, x, DTx, y, y
v  1, 2
u 

v

v.v

u.!T . x  3, y  4  N

Out[348]=  2 x2

x2  y22


1

x2  y2
, 

2 x y

x2  y22


Out[349]= 1, 2

Out[350]=  1

5
, 

2

5


Out[351]= 0.0393548

Thus, the rate of change at 3, 4 in the direction v is 0.0393548.  NOTE: The command //N in the last line of the previous input
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converts the output to decimal form. 

c) The unit vector in the direction of which the temperature increases most rapidly at 3, 4 is given by 

In[352]:=
!T

Norm!T . x  3, y  4

Out[352]=  7

25
, 

24

25


d) The maximum rate of increase in the temperature at (3,4) is the norm of the gradient at this point. This can be obtained by: 

In[353]:= Norm!T . x  3, y  4

Out[353]=
1

25

ü Exercises 

1. Find the gradient and directional derivative of f x, y = sin-1x y at the point  1, 1, p

2
   in the direction of v = 1, -1. 

2. Let  Tx, y = ex y -y2
.

a. Find ! Tx, y.
b. Find the directional derivative of  T x, y at the point 3, 5 in the dierection of u = 1 2 i + 3 2 j.

c. Find the direction of greatest increase in T  from the point 3, 5.
3.  Plot the gradient vector field and the level curves of the function a f  x , y  = cos x sin 2 y.

4.   Find the gradient and directional derivative of  f x, y, z = x y e y z + sin x z  at  the point 1, 1, 0   in the direction of
v = i - j - k.

ü 14.6  The Chain Rule

Students should read Section 14.6 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Example 14.31.  Let x = t2 + s , y = t + s2 and z = x sin y.  Find the first partial derivatives of z with respect to s and t.

Solution:  

In[354]:= Clearx, y, z, s, t
x  t2  s

y  t  s2

z  x Siny
Out[355]= s  t2

Out[356]= s2  t

Out[357]= s  t2 Sins2  t
In[358]:= Dz, s
Out[358]= 2 s s  t2 Coss2  t  Sins2  t
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In[359]:= Dz, t
Out[359]= s  t2 Coss2  t  2 t Sins2  t
Example 14.32.  Find the partial derivatives of z with respect to x and y assuming that the equation x2 z - y z2 = x y defines z as a
function of x and y.

Solution: 

In[360]:= Clearx, y, z, r, t, s
eq  x2 zx, y  y zx, y2  x y

SolveDeq, x, Dzx, y, x
SolveDeq, y, Dzx, y, y

Out[361]= x2 zx, y  y zx, y2  x y

Out[362]= z1,0x, y 
y  2 x zx, y
x2  2 y zx, y



Out[363]= z0,1x, y 
x  zx, y2

x2  2 y zx, y


Example 14.33.  Let f x, y, z = Fr, where r = x2 + y2 + z2  and F is a twice differentiable function of one variable. 

a) Show that ! f = F ' r 1

r
x i + y j + z k.

b) Find the Laplacian of f .

Solution: 
a) 

In[364]:= Clearx, y, z, r, f, F
fx_, y_, z_  Fr

r  x2  y2  z2

Out[365]= Fr

Out[366]= x2  y2  z2

Here is the gradient of f :

In[367]:= gradf  Dfx, y, z, x, Dfx, y, z, y, Dfx, y, z, z

Out[367]=  x F
 x2  y2  z2 
x2  y2  z2

,
y F x2  y2  z2 

x2  y2  z2
,
z F x2  y2  z2 

x2  y2  z2


With r = x2 + y2 + z2 , the preceding output becomes

! f x, y, z =  x F ' r
r

,
y F ' r

r
, z F ' r

r
 = F ' r 1

r
 x , y , z 

which proves part a).
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b) Recall that the Laplacian of f , denoted by D f , is defined by D f = fxx + fyy + fzz. 

In[368]:= Dfx, y, z, x, 2  Dfx, y, z, y, 2  Dfx, y, z, z, 2

Out[368]= 
x2 F x2  y2  z2 
x2  y2  z232


y2 F x2  y2  z2 
x2  y2  z232


z2 F x2  y2  z2 
x2  y2  z232



3 F x2  y2  z2 
x2  y2  z2


x2 F x2  y2  z2 

x2  y2  z2

y2 F x2  y2  z2 

x2  y2  z2

z2 F x2  y2  z2 

x2  y2  z2

We simplify this to get

In[369]:= Simplify

Out[369]=

2 F x2  y2  z2 
x2  y2  z2

 F x2  y2  z2 

which is the same as 2

r
F 'r + F ''r.

ü Exercises 

1. Let x = u2 + sin v, y = u evu, and z = y3 ln x .  Find the first partial derivatives of z with respect to u and v.

2. Find the partial derivatives of z with respect to x and y assuming that the equation x2 z - y z2 = x y defines z as a function of x 
and y.

3. Find an equation of the tangent plane to the surface x z + 2 x2 y + y2 z3 = 11 at 2, 1, 1.

ü 14.7  Optimization

Students should read Section 14.7 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Second Derivative Test: Suppose fxa, b = 0 and fya, b = 0.  Define 

Dx, y = fx x fy y -  fx y2

The function D is called the discriminant function. 

i)   If Da, , b > 0 and fx xa, b > 0, then f a, b is a local minimum value.
ii)   If Da, , b > 0 and fx xa, b < 0, then f a, b is a local maximum value.
iii)  If Da, , b < 0, then a, b, f a, b is a saddle point on the graph of f .
iv)  If Da, b = 0, then no conclusion can be drawn about the the point a, b.
Example 14.34.  Let f x, y = x4 - 4 x y + 2 y2. 
a)  Find all critical points of f .
b)  Use the second derivative test to classify the critical points as local minimum, local maximum, saddle point, or neither.

Solution: Since D is used in Mathematica as the command for derivative, we will use disc for the discriminant function D.
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In[370]:= Clearf, x, y
fx_, y_  x4  4 x y  2 y2

Out[371]= x4  4 x y  2 y2

a) The critical points are given by

In[372]:= cp  SolveDfx, y, x  0, Dfx, y, y  0
Out[372]= y  1, x  1, y  0, x  0, y  1, x  1
b)

In[373]:= Clearfxx, disc
fxxx_, y_  Dfx, y, x, 2
discx_, y_  Dfx, y, x, 2  Dfx, y, y, 2  DDfx, y, x, y2

Out[374]= 12 x2

Out[375]= 16  48 x2

In[376]:= TableFormTable cpk, 2, 2, cpk, 1, 2 ,
disccpk, 2, 2, cpk, 1, 2, fxxcpk, 2, 2, cpk, 1, 2,
fcpk, 2, 2, cpk, 1, 2, k, 1, Lengthcp,

TableHeadings  , "x ", "y ", " Dx,y ", " fxx ", "fx,y"
Out[376]//TableForm=

x y Dx,y fxx fx,y
1 1 32 12 1
0 0 16 0 0
1 1 32 12 1

By the second derivative test, we conclude that f  has a local minimum value of -1 at -1, -1 and 1, 1, and a saddle point at
0, 0.  
Here is the graph of f  and the relevant points.
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In[377]:= Clearplot1, plot2
plot1 

Plot3Dfx, y, x, 2, 2, y, 2, 2, PlotStyle  LightBlue, PlotRange  10;
plot2  Graphics3DPointSizeLarge, Red,

PointTable cpk, 2, 2, cpk, 1, 2 , fcpk, 2, 2, cpk, 1, 2,
k, 1, Lengthcp, PlotRange  10;

Showplot1, plot2, ImageSize  250

Out[380]=

Example 14.35.  Let f x, y = x3 + y4 - 6 x - 2 y2. 
a)  Find all critical points of f .
b)  Use the second derivative test to classify the critical points as local minimum, local maximum, saddle point, or neither.

Solution: Again, we will use disc to denote the discriminant function D since the letter D is used in Mathematica for the deriva-
tive command. 

In[381]:= Clearf, x, y
fx_, y_  x3  y4  6 x  2 y2

Out[382]= 6 x  x3  2 y2  y4

a) The critical points are given by

In[383]:= cp  SolveDfx, y, x  0, Dfx, y, y  0
Out[383]= y  1, x   2 , y  1, x  2 , y  0, x   2 ,

y  0, x  2 , y  1, x   2 , y  1, x  2 
b)

In[384]:= Clearfxx, disc
fxxx_, y_  Dfx, y, x, 2
discx_, y_  Dfx, y, x, 2  Dfx, y, y, 2  DDfx, y, x, y2

Out[385]= 6 x

Out[386]= 6 x 4  12 y2
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In[387]:= TableFormTable cpk, 2, 2, cpk, 1, 2 ,
disccpk, 2, 2, cpk, 1, 2, fxxcpk, 2, 2, cpk, 1, 2,
fcpk, 2, 2, cpk, 1, 2, k, 1, Lengthcp,

TableHeadings  , "x ", "y ", " Dx,y ", " fxx ", "fx,y"
Out[387]//TableForm=

x y Dx,y fxx fx,y
 2 1 48 2 6 2 1  4 2

2 1 48 2 6 2 1  4 2

 2 0 24 2 6 2 4 2

2 0 24 2 6 2 4 2

 2 1 48 2 6 2 1  4 2

2 1 48 2 6 2 1  4 2

By the second derivative test we conclude that f  has local maximum value of 4 2  at - 2 , 0,  local minimum value of

-1 - 4 2  at  2 , -1 and  2 , 1, and saddle points at - 2 , -1,  2 , 0, and  - 2 , 1.  

Here is the graph of f  and the relevant points.

In[388]:= Clearplot1, plot2
plot1  Plot3Dfx, y, x, 2.5, 2.5,

y, 2.5, 2.5, PlotStyle  LightBlue, PlotRange  10;
plot2  Graphics3DPointSizeLarge, Red,

PointTable cpk, 2, 2, cpk, 1, 2 , fcpk, 2, 2, cpk, 1, 2,
k, 1, Lengthcp, PlotRange  10;

Showplot1, plot2, ImageSize  250

Out[391]=

Example 14.36.  Let f x, y = 2 x2 - 3 x y - x + y + y2  and let R be the rectangle in the xy-plane whose vertices are at (0,0),
(2,0), (2,2), and  (0,2). 
a) Find all relative extreme values of f  inside R.
b) Find the maximum and minimum values of f  on R.

Solution:

Mathematica for Rogawski's Calculus Volume III Body 2nd Edition.nb  81



In[392]:= Clearf, x, y, disc
fx_, y_  2 x2  3 x  y  x  y  y2  5

Out[393]= 5  x  2 x2  y  3 x y  y2

In[394]:= Solvex fx, y  0, y fx, y  0, x, y
Out[394]= x  1, y  1

In[395]:= discx_, y_  x,xfx, y  y,yfx, y  x,yfx, y2

Out[395]= 1

In[396]:= x,xfx, y . x  1, y  1
discx, y . x  1, y  1

Out[396]= 4

Out[397]= 1

Thus, 1, 1 is the local minimum point of f inside R and its local minimum value is f 1, 1 = 5. Next, we find the extreme values
of f on the boundary of the rectangle. This is done by considering f as a function of one variable corresponding to each side of R.
Let f1 = f x, 0, f2 = f x, 2, for x between 0 and 2, and f3 = f 0, y and f4 = f 2, y, for y between 0 and 2.   We now proceed
as follows:

In[398]:= Clearf1, f2, f3, f4
f1  fx, 0
f2  fx, 2
f3  f0, y
f4  f2, y

Out[399]= 5  x  2 x2

Out[400]= 11  7 x  2 x2

Out[401]= 5  y  y2

Out[402]= 11  5 y  y2

In[403]:= SolveDf1, x  0 

Out[403]= x 
1

4


In[404]:= SolveDf2, x  0 

Out[404]= x 
7

4


In[405]:= SolveDf3, y  0 

Out[405]= y  
1

2


In[406]:= SolveDf4, y  0 

Out[406]= y 
5

2
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Thus, points on the boundary of R that are critical points of f  are  1

4
, 0 and  7

4
, 2.  Observe that the points 0, -1 2 and

2, 5

2
 are outside the rectangle R. The four vertices of R at (0,0), (2,0), (0,2) and (2,2) are also critical points.  Can you explain

why?  We now evaluate f at each of these points and at 1, 1 (the relative minimum point found earlier) using the substitution
command and compare the results.

In[407]:= fx, y . x 
1

4
, y  0, x 

7

4
, y  2,

x  0, y  0, x  2, y  0,
x  0, y  2, x  2, y  2, x  1, y  1

Out[407]=  39
8
,
39

8
, 5, 11, 11, 5, 5

Thus, the minimum value of f is 39 8, which occurs at 1 4, 0 and also at 7 4, 2.  The maximum value of f is 6, which is
attained at 2, 0 and also at 0, 2.  Here is the graph of f  over the rectangle R. 

In[408]:= Clearplot1, plot2, plot3
plot1  Plot3Dfx, y, 0, x, 0, 2,

y, 0, 2, PlotStyle  Green, Blue, PlotRange  All;
plot2  Graphics3DPointSizeLarge, Red ,

Point 1  4, 0, f1  4, 0, 7  4, 2, f7  4, 2 , PlotRange  All ;
plot3  Graphics3DPointSizeLarge, Black ,

Point 2, 0, f2, 0, 0, 2, f2, 0, PlotRange  All ;
Showplot1, plot2 , plot3, ImageSize  250, ImagePadding  15, 15, 15, 15

Out[412]=

ü Exercises 

1. Let f x, y = x4 - 4 x y + 2 y2. 
a. Find all critical points of f .
b. Use the second derivative test to classify the critical points as local minimum, local maximum, saddle point, or neither.
c. Plot the graph of f  and the local extreme points and saddle points, if any.

2. Let f x, y = x + y lnx2 + y2, for x, y ∫ 0, 0. 
a. Find all critical points of f .
b. Use the second derivative test to classify the critical points as local minimum, local maximum, saddle point, or neither.
c. Plot the graph of f  and the local extreme points and saddle points, if any.
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3. Let f x, y = 2 x2 - 3 x y - x + y + y2 and let R be the rectangle in the xy-plane whose vertices are at 0, 0, 2, 0, 2, 2, and
0, 2. 
a. Find all relative extreme values of f  inside R.
b. Find the maximum and minimum values of f  on  R.
c. Plot the graph of f  and the local extreme points and saddle points, if any.

ü 14.8  Lagrange Multipliers

Students should read Section 14.8 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Example 14.37.   Let f x, y = x y and gx, y = x2 + y2 - 4.
a) Plot the level curves of f  and g as well as their gradient vectors. 
b) Find the maximum and minimum values of f  subject to the constraint gx, y = 0.

Solution: 
a) We will define f  and g  and compute their gradients. Recall that we need to evaluate the command Needs["`VectorField-

Plots`"] before we plot the gradient fields. 

In[413]:= Clearf, g, fx, fy, gx, gy, x, y
fx_, y_  2 x  3 y

gx_, y_  x2  y2  4

fx  Dfx, y, x
fy  Dfx, y, y
gx  Dgx, y, x
gy  Dgx, y, y

Out[414]= 2 x  3 y

Out[415]= 4  x2  y2

Out[416]= 2

Out[417]= 3

Out[418]= 2 x

Out[419]= 2 y

In[420]:= Needs"VectorFieldPlots`"
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In[421]:= Clearplot1, plot2, plot3, plot4
plot1  ContourPlotx2  y2  4, x, 2, 2, y, 2, 2,

Frame  False, Axes  True, ContourShading  False, PlotRange  All;
plot2  ContourPlot2 x  3 y, x, 2, 2, y, 2, 2, Frame  False,

Axes  True, ContourShading  False, PlotRange  All;
plot3  VectorFieldPlotfx, fy, x, 2, 2, y, 2, 2,

Axes  True, Frame  False, ColorFunction  Hue;
plot4  VectorFieldPlotgx, gy, x, 2, 2, y, 2, 2,

Axes  True, Frame  False, ColorFunction  Hue;
Showplot1, plot2, plot3, plot4, ImageSize  250

Out[426]=

b) Let us use l for l. To solve ! f = l ! g we compute

In[427]:= Solvefx  l gx, fy  l gy, gx, y  0 

Out[427]= l  
13

4
, x  

4

13
, y  

6

13
, l 

13

4
, x 

4

13
, y 

6

13


Thus, - 4

13
, - 6

13
 and  4

13
, 6

13
 are the critical points. We evaluate f  at these points to determine the absolute maximum

and the absolute minimum of f  on the graph of gx, y = 0.

In[428]:= f  4

13
, 

6

13


f 4

13
,

6

13


Out[428]= 2 13

Out[429]= 2 13

Hence,  f  attains  its  absolute  minimum value  of  -2 13  at  - 4

13
, - 6

13
  and  absolute  maximum value  of  -2 13  at

 4

13
,

6

13
.
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Here is a combined plot of the gradients of f  (in black) and g (in red) at the critical points.  

In[430]:= Clearplot1, plot2, plot3, plot4, plot5, plot6
plot1  ContourPlotgx, y, x, 3, 3, y, 3, 3,

Contours  0, Frame  False, Axes  True, ContourShading  False;
plot2  ListPlot  4

13
, 

6

13
,  4

13
,

6

13
;

In[433]:= plot3  GraphicsArrow

  4

13
, 

6

13
,   4

13
, 

6

13
  fx, fy . x 

4

13
, y 

6

13
 ;

In[434]:= plot4  Graphics

Arrow  4

13
,

6

13
 ,  4

13
,

6

13
  fx, fy . x 

4

13
, y 

6

13
 ;

In[435]:= plot5  GraphicsRed, Arrow  4

13
, 

6

13
 ,

  4

13
, 

6

13
  gx, gy . x 

4

13
, y 

6

13
 ;

In[436]:= plot6  GraphicsRed,

Arrow  4

13
,

6

13
 ,  4

13
,

6

13
  gx, gy . x 

4

13
, y 

6

13
 ;

In[437]:= Showplot1, plot2, plot3, plot4, plot5, plot6,
PlotRange  All, AspectRatio  Automatic, ImageSize  250

Out[437]=

ü Exercises 
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1.  Let f x, y = 4 x2 + 9 y2 and gx, y = x y - 4.
a. Plot the level curves of f  and g as well as their gradient vectors. 
b. Find the maximum and minimum values of f  subject to gx, y = 0.

2.  Find the maximum and minimum values of f x, y, z = x3 - 3 y2 + 4 z subject to the constraint gx, y, z = x + y z - 4 = 0.

3.  Find the maximum area of a rectangle that can be inscribed in the ellipse x2

a2
+

y2

b2
= 1.

4.  Find the maximum volume of a box that can be inscribed in the sphere x2 + y2 + z2 = 4.
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Chapter 15 Multiple Integration
Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible
to view 3-D plots generated by Mathematica from different perspectives.  First, place your screen cursor over the plot.  Then drag
the mouse while pressing down on the left mouse button to rotate the plot.

ü 15.1  Double Integral over a Rectangle

Students should read Section 15.1 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Integration can be generalized to functions of two or more variables.  As the integral of a single-variable function defines area of
a plane region under the curve, it is natural to consider a double integral of a two-variable function that defines volume of a solid
under a surface.  This definition can be made precise in terms of double Riemann sums where rectangular columns (as opposed to
rectangles) are used as building blocks to approximate volume (as opposed to area).  The exact volume is then obtained as a limit
where the number of columns increases without bound.

ü 15.1.1  Double Integrals and Riemann Sums

Let  f x, y  be  a  function  of  two  variables  defined  on  a  rectangular  domain  R = a, bä c, d  in  R2.   Let
P = a = x0 < x1 < ... < xm = b, c = y0 < y1 < ... < yn = d be an arbitrary partition of R into a grid of m ÿn rectangles, where m and

n  are integers.  For each sub-rectangle Rij = xi-1, xiä y j-1, y j  denote by  DAij  its area and choose an arbitrary base point

xij, yij œ Rij, where xij œ xi-1, xi and yij œ y j-1, y j.  The product f xij, yijDAij  represents the volume of the ij-rectangular

column situated between the surface and the xy-plane.  We then define the double Riemann sum Sp of f x, y on R with respect

to P to be the total volume of all these columns:

SP =
i=1

m


j=1

n

f xij, yijDAij

Define  P  to be the maximum dimension of all the sub-rectangles.  The double integral of f x, y on the rectangle R is then
defined as the limit of SP as  P Ø 0:

 
R

f x, y „A = lim
PØ0


i=1

m


j=1

n

f xij, yijDAij

If the limit exists regardless of the choice of partition and base points, then the double integral is said to exist.  Otherwise, the
double integral does not exist.

MIDPOINT RULE (Uniform Partitions):  Let  us consider uniform partitions P,  where  the points xi  and y j  are evenly

spaced, that is,  xi = a + iD x, y j = b + jD y for i = 0, 1, ..., m and j = 0, 1, ..., n, and with Dx = b - a m and Dy = d - c n.

Then the corresponding double Riemann sum is

Sm,n =
i=1

m


j=1

n

f xij, yijD xD y

Here is a subroutine called MDOUBLERSUM that calculates the double Riemann sum Sm,n  of f x, y over a rectangle R for

uniform partitions using the center midpoint of each sub-rectangle as base point, that is, xij = xi-1 + xi 2 = a + i - 1 2D x and

yij = y j-1 + y j2 = c +  j - 1 2D y.
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In[438]:= Clearf
MDOUBLERSUMa_, b_, c_, d_, m_, n_ :

Sumfa  i  1  2  b  a  m, c  j  1  2  d  c  n  b  a  m  d  c  n,
i, 1, m, j, 1, n

Example  15.1.   Approximate  the  volume of  the  solid  bounded  below  the  surface  f x = x2 + y2  and  above  the  rectangle
R = -1, 1ä -1, 1 on the xy-plane using a uniform partition with m = 10 and n = 10 and center midpoints as base points.  Then
experiment with larger values of m and n and conjecture an answer for the exact volume.

Solution: We calculate the approximate volume for m = 10 and n = 10 using the subroutine MDOUBLERSUM:

In[440]:= fx_, y_  x^2  y^2;

MDOUBLERSUM1, 1, 1, 1, 10, 10

Out[441]=
66

25

In[442]:= N
Out[442]= 2.64

In[443]:= TableMDOUBLERSUM1, 1, 1, 1, 10  k, 10  k, k, 1, 10

Out[443]=  66
25

,
133

50
,
1798

675
,
533

200
,
1666

625
,
3599

1350
,
3266

1225
,
2133

800
,
16198

6075
,
3333

1250


In[444]:= N
Out[444]= 2.64, 2.66, 2.6637, 2.665, 2.6656, 2.66593, 2.66612, 2.66625, 2.66634, 2.6664
It appears that the exact volume is 8/3.  To prove this, we evaluate the double Riemann sum Sm,n in the limit as m, nØ¶:

In[445]:= ClearS, m, n;
Sm_, n_  SimplifyMDOUBLERSUM1, 1, 1, 1, m, n

Out[446]=
4

3
2 

1

m2


1

n2

In[447]:= LimitLimitSm, n, m  Infinity, n  Infinity

Out[447]=
8

3

To see this limiting process visually, evaluate the following subroutine, called DOUBLEMIDPT, which plots the surface of the
function corresponding to the double integral along with the rectangular columns defined by the double Riemann sum considered

in the previous subroutine MDOUBLERSUM.
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In[448]:= Clearf;
DOUBLEMIDPTf_, a_, b_, m_, c_, d_, n_ : Module

dx, dy, i, j, xstar, ystar, mrect, plot,
dx  Nb  a  m;
xstar  Tablea  i  dx, i, 0, m;
dy  Nd  c  n;
ystar  Tablec  j  dy, j, 0, n;
mcolumn  TableCuboidxstari, ystarj, 0,

xstari  1, ystarj  1, fxstari  xstari  1  2,
ystarj  ystarj  1  2, i, 1, m, j, 1, n;

plot  Plot3Dfx, y, x, a, b, y, c, d, Filling  Bottom;
Showplot, Graphics3Dmcolumn, ImageSize  300

In[450]:= fx_, y_ : x2  y^2;

DOUBLEMIDPTf, 1, 1, 10, 1, 1, 10

Out[451]=

Here is an animation that demonstrates how the volume of the rectangular columns approach that of the solid in the limit as
m, nØ¶:

Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-

tions generated from the Animate command in this chapter.  If you are reading the electronic version of this publication format-

ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation.  Just click on the
arrow button to start the animation.  To control the animation just click at various points on the sliding bar or else manually drag
the bar.
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In[452]:= AnimateDOUBLEMIDPTf, 1, 1, a, 1, 1, a , a, 5, 50, 5 

Out[452]=
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0.0
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ü 15.1.2  Double Integrals and Iterated Integrals in Mathematica 

The Mathematica  command for  evaluating double  integrals is  the same as  that  for  evaluating integrals of  a  single-variable
function, except that two limits of integration must be specified, one for each independent variable.  Thus:

Integrate[f[x,y],{x,a,c},{y,c,d}] analytically evaluates the double integral  R
f x, y „A over the rectangle R = a, bä c, d.  

NIntegrate[f[x,y],{x,a,c},{y,c,d}] numerically evaluates the double integral  R
f x, y „A over the rectangle R = a, bä c, d.  

Iterated Integrals:  In practice, one does not actually use the limit definition in terms of Riemann sums to evaluate double

integrals, but instead apply Fubini's Theorem to easily compute them in terms of iterated integrals:

Fubini's Theorem: (Rectangular Domains) If R = x, y : a § x § b, c § y § d, then

 
R

f x, y „A = 
a

b


c

d

f x, y „ y „ x = 
c

d


a

b

f x, y „ x „ y
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Thus, Mathematica will naturally apply Fubini's Theorem whenever possible to analytically determine the answer.  Depending on
the form of the double integral, Mathematica may resort to more sophisticated integration techniques, such as contour integration,
which are beyond the scope of this text.

Example  15.2.   Calculate  the  volume of  the  solid  bounded  below  by  the  surface  f x = x2 + y2  and  above  the  rectangle
R = -1, 1ä -1, 1.
Solution: The volume of the solid is given by the double integral  R

f x, y „A.  To evaluate it, we use the Integrate command:

In[453]:= fx_, y_ : x^2  y^2;

Integratefx, y, x, 1, 1, y, 1, 1

Out[454]=
8

3

This confirms the conjecture that we made in the previous example for the exact volume.

NOTE: Observe that we obtain the same answer by explicitly computing this double integral as an integrated integral as follows.
Moreover, for rectangular domains, the order of integration does not matter.

In[455]:= IntegrateIntegratefx, y, x, 1, 1, y, 1, 1
IntegrateIntegratefx, y, y, 1, 1, x, 1, 1

Out[455]=
8

3

Out[456]=
8

3

Example 15.3.  Compute the double integral  R
x e-y2

„A on the rectangle R = 0, 1ä 0, 1.
Solution: Observe that the Integrate command here gives us an answer in terms of the non-elementary error function Erf:

In[457]:= Integratex  E^y^2, x, 0, 1, y, 0, 1

Out[457]=
1

4
 Erf1

This is because the function f x, y = x e-y2
 has no elementary anti-derivative with respect to y due to the Gaussian factor e-y2

(bell curve).  Thus, we instead use the NIntegrate Command to numerically approximate the double integral:

In[458]:= NIntegratex  E^y^2, x, 0, 1, y, 0, 1
Out[458]= 0.373412

ü Exercises 

1. Consider the function f x, y = 16 - x2 - y2 defined over the rectangle R = 0, 2ä -1, 3.
a. Use the subroutine MDOUBLERSUM to compute the double Riemann sum Sm,n of f x, y over R for m = 2 and n = 2.

b.  Repeat part a)  by generating a table of double Riemann sums for m = 10 k  and n = 10 k  where k = 1, 2, ..., 10.  Make a

conjecture for the exact value of  R
f x, y „A. 

c. Find a formula for Sm,n in terms of m and n.  Verify your conjecture in part b) by evaluating limm,nØ¶Sm,n.

d. Directly compute  R
f x, y „A using the Integrate command.
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2. Repeat Exercise 1 but with f x, y = 1 + x 1 + y 1 + x y defined over the rectangle R = 0, 1ä 0, 1.

3. Evaluate the double integral   x4 + y4 „A over the rectangle R = -2, 1ä -1, 2 using both the Integrate and NInte-

grate commands.  How do the two answers compare?

4. Calculate the volume of the solid lying under the surface z = e-yx + y2 and over the rectangle R = 0, 2ä 0, 3.  Then make a

plot of this solid.

5. Repeat Exercise 4 but with z = sinx2 + y2 and rectangle R = - p , p ä - p , p .
6.  Evaluate  the double integral  R

f x, y „A  where  f x, y = x y cosx2 + y2  and R = -p, pä -p, p.   Does your  answer

make sense?  Make a plot of the solid corresponding to this double integral to intuitively explain your answer.  HINT: Consider
symmetry.

7. Find the volume of solid bounded between the two hyperbolic paraboloids (saddles) z = 1 + x2 - y2 and z = 3 - x2 + y2 over
the rectangle R = -1, 1ä -1, 1.
8. Find the volume of the solid bounded by the planes z = 2 x, z = -3 x + 2, y = 0, y = 1, and z = 0.

ü 15.2  Double Integral over More General Regions

Students should read Section 15.2 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

For domains of integration that are non-rectangular but still simple,  that is,  bounded between two curves, Fubini's  Theorem
continues to hold.  There are two types to consider: 

Fubini's Theorem: (Simple Domains)

Type I (Vertically Simple): If D = x, y : a § x § b, ax § y § bx, then

 
D

f x, y „A = 
a

b


ax

bx
f x, y „ y „ x

The corresponding Mathematica command is Integrate[f[x,y],{x,a,b},{y,a[x],b[x]}].

Type II (Horizontally Simple): If D = x, y : c § y § d, ay § x § by, then

 
D

f x, y „A = 
c

d


ay

by
f x, y „ x „ y

The corresponding Mathematica command is Integrate[f[x,y],{y,c,d},{x,a[y],b[y]}].

Warning: Be careful not to reverse the order of integration prescribed for either type.  For example, evaluating the command

Integrate[f[x,y],{y,a[x],b[x]},{x,a,b}] for Type I (x and y are reversed) will lead to incorrect results.

Example 15.4.  Calculate the volume of the solid bounded below by the surface f x, y = 1 - x2 + y2 and above the domain D
bounded by x = 0, x = 1, y = x, and y = 1 + x2.

Solution: We observe that x = 0 and x = 1 represent the left and right boundaries, respectively, of D.  Therefore, we plot the
graphs of the other two equations along the x-interval 0, 2 to visualize D (shaded in the following plot):
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In[459]:= Clearx, y
plot1  Plotx, 1  x^2, x, 0, 1, Filling  1  2, ImageSize  250

Out[460]=

Here is a plot of the corresponding solid situated over D:

In[461]:= fx_, y_  1  x^2  y^2;

plot3  Plot3Dfx, y, x, 0, 1, y, x, 1  x^2, Filling  Bottom,
ViewPoint  1, 1, 1, PlotRange  0, 4, ImageSize  250

Out[462]=

To compute the volume of this solid given by  D
f x, y „A, we describe D as a vertically simple domain where 0 § x § 1 and

x § y § 1 + x2 and apply Fubini's Theorem to evaluate the corresponding iterated integral 0

1x

1+x2

f x, y „ y „ x (remember to use

the correct order of integration):

In[463]:= Integratefx, y, x, 0, 1, y, x, 1  x2

Out[463]=
29

21

Example 15.5.  Evaluate the double integral  D
sin y2 „A, where D is the domain bounded by x = 0, y = 2, and y = x.

Solution: We first plot the graphs of  x = 0, y = 2, and y = x to visualize the domain D:
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In[464]:= plot1  ContourPlotx  0, y  2, y  x,
x, 0.5, 2.5, y, 0.5, 2.5, ImageSize  250

Out[464]=

-0.5 0.0 0.5 1.0 1.5 2.0 2.5
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0.0

0.5

1.0

1.5

2.0

2.5

It follows that D is the triangular region bounded by these graphs, which we shade in the following plot to make clear:

In[465]:= plot2  Plotx, x, 0, 2, Filling  2;
Showplot1, plot2, ImageSize  250

Out[466]=

To compute the given double integral, we describe D as a horizontally simple domain, where 0 § y § 2 and 0 § x § y and apply

Fubini's Theorem to evaluate the corresponding iterated integral 0

20

y
siny2 „ x „ y (again, remember to use the correct order of

integration):

In[467]:= IntegrateSiny^2, y, 0, 2, x, 0, y
Out[467]= Sin22
In[468]:= N
Out[468]= 0.826822

NOTE: It is also possible to view D as a vertically simple domain, where 0 § x § 2 and x § y § 2.  The corresponding iterated
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integral 0
2x

2
siny2 „ y „ x gives the same answer, as it should by Fubini's Theorem:

In[469]:= IntegrateSiny^2, x, 0, 2, y, x, 2
Out[469]= Sin22

Observe that it is actually impossible to evaluate this iterated integral by hand since there is no elementary formula for the anti-
derivative of  siny2  with respect to  y.   Thus,  if  necessary,  Mathematica  automatically switches the order  of integration by

converting from one type to the other.

ü Exercises 

In Exercises 1 through 4, evaluate the given iterated integrals and plot the solid corresponding to each one.

1. 0

10

x24 - x2 + y2 „ y „ x 2. 0

40

2-y2

x2 y „ x „ y

3. 0
p0

sin q
r2 cosq „ r „q 4. 0

10
x y

1+x y
„ y „ x

In Exercises 5 through 8, evaluate the given double integrals and plot the solid corresponding to each one.

5.  D
x + y „A,  D = x, y : 0 § x § 3, 0 § y § x 

6.  D
x + y „A,  D = x, y : 0 § x § 1 - y2, 0 § y § 1

7.  D
ex+y „A, where D = x, y : x2 + y2 § 4

8.  D

y

x+1
„A, where D is the following shaded diamond region:

In Exercises 9 through 12, calculate the volume of the given solid S:
9. S is bounded under the paraboloid z = 16 - x2 - y2  and above the region bounded between the line y = x and the parabola
y = 6 - x2.

10. S is bounded under the right circular cone z = x2 + y2  and above the disk x2 + y2 § 1.

11. S is bounbed between the plane z = 5 + 2 x + 2 y and the paraboloid z = 12 - x2 - y2.  HINT: Equate the two surfaces to
obtain the equation of the domain.

12. S is bounded between the cylinders x2 + y2 = 1 and y2 + z2 = 1.

ü 15.3  Triple Integrals

Students should read Section 15.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Once the notion of a double integral is well established, it is straightforward to generalize it to triple (and even higher-order)
integrals for functions of three variables defined over a solid region in space.  Here is the definition of a triple integral in terms of
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triple Riemann sums for a function f x, y, z defined on a box region B = x, y, z : a § x § b, c § y § d, p § z § q (refer to your
calculus text for details):

  
B

f x, y „V = lim
PØ¶

i=1

m


j=1

n


k=1

p

f xijk , yijkDVijk

where the notation is analogous to that used for double integrals in Section 15.1 of this text.  Of course, Fubini's Theorem also
generalizes to triple integrals: 

Fubini's Theorem: (Box Domains) If B = x, y, z : a § x § b, c § y § d, p § z § q, then

  
B

f x, y „V = 
a

b


c

d


p

q

f x, y „ z „ y „ x

The corresponding Mathematica commands are:

Integrate[f[x,y,z],{x,a,c},{y,c,d},{z,e,f}]  analytically  evaluates  the  triple  integral    B
f x, y „V  over  the  box

B = a, bä c, dä e, f .  
NIntegrate[f[x,y],{x,a,c},{y,c,d},{z,e,f}]  numerically  evaluates  the  triple  integral    B

f x, y „V  over  the  rectangle

B = a, bä c, dä e, f .  
NOTE: For box domains, the order of integration does not matter so that it is possible to write five other versions of triple iterated
integrals besides the one given in Fubini's Theorem.

Example 15.6.  Calculate the triple integral    B
x y z „V  over the box B = 0, 1ä 2, 3ä 4, 5.

Solution: We use the Integrate command to calculate the given triple integral.

In[470]:= Integratex y z, x, 0, 1, y, 2, 3, z, 4, 5

Out[470]=
45

8

Volume as Triple Integral: Recall that if a solid region W is bounded between two surfaces yx, y and fx, y, where both are
defined on the same domain D with yx, y § fx, y, then its volume V can be expressed by the triple integral

V =   
W

1 „V =  
D

yx,y

fx,y
1 „ z „A

Example 15.7.  Calculate the volume of the solid bounded between the surfaces z = 4 x2 + 4 y2  and z = 16 - 4 x2 - 4 y2  on the
rectangular domain -1, 1ä -1, 1.
Solution: Here is a plot of the solid:
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In[471]:= Plot3D4 x^2  4 y^2, 16  4 x^2  4 y^2, x, 1, 1, y, 1, 1,
Filling  1  8, 2  8, ImageSize  250, ImagePadding  15, 15, 15, 15

Out[471]=

The volume of the solid is given by the triple iterated integral -1
1 -1

1 4 x2+4 y2

16-4 x2-4 y2

1 „ z „ y „ x:

In[472]:= Integrate1, x, 0, 1, y, 1, 0, z, 4 x^2  4 y^2, 16  4 x^2  y^2

Out[472]=
35

3

ü Exercises 

In Exercises 1 through 4, evaluate the given iterated integrals:

1. 0

10

x0

y2x + y + z „ z „ y „ x 2. 0

30

sin y0

y +z
x y z „ x „ z „ y 

3. 0
p0

q0
r cos q

r z2 „ z „ r „q 4. 0
1 x

1 0
1-y

z log1 + x y „ z „ y „ x

In Exercises 5 through 8, evaluate the given triple integrals:

5.   W
x + y z „V , where W = x, y, z : 0 § x § 1, 0 § y § x , 0 § z § y2.

6.    W
sin y „V ,  where  W  lies under  the plane z = 1 + x + y  and above the triangular region bounded by  x = 0,  x = 2,  and

y = 3 x. 

7.   W
z „V , where W  is bounded by the paraboloid z = 4 - x2 - y2 and z = 0.

8.   W
f x, y, z „V , where f x, y, z = z2 and W  is bounded between the cone z = x2 + y2  and z = 9.

9. The triple integral 0

1x2
1-x20

2-x-2 y
„ z „ y „ x represents the volume of a solid S.  Evaluate this integral.  Then make a plot of S

and describe it.

10. Midpoint Rule for Triple Integrals:

a. Develop a subroutine called MTRIPLERSUM to compute the triple Riemann sum of the triple integral   B
f x, y, z „V

over the box domain B = x, y, z : a § x § b, c § y § d, p § z § q for uniform partitions and using the center midpoint of each

sub-box as base point.  HINT: Modify the subroutine MDOUBLERSUM in Section 15.1 of this text.  

b. Use your subroutine MTRIPLESUM in part a) to compute the triple Riemann sum of   B
x2 + y2 + z232 „V  over the box

B = x, y, z : 0 § x § 1, 0 § y § 2, 0 § z § 3 by dividing B into 48 equal sub-boxes, that is, cubes having side length of 1/2.
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c. Repeat part b) by dividing B into cubes having side length of 1/4 and more generally into cubes having side length of 1 2n for
n sufficiently large in order to obtain an approximation accurate to 2 decimal places.

d. Verify your answer in part c) using Mathematica's NIntegrate command.

ü 15.4  Integration in Polar, Cylindrical, and Spherical Coordinates

Students should read Section 15.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

ü 15.4.1  Double Integrals in Polar Coordinates

The following Change of Variables Formula converts a double integral in rectangular coordinates to one in polar coordinates:

Change of Variables Formula (Polar Coordinates):

I. Polar Rectangles: If R = r, q : q1 § q § q2, r1 § r § r2, then

 
R

f x, y „A = 
q1

q2


r1

r2

f r cos q, r sin q r „ r „q

II. Polar Regions: If D = r, q : q1 § q § q2, aq § r § bq, then

 
D

f x, y „A = 
q1

q2


aq

bq
f r cos q, r sin q r „ r „q

Example 15.8.  Calculate the volume of the solid region bounded by the paraboloid f x = 4 - x2 - y2  and the xy-plane using
polar coordinates.

Solution: We first plot the paraboloid:

In[473]:= fx_, y_  4  x^2  y^2

Plot3Dfx, y, x, 2, 2, y, 2, 2, PlotRange  0, 4, ImageSize  250
Out[473]= 4  x2  y2

Out[474]=

The circular domain D  can be easily described in polar coordinates by the polar rectangle R = r, q : 0 § r § 2, 0 § q § 2 p.
Thus, the volume of the solid is given by the corresponding double integral 0

2 p0

2
f r cos q, r sin q r „ r „q in polar coordinates:
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In[475]:= Clearr, ;
Integrater  fr  Cos, r  Sin, r, 0, 2, , 0, 2 Pi

Out[476]= 8 

Observe that here f x, y simplifies nicely in polar coordinates:

In[477]:= fr  Cos, r  Sin
Simplify

Out[477]= 4  r2 Cos2  r2 Sin2
Out[478]= 4  r2

NOTE: Evaluating the same double integral in rectangular coordinates by hand would be quite tedious.  This is not a problem
with Mathematica, however:

In[479]:= Integratefx, y, x, 2, 2, y, Sqrt4  x^2, Sqrt4  x^2
Out[479]= 8 

ü 15.4.2  Triple Integrals in Cylindrical Coordinates

The following Change of Variables Formula converts a triple integral in rectangular coordinates to one in cylindrical coordinates:

Change of Variables Formula (Cylindrical Coordinates): If a solid region W is described by q1 § q § q2, aq § r § bq, and
z1r, q § z § z2r, q, then 

  
W

f x, y, z „V = 
q1

q2


aq

bq


z1r,q

z2r,q
f r cos q, r sin q, z r „ z „ r „q

Example 15.9.  Use cylindrical coordinates to calculate the triple integral   W
z „V , where W is the solid region bounded above

by the plane z = 8 - x - y, below by the paraboloid z = 4 - x2 - y2, and inside the cylinder x2 + y2 = 4.

Solution: Since W lies inside the cylinder x2 + y2 = 4, this implies that it has a circular base on the xy-plane given by the same
equation, which can be described in polar coordinates by 0 § q § 2 p and 0 § r § 2.  Here is a plot of all three surfaces (plane,
paraboloid, and cylinder):
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In[480]:= plotplane  Plot3D8  x  y, x, 2, 2, y, 2, 2;
plotparaboloid  Plot3D4  x^2  y^2, x, 2, 2, y, 2, 2;
plotcylinder  ParametricPlot3D2  Cos, 2  Sin, z, , 0, 2 , z, 0, 12;
Showplotplane, plotparaboloid, plotcylinder, PlotRange  All, ImageSize  250

Out[483]=

Since W is bounded in z by 4 - x2 - y2 § z § 8 - x - y, or in cylindrical coordinates,  4 - r cos q - r sin q § z § 4 - r2, it follows
that the given triple integral transforms to

0
2 p0

24-r2

4-r cos q-r sin q
z r „ z „ r „q

Evaluating this integral in Mathematica yields the answer

In[484]:= Integratez  r, , 0, 2 , r, 0, 2,
z, 4  r  Cos  r  Sin, 8  r  Cos  r  Sin

Out[484]= 96 

ü 15.4.3  Triple Integrals in Spherical Coordinates

The following Change of Variables Formula converts a triple integral in rectangular coordinates to one in spherical coordinates:

Change of  Variables  Formula (Spherical  Coordinates):  If  a  solid region W  is  described by  q1 § q § q2,  f1 § f § f2,  and
r1q, f § r § r2q, f, then 

  
W

f x, y, z „V = 
q1

q2


f1

f2


r1q,f

r2q,f
f r cos q sin f, r sin q sin f, r cos f r2 sinf „ r „f „q

Example 15.10.  Use spherical coordinates to calculate the volume of the solid W lying inside the sphere x2 + y2 + z2 = z and

above the cone z = x2 + y2 .

Solution: In spherical coordinates, the equation of the sphere is given by

r 2 = r cos f

or equivalently, r = cos f.  Similarly, the equation of the cone transforms to

r cos f = r cos q sin f2 + r sin q sin f2 = r sin f
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It follows that cos f = sin f, or f = p 4.  Therefore, the cone makes an angle of 45 degrees with respect to the z-axis, as shown in
the following plot along with the top half of the sphere:

In[485]:= Clear
plotcone  ParametricPlot3D Cos SinPi  4,  Sin SinPi  4,  CosPi  4,

, 0, 2 Pi, , 0, Sqrt2  2;
plotsphere  ParametricPlot3DCos Cos Sin,

Cos Sin Sin, Cos Cos, , 0, 2 Pi, , 0, Pi  4;
Showplotcone, plotsphere, PlotRange  All, ViewPoint  1, 1, 1  4,
ImageSize  250

Out[488]=

It is now clear that the solid W is described by 0 § q § 2 p, 0 § f § p 4, and 0 § r § cos f.  Thus, its volume is given by the triple
integral


0

2 p


0

p4


0

cos f

r2 sin f „ r „f „q

which in Mathematica evaluates to

In[489]:= Integrate^2  Sin, , 0, 2 Pi, , 0, Pi  4, , 0, Cos

Out[489]=


8

ü Exercises 

In Exercises 1 through 4, evaluate the given double integral by converting to polar coordinates:

1. -1
1 

- 1-x2

1-x2 1 - x2 - y2 „ y „ x 2. 0
20

4-x2

e-x2+y2 „ y „ x

3.  D
x log y „A, where D is the annulus (donut-shaped region) with inner radius 1 and outer radius 3.

4.  D
arctan

y

x
„A, where D is the region inside the cardioid r = 1 + cos t.

5. Use polar coordinates to calculate the volume of the solid that lies below the paraboloid z = x2 + y2  and inside the cylinder
x2 + y2 = 2 y.
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6. Evaluate the triple integral 0

20

4-x2 0

4-x2-y2 x2 + y2 „ z „ y „ x by converting to cylindrical coordinates.

7. Use cylindrical coordinates to calculate the triple integral   W
x2 + y 2 „V , where W is the solid bounded between the two

paraboloids z = x2 + y2 and z = 8 - x2 - y2.

8. Evaluate the triple integral -2

2 
- 4-x2

4-x2 
x2+y2

4-x2-y2 x2 + y2 + z2 „ z „ y „ x by converting to spherical coordinates.

9. The solid defined by the spherical equation r = sin f is called the torus.
a. Plot the torus.
b. Calculate the volume of the torus.

10. Ice-Cream Cone: A solid W in the shape of an ice-cream cone is bounded below by the cylinder z = x2 + y2  and above by

the sphere x2 + y2 + z2 = 8.  Plot W and determine its volume.

ü 15.5  Applications of Multiple Integrals

Students should read Section 15.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Mass as Double Integral: Consider a lamina (thin plate) D in  R2 with continous mass density rx, y.  Then the mass of D is
given by the double integral

M =  
D
rx, y „A

where the domain of integration is given by the region that describes the lamina D.

Example 15.11.  Calculate the mass of the lamina D bounded between the parabola y = x2 and y = 4 with density rx, y = y.

Solution: Here is a plot of the lamina D (shaded):

In[490]:= Plotx^2, 4, x, 2, 2, ImageSize  250, Filling  2  1

Out[490]=

We can view D as a Type I region described by -2 § x § 2 and x2 § y § 4.  Thus. the mass of the lamina is given by the double
integral: 

In[491]:= Integratey, x, 2, 2, y, x^2, 4

Out[491]=
128

5
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NOTE: Mass of a lamina can also be interpreted as the volune of the solid bounded by its density function over D as shown in the
following plot:

In[492]:= Plot3Dy, x, 2, 2, y, 0, 4, RegionFunction  1^2  2  4 &,
Filling  Bottom, Mesh  None, ImageSize  250

Out[492]=

Example  15.12.   Suppose  a  circular  metal  plate  D,  bounded  by   x2 + y2 = 9,  has  electrical  charge  density

rx, y = 9 - x2 - y2 .  Calculate the total charge of the plate.

Solution: Here is a plot of the metal plate D (shaded):

In[493]:= Integratey, x, 2, 2, y, x^2, 4

Out[493]=
128

5

In[494]:= PlotSqrt9  x^2, Sqrt9  x^2, x, 3, 3,
ImageSize  250, Filling  2  1, AspectRatio  1

Out[494]=

We shall calculate the total charge of the plate using polar coordinates, which will simplify the corresponding double integral.

Since rr, q = 9 - r2 and D is a simple polar region described by r = 3, the total charge is
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In[495]:= IntegrateSqrt9  r^2  r, r, 0, 3, theta, 0, 2 Pi
Out[495]= 18 

Mass as Triple Integral: We can extend the notion of mass to a solid region W in R3.  Suppose W is bounded between two
surfaces  z = yx, y  and z = fx, y,  where  both  are  defined  on the  same domain D  with  yx, y § fx, y,  and  has  density
rx, y, z.  Then the mass of W can be expressed by the triple integral

M =   
W
rx, y, z „V =  

D

yx,y

fx,y
rx, y, z „ z „A

Example 15.13.   Calculate the mass of the solid region W  bounded between the planes z = 1 - x - y  and z = 1 + x + y  and
situated  over  the  triangular  domain  D  bounded  by  x = 0,  y = 0,  and  y = 1 - x.   Assume  the  density  of  W  is  given  by
rx, y, z = 1 + x2 + y2.

Solution: Here is a plot of the solid region W:

In[496]:= Plot3D1  x  y, 1  x  y, x, 0, 1, y, 0, 1  x, ViewPoint  1, 1, 1,
Filling  1  1, 2  1, Ticks  Automatic, Automatic, 1, 2,
ImageSize  250, ImagePadding  15, 15, 15, 15

Out[496]=

The mass of the solid is given by the triple iterated integral 0
10

1-x1-x-y
1+x+y1 + x2 + y2 „ z „ y „ x:

In[497]:= Integrate1  x^2  y^2, x, 0, 1, y, 0, 1  x, z, 1  x  y, 1  x  y

Out[497]=
14

15

Center of Mass: Given a lamina D in R2, its center of mass xCM, yCM (or balance point) is defined as the ratio of its moments
(with respect to the coordinate axes) to its mass:

xCM =
My

M
, yCM =

Mx

M

where the moments My and Mx are defined by

My =
1

A
 

D
x rx, y „A, Mx =

1

A
 

D
y rx, y „A
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NOTE: In case the lamina has uniform density, that is, rx, y = 1, then the center of mass is the same as the centroid whose
coordinates represent averages of the coordinates over the lamina.

Center of mass (and centroid) can be naturally extended to solid objects in R3.  Refer to your textbook for further details.

Example 15.14.   Calculate the mass of the solid region W  bounded between the planes z = 1 - x - y  and z = 1 + x + y  and
situated  over  the  triangular  domain  D  bounded  by  x = 0,  y = 0,  and  y = 1 - x.   Assume  the  density  of  W  is  given  by
rx, y, z = 1 + x2 + y2.

ü Exercises 

In Exercises 1 and 2, find the mass of the given lamina D.
1. D is bounded between y = sin p x and y = 0 along the interval 0, 1 and has density rx, y = x1 - x .
2. D is bounded by the lines y = x + 1, y = -2 x - 2, and x = 1 and has density rx, y = 1 + y2 .

3. Find the center of mass of the lamina D in Exercises 1 and 2.

4. Find the centroid of the lamina in Exercises 1 and 2.  Compare the centroid of each lamina with its center of mass.

In Exercises 5 and 6, find the mass of the given solidi object W.
5.  W  is  the  interior  of  the  tetrahedron  enclosed  by  the  planes  x = 0,  y = 0,  z = 0,  and  z = 1 - x - y  and  has  density
rx, y, z = 1 - z.

6.  W  is the ice-cream cone bounded below by the cylinder z = x2 + y2  and above by the sphere x2 + y2 + z2 = 8 and has

density rx, y, z = z2.

7. Find the center of mass of the tetrahedron in Exercises 5 and 6.  Refer to your textbook for appropriate formulas.

8. Find the centroid of the tetrahedron in Exercises 5 and 6.  Compare this with its center of mass.  Refer to your textbook for
appropriate formulas.

ü 15.6  Change of Variables

Students should read Section 15.6 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

A change of variables is often useful for simplifying integrals of a single variable (commonly referred to as u-substitution):


a

b

f x „ x = 
c

d

f gu g ' u „u

where x = gu, a = gc, and b = gd.  This substitution formula allows one to transformation an integral in the variable x to one
in a new variable u.  Observe that the interval c, d is mapped to interval a, b under the function g.

This technique can be extended to double integrals of the form  D
f x, y „ x „ y, where a change of variables is described by a

transformation Gu, v = x, y, which maps a region D0 in the uv-coordinate plane to the region D in the xy-coordinate plane.

The following Change of Variables Formula converts a double integral from the xy-coordinate system to a new coordinate system
defined by u and v:

Change of Variables Formula (Coordinate Transformation): If Gu, v = xu, v, yu, v is a C1-mapping from D0 to D, then

 
D

f x, y „ x „ y =  
D0

f xu, v, yu, v ∑ x, y
∑ u, v „u „v
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where 
∑x,y
∑u,v , referred to as the Jacobian of G and also denoted by Jac(G), is given by

JacG = ∑ x, y
∑ u, v =

∑x

∑u

∑x

∑v
∑y

∑u

∑y

∑v

=
∑ x

∑u

∑ y

∑v
-
∑ x

∑v

∑ y

∑u

The Jacobian relates the area of any infinitesimal region inside D0 with the corresponding region inside D =GD0.  In fact, if G
is a linear map, then Jac(G) is constant and is equal in magnitude to the ratio of the areas of D to that of D0:

Jacobian of a Linear Map: If Gu, v = A u + C v, B u + D v is a linear mapping from D0  to D, then Jac(G) is constant with
value

JacG = A C

B D
= A D - B C

Moreover,

AreaD = JacG AreaD0
Refer to your textbook for a detailed discussion of transformations of plane regions.

Example 15.12.  Make an appropriate changes of variables to calculate the double integral  D
x y „A, where D is the region

bounded by the curves x y = 1, x y = 2, x y2 = 1, and x y2 = 2.

Solution: Here is a plot of the shaded region D bounded by the four given curves: 

In[498]:= plot1  ContourPlotx  y  1, x  y  2, x  y^2  1, x  y^2  2,
x, 0, 5, y, 0, 5, AspectRatio  Automatic, ImageSize  250;

plot2  ContourPlot1, x, 0, 5, y, 0, 5, AspectRatio  Automatic,
RegionFunction  Functionx, y, 1  x y  2 && 1  x y^2  2,
ImageSize  250, PlotPoints  100;

Show
plot1,
plot2

Out[500]=

0 1 2 3 4 5

0

1

2

3

4

5

Observe that D is rather complicated.  Since D can be described by the inequalities 1 < x y < 2 and 1 < x y2 < 2, we make the
natural change of variables u = x y and v = x y2, which transforms D to a simple square region D0  in the uv-plane bounded by
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u = 1, u = 2, v = 1, and v = 2:

In[501]:= ContourPlot1, u, 0, 3, v, 0, 3, ImageSize  250,
RegionFunction  Functionu, v, 1  u  2 && 1  v  2

Out[501]=

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

To find the formula for our transformation Gu, v = xu, v, yu, v that maps D0 to D, we solve for x and y in terms of u and v:

In[502]:= Clearsol, x, y, u, v
sol  Solveu  x  y, v  x  y^2, x, y

Out[503]= x 
u2

v
, y 

v

u


It follows that Gu, v = u2 v, v u and the corresponding Jacobian is

In[504]:= x  sol1, 1, 2
y  sol1, 2, 2
Jac  Dx, u  Dy, v  Dx, v  Dy, u

Out[504]=
u2

v

Out[505]=
v

u

Out[506]=
1

v

Thus, the given integral transforms to  D
x y „A =  D0

u

v
„A = 1

21

2 u

v
„v „u with value

In[507]:= Integrateu  v, u, 1, 2, v, 1, 2

Out[507]=
3 Log2

2

ü Exercises 

1. Consider the transformation Gu, v = 2 u + v, u - 3 v.
a. Set D =GD0 where D0 = 0 § u § 1, 0 § v § 2.  Make a plot of D and describe its shape.
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b. Compute JacG.
c. Compare the area of D with that of D0.  How does this relate to JacG?

2. Compute the area of the ellipse x2

4
+

y2

9
= 1 by viewing it as a transformation of the unit circle u2 + v2 = 1 under a linear map

Gu, v = xu, v, yu, v and using the area relationship described by Jac(G).

3. Evaluate the integral  D
x y „A, where D is the region in the first quadrant bounded by the equations y = x, y = 4 x, x y = 1,

and x y = 4.  HINT: Consider the change of variables u = x y and v = y.

4.  Evaluate  the  integral   D
x + y  x - y „A,  where  D  is  the  parallelogram  bounded  by  the  lines  x - y = 1,  x - y = 3,

2 x + y = 0, and 2 x + y = 2.  HINT: Consider the change of variables u = x - y and v = 2 x + y.

5. Evaluate the integral  D

y

x
„A, where D is the region bounded by the circles x2 + y2 = 1, x2 + y2 = 4 and lines y = x, y = 3 x.

HINT: Consider the change of variables u = x2 + y2 and v = y  x.
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Chapter 16 Line and Surface Integrals
Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible
to view 3-D plots generated by Mathematica from different perspectives.  First, place your screen cursor over the plot.  Then drag
the mouse while pressing down on the left mouse button to rotate the plot.

ü 16.1  Vector Fields

Students should read Section 16.1 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Let F1, F2, and F3 be functions of x, y, and z. The vector-valued function

Fx, y, z = F1x, y, z, F2x, y, z, F3x, y, z
is called a vector field. We have already encountered a vector field in the form of the gradient of a function. Other useful exam-
ples of vector fields are the gravitational force, the velocity of fluid, magnetic fields, and electric fields. 

We use the Mathematica  commands VectorFieldPlot and VectorFieldPlot3D  to plot the graphs of vector fields.  However,

before using these commands, it is advisable to load the VectorFieldPlots package. This is done by evaluating

In[508]:= Needs"VectorFieldPlots`"
Example 16.1.  Draw the following vector fields.
a) Fx, y = sin y, cos x b)   F x, y, z = y, x + z, 2 x - y    
Solution:
a) 

In[509]:= ClearF, x, y, z
Fx_, y_  Siny, Cosx

Out[510]= Siny, Cosx
In[511]:= VectorFieldPlotFx, y, x, 5, 5, y, 4, 4, ImageSize  250 

Out[511]=

Here is another display of the preceding vector field with some options specified. 
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In[512]:= VectorFieldPlotFx, y, x, 5, 5, y, 4, 4, Axes  True,

AxesOrigin  0, 0, Frame  False, ColorFunction  Hue, ImageSize  250

Out[512]=
-4 -2 2 4

-4

-2

2

4

To see other available options of VectorFieldPlot, evaluate the command Options[VectorFieldPlot].

b) We shall use two of the options of VectorFieldPlot3D, which does not have as many options as VectorFieldPlot. (Again, you

can find these by evaluating Options[VectorFieldPlot3D].)

In[513]:= ClearF, x, y, z
Fx_, y_, z_  y z2, x z2, 2 x y z
VectorFieldPlot3DFx, y, z, x, 3, 3, y, 3, 3, z, 3, 3,
ColorFunction  Hue, VectorHeads  True, ImageSize  250

Out[514]= y z2, x z2, 2 x y z

Out[515]=
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Example 16.2.  Draw the unit radial vector fields:

a) Fx, y =  x

x2+y2
,

y

x2+y2
 b)   F x, y, z =  x

x2+y2+z2
,

y

x2+y2+z2
, z

x2+y2+z2
    

Solution: For convenience, we define both vector fields to be 0 at the origin. We shall use the If command to do so. 

a)

In[516]:= ClearF, x, y
Fx_, y_  Ifx2  y2  0,

x, y
x2  y2

, 0, 0

VectorFieldPlotFx, y, x, 3, 3, y, 3, 3, ImageSize  250

Out[517]= Ifx2  y2  0,
x, y
x2  y2

, 0, 0

Out[518]=
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b) 

In[519]:= ClearF, x, y, z
Fx_, y_, z_  Ifx2  y2  z2  0,

x, y, z
x2  y2  z2

, 0, 0, 0

VectorFieldPlot3DFx, y, z, x, 3, 3, y, 3, 3, z, 3, 3,
ColorFunction  Hue, VectorHeads  True, ImageSize  250

Out[520]= Ifx2  y2  z2  0,
x, y, z
x2  y2  z2

, 0, 0, 0

Out[521]=

ü Exercises 

In Exercise 1 through 4, draw the given vector fields.

1.   Fx, y =  y2 - 2 xy, xy + 6 x2 2.   F x, y, z = sin x, cos y , xz   
3.   Fx, y =  - y

x2+y2
, x

x2+y2
 4,   F x, y, z =  x + cos xz, y sin xy, xz cos yz     

In Exerices 5 and 6, calculate and plot the gradient vector field for each of the following functions.
5.   f x, y = lnx + y2  6.  f x, y, z = sin x cos z  y   

ü 16.2  Line Integrals

Students should read Section 16.2 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Suppose C is a smooth curve in space whose parametric equations are given by 

x = xt, y = yt, z = zt
where  a § t § b.   Let  C1, C2, C3, .... , CN  be  a  partition of  the  curve  C  with  arc  length  Ds1, Ds2, Ds3, ... , DsN  and let
P1, P2, P3, ... , PN  be points on the subarcs.  
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If f x, y, z is a function that is continuous on the curve C, then the line integral of f  is defined by 

C
f x, y, z „ s = limDsiØ0 i=1

N f PiDsi

NOTE: If c t = xt, yt, zt is the vector equation of the curve C, then it can be shown (refer to your calculus textbook) that 

C
f x, y, z „ s = a

b
f ct c ' t „ t

In addition, if Fx, y, z = F1, F2, F3 is a vector field that is continuous on C, then the line integral of F over C is given by 

C
Fx, y, z ◊„ s = C

F ◊ T „ s = a

b
F ct ◊c ' t „ t

where T is the unit vector T = c' t
c' t  and F ◊ T is the dot product of F and T.

Example 16.3.  Find C
f x, y, z „ s, where f x, y, z = x y + z2 and C is given by  x = t, y = t2, and z = t3, for 0 § t § 1.

Solution: 

In[522]:= Clearx, y, z, t, f, c
fx_, y_, z_  x 2 y  x z

xt_  t

yt_  t2

zt_  t3

ct_  xt, yt, zt
Out[523]= x2 y  x z

Out[524]= t

Out[525]= t2

Out[526]= t3

Out[527]= t, t2, t3
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In[528]:= 
0

1

fxt, yt, zt Normc't t

Out[528]= 
1

76545 7
2
2   5 

2 114 84 987 134 2   5  532  14 EllipticEArcSin 3  3 

2 2   5 
,

2   5

2   5
  266 70 EllipticEArcSin 3  3 

2 2   5 
, 2   5

2   5
 

415  14 EllipticFArcSin 3  3 

2 2   5 
, 2   5

2   5
 

266 70 EllipticFArcSin 3  3 

2 2   5 
, 2   5

2   5


Here is a numerical approximation of the preceding line integral.

In[529]:= NIntegratefxt, yt, zt Normc't, t, 0, 1
Out[529]= 1.16521

Example 16.4.  Find C
Fx, y, z ◊„ s, where Fx, y, z =  x z, z y2, y x2 and the curve C  is given by  x = 2 t, y = sin t, and

z = cos t, 0 § t § 2 p.

Solution: 
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In[530]:= Clearx, y, z, t, f, c
Fx_, y_, z_  x z, z y2, y x2
xt_  2 t

yt_  Sint
zt_  Cost
ct_  xt, yt, zt

Out[531]= x z, y2 z, x2 y
Out[532]= 2 t

Out[533]= Sint
Out[534]= Cost
Out[535]= 2 t, Sint, Cost

In[536]:= 
0

2 Pi

Fxt, yt, zt.c't t

Out[536]=
9 

4

16 3

3

In[537]:= N
Out[537]= 158.298

ü Exercises 

1.  Find C
f x, y, z „ s, where:

a.  f x, y, z = x y2 - 4 zy and C is given by  x = 2 t, y = t23, and z = 1 - 3 t2, for 0 § t § 1.

b.  f x, y, z = yz

x
 and C is given by  x = ln t, y = t2, and z = 3 t, for 3 § t § 5.

2.   Find C
Fx, y ◊„ s, where:

a.   Fx, y =  e3 x-2 y, e2 x+3 y and C is given by  x = 2 t, y = sin t,  0 § t § p

b.  Fx, y = x2, yx + y2 and C is the unit circle center at the origin.

3.  Find C
Fx, y, z ◊„ s, where:

a.   Fx, y, z = xyz, -xz, xy  and C is given by  x = t, y = 2 t2, z = 3 t  0 § t § 1

b.   Fx, y, z = xy3, z + x2, z3 and C is the line segment joining -1, 2, -1 and 1, 3, 4.

ü 16.3  Conservative Vector Fields

Students should read Section 16.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Let Fx, y, z = F1, F2, F3 be a vector field. Let C1 and C2 be any two different curves with the same initial point P and end

point Q.  We say that the vector field F is path independent if 

C1
Fx, y, z ◊„ s = C2

Fx, y, z ◊„ s
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A vector field that is path independent is called conservative.  

NOTE 1: A vector field F is conservative if  


C

Fx, y, z ◊„ s = 0

for every closed curve C.

NOTE 2: If F = !u is the gradient of a function u = ux, y, z, then we say that u is the potential of F.  Moreover, if the end
points of C are P and Q, we have 


C

Fx, y, z ◊„ s = uP - uQ

In particular, if the curve is closed, that is, if P =Q, then 


C

Fx, y, z ◊„ s = 0

Therefore, gradient is conservative. The converse of this statement is true if its domain is an open connected domain.  

NOTE 3: Let F = F1, F2.  If F =!u =  ∑ u

∑ x
, ∑ u

∑ y
, then F1 =

∑ u

∑ x
 and F2 =

∑ u

∑ y
. Taking the partial derivative of F1with respect to y

and that of F2 with respect to x and using the fact that ∑2 u

∑ x ∑ y
= ∑2 u

∑ y ∑ x
, we see that F1 and F2 must satisfy 

∑ F1

∑ y
=

∑ F2

∑ x

This equation is used to check if a vector field is conservative.  In that case, we solve F1 =
∑ u

∑ x
 for u by integrating with respect to

x and then use the equation F2 =
∑ u

∑ y
 to find the constant of integration. Here is an example.

Example 16.5.  Show that the vector function F = 3 x2 - 2 xy + 2, 6 y2 - x2 + 3  is conservative and find its potential.

Solution: Here, F1 = x y2 and F2 = x2 y. We now compare 
∑ F1

∑ y
 and 

∑ F2

∑ x
 to verify if F is conservative.

In[538]:= Clearx, y, F1, F2
F1x_, y_  3 x2  2 x y  2

F2x_, y_  6 y2  x2  3

Out[539]= 2  3 x2  2 x y

Out[540]= 3  x2  6 y2

In[541]:= DF1x, y, y
DF2x, y, x

Out[541]= 2 x

Out[542]= 2 x

Thus, the vector field is conservative. To find its potential u, we integrate F1 =
∑ u

∑ x
 with respect to x to get 
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In[543]:= Clearh, u
u  IntegrateF1x, y, x  hy

Out[544]= 2 x  x3  x2 y  hy
Note that the addition of hy is necessary because the constant of integration may depend on y.  We now solve the equation

F2 =
∑ u

∑ y
 for h ' y.

In[545]:= Clearsol
sol  SolveDu, y  F2x, y, h'y

Out[546]= hy  3 1  2 y2
This means that h ' y = 3 1 + 2 y2.
In[547]:= Integratesol1, 1, 2, y
Out[547]= 3 y  2 y3

Hence, hy = 3 y + 2 y2  and so ux, y = 2 x + x3 - x2 y + 3 y + 2 y3 is the potential of F.

NOTE 4: Let F = F1, F2, F3.  If F =!u =  ∑ u

∑ x
,
∑ u

∑ y
,
∑ u

∑ z
, then F1 =

∑ u

∑ x
, F2 =

∑ u

∑ y
 and F3 =

∑ u

∑ z
. Taking the partial derivative of

F1with respect to y and that of F2 with respect to x and using the fact that 
∑2 u

∑x ∑y
= ∑2 u

∑y ∑x
, we see that F1 and F2 must satisfy 

∑ F1

∑ y
=

∑ F2

∑ x

Taking the partial derivative of F1with respect to z and that of F3 with respect to x and using the fact that ∑
2 u

∑x ∑z
= ∑2 u

∑z ∑x
, we see that

F1 and F3 must satisfy 

∑ F1

∑ z
=

∑ F3

∑ x

The preceding two equations can be used to check if a vector field is conservative. If this the case, we solve F1 =
∑ u

∑ x
 for u by

integrating with respect to x and then use F2 =
∑ u

∑ y
 to find the constant of integration. We show this by the following example.

Example 16.6.  Show that the vector function F = yz + yz cos xy , xz + xz cos xy , xy + sin xy  is conservative and find its
potential. 

Solution: Here, F1 = y z + y z cos x y ,  F2 = x z + x z cos x y,  and F3 = x y + sinx y .  

In[548]:= Clearx, y, F1, F2, F3
F1x_, y_, z_  y z  y z Cosx y
F2x_, y_, z_  x z  x z Cosx y
F3x_, y_, z_  x y  Sinx y

Out[549]= y z  y z Cosx y
Out[550]= x z  x z Cosx y
Out[551]= x y  Sinx y

 We now compare 
∑ F1

∑ y
 and 

∑ F2

∑ x
:

118   Mathematica for Rogawski's Calculus Volume III Body 2nd Edition.nb



In[552]:= DF1x, y, z, y
DF2x, y, z, x

Out[552]= z  z Cosx y  x y z Sinx y
Out[553]= z  z Cosx y  x y z Sinx y

Next, we compare 
∑ F1

∑ z
 and 

∑ F2

∑ x
:

In[554]:= DF1x, y, z, z
DF3x, y, z, x

Out[554]= y  y Cosx y
Out[555]= y  y Cosx y

Thus, the vector field is conservative. To find its potential u, we integrate F1 =
∑ u

∑ x
 with repsetct to x to get 

In[556]:= Clearu, h
u  IntegrateF1x, y, z, x  hy, z

Out[557]= x y z  hy, z  z Sinx y
Note that the addition of hy, z is necessary because the constant of intgeration can depend on y and z.  We now solve the

equation F2 =
∑ u

∑ y
 for ∑ h

∑ y
.

In[558]:= Clearsol
sol  SolveDu, y  F2x, y, z, y hy, z

Out[559]= h1,0y, z  0

This means that ∑ h

∑ y
= 0 and hence h is a function of z only.   Next, we solve the equation F3 =

∑ u

∑ z
 for ∑ h

∑ z
.

In[560]:= Clearsol2
sol2  SolveDu, z  F3x, y, z, z hy, z

Out[561]= h0,1y, z  0

Hence, ∑ h

∑ z
= 0 and we can take h = 0. Therefore, u = x y z + z sin x y is the potential for the vector field F.

ü Exercises 

1. Show that the vector field F =  y3 - 3 x2 y, 3 xy2 - x3  is conservative and find its potential. 

2. Show that the vector field F = y z +
2 xy

z
, xz + x2

z
, xy -

x2 y

z2
  is conservative and find its potential. 

3. Determine whether the vector field F = x2, yx + ez, y ez  is conservative.  If it is, find its potential. 

ü 16.4  Parametrized Surfaces and Surface Integrals

Students should read Section 16.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.
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A parametrized surface is a surface whose points are given in the form

Gu, v = xu, v, yu, v, zu, v
where u and v (called parameters) are independent variables used to describe a domain D (called the parameter domain).

The command for plotting parametrized surfaces is ParametricPlot3D.  This command has been discussed in Section 14.1.2 of
this text.
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Example  16.7.   Plot  the  parametrized  surface  defined  by  Gu, v = cos u sin v, 4 sin u cos v, cos v  over  the  domain
D = u, v 0 § u § 2 p, 0 § v § 2 p.
Solution:

In[562]:= ParametricPlot3D Cosu Sinv, 4 Sinu Cosv, Cosv,
u, 0, 2 Pi, v, 0, 2 Pi, ImageSize  250

Out[562]=

Example  16.8.   Plot  the  parametrized  surface  defined  by  Gu, v = u cos v, u sin v, 1 - u2  over  the  domain

D = u, v 0 § u § 1, 0 § v § 2 p.
Solution:

In[563]:= ParametricPlot3Du Cosv , u Sinv , 1  u2, u, 0, 1,
v, 0, 2 Pi, ColorFunction  "BlueGreenYellow", ImageSize  250,
ImagePadding  15, 15, 15, 15

Out[563]=

NOTE: On a parametrized surface Gu, v = xu, v, yu, v, zu, v,  if  we fix one of the variables, we get a  curve on the
surface.  The plot following shows the curves corresponding to u = 3 4 (latitude) and v = 5 p 3 (longitude).
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In[564]:= Clearplot1, plot2, plot3
plot1  ParametricPlot3Du Cosv , u Sinv , 1  u2,

u, 0, 1, v, 0, 2 Pi, ColorFunction  "BlueGreenYellow";
plot2  ParametricPlot3D 3  4 Cosv , 3  4 Sinv , 7  16,

v, 0, 2 Pi, PlotStyle  Thickness0.01, Red;
plot3  ParametricPlot3D u Cos5 Pi  3 , u Sin5 Pi  3 , 1  u2,

u, 0, 1, PlotStyle  Thickness0.01, Blue;
Showplot1, plot2, plot3, PlotRange  All, ImageSize  250,
ImagePadding  15, 15, 15, 15

Out[568]=

Let P =Gu0, v0 be a point on the parametrized surface S.  For fixed v = v0, the tangent vector to the curve Gu, v0 at u0, v0  is
given by 

Tu =
∑G

∑u
u0, v0

while the tangent vector for  Gu0, v corresponding to a fixed u = u0 is given by 

Tv =
∑G

∑v
u0, v0

These two vectors are tangent to the surface S.  Thus, the normal vector n to the tangent plane at Gu0, v0 is given by 

n P = n u0, v0 = TuμTv

Example 16.9.  Consider the parametrized surface Gu, v =  u cos v, u sin v, 1 - v2.
a) Find Tu, Tv, and n.
b) Find the equation of the tangent plane at 1 2, 5 p 3.
c) Plot the tangent plane and surface.

Solution:  Let us define G as a function of u and v in Mathematica. 

In[569]:= ClearG, u, v
Gu_, v_  u Cosv, u Sinv, 1  u2

Out[570]= u Cosv, u Sinv, 1  u2
a) We use Tu for Tu and Tv for Tv. We evaluate these as functions of u and v.
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In[571]:= ClearTu, Tv, n
Tuu_, v_  DGu, v, u
Tvu_, v_  DGu, v, v
nu_, v_  CrossTuu, v, Tvu, v

Out[572]= Cosv, Sinv, 2 u
Out[573]= u Sinv, u Cosv, 0
Out[574]= 2 u2 Cosv, 2 u2 Sinv, u Cosv2  u Sinv2
b) The normal vector to the tangent plane at 1 2, 5 p 3 is 

In[575]:= Clearnormal
normal  n1  2, 5 Pi  3

Out[576]=  1
4
, 

3

4
,
1

2


The tangent plane passes through the point

In[577]:= Clearpoint
point  G1  2, 5 Pi  3

Out[578]=  1
4
, 

3

4
,
3

4


Thus, the equation of the tangent plane is given by 

In[579]:= Cleartplane
tplane  normal.x, y, z  point  0

Out[580]=
1

4

1

4
 x 

1

4
3

3

4
 y 

1

2

3

4
 z  0

which simplifies to 

In[581]:= Simplifytplane
Out[581]= 2 x  4 z  5  2 3 y

c) Here is the plot of the surface and the tangent plane. Observe that we have used ColorFunction and ColorFunctionScaling
options.
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In[582]:= Clearplot1, plot2
plot1  ParametricPlot3DGu, v,

u, 0, 1, v, 0, 2 Pi, ColorFunction  "BlueGreenYellow";
plot2  ContourPlot3D2 x  4 z  5  2 3 y, x, 3, 3, y, 3, 3,

z, 4, 4, ColorFunction  Functionx, y, z, HueModz, 1,
ColorFunctionScaling  False;

Showplot1, plot2, ImageSize  250, ImagePadding  15, 15, 15, 15

Out[585]=

NOTE: The area AS of a parametrized surface S: Gu, v = xu, v, yu, v, zu, v, where u, v œ D, is given by  

AS =  D
 nu, v  „u „v 

If f x, y, z is continuous at all points of S, then the surface area of f  over S is given by 

 S
f x, y, z „S =  D

f Gu, v  nu, v  „u „v

Example 16.10.  Show the following:
a) The area of the cylinder of height h  and radius r is 2 p rh.
b) The area of the sphere of radius r is 4 p r2.

Solution: 
a) A parametric equation of the cylinder of height h  and radius r can be given by  

 x = r cos v, y = r sin v, and z = u, where  0 § v § 2 p , 0 § u § h

Thus, the cylinder is given by Gu, v = r cos u, r sin u, v. 
In[586]:= Clear G, u, v, r

Gu_, v_  r Cosv, r Sinv, u
Out[587]= r Cosv, r Sinv, u
Here is a plot of the cylinder with r = 3 and h = 5:
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In[588]:= r  3; h  5;

ParametricPlot3DGu, v, u, 0, h, v, 0, 2 Pi

Out[589]=

To compute the surface area of the cylinder, we need to compute its normal vector. 

In[590]:= ClearTu, Tv, n, r, h
Tuu_, v_  DGu, v, u;
Tvu_, v_  DGu, v, v;
nu_, v_  CrossTuu, v, Tvu, v

Out[593]= r Cosv, r Sinv, 0
Here is a plot of the cylinder with its normal vector for  r = 3 and h = 5:
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In[594]:= r  3; h  5;

Clearplot1, plot2
plot1  ParametricPlot3DGu, v, u, 0, h, v, 0, 2 Pi;
plot2  VectorFieldPlot3Dnu, v, u, 0, h,

v, 2 Pi, 2 Pi, z, 3, 3, VectorHeads  True, PlotPoints  15;
Showplot1, plot2, ImageSize  250
Clearr, h

Out[598]=

The surface area is 

In[600]:= SArea  
0

h


0

2 Pi

Normnu, v v u
Out[600]= 2 h  Absr
Since r > 0, r = r and hence the preceding output is 2 p r h .

b) A parametric equation of the sphere of radius r is

 x = r cos u sin v, y = r sin u sin v, z = r cos v

where 0 § u § 2 p and 0 § v § p.  Thus, the sphere is given by Gu, v = r cos u sin v, r sin u sin v, r cos v. 
In[601]:= Clear G, u, v, r

Gu_, v_  r Cosu Sinv, r Sinu Sinv, r Cosv
Out[602]= r Cosu Sinv, r Sinu Sinv, r Cosv
Here is a plot of the sphere with r = 3. 
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In[603]:= r  3;

ParametricPlot3DGu, v, u, 0, 2 Pi, v, 0, Pi, ImageSize  250

Out[604]=

To compute the surface area of the sphere, we need to compute its normal vector. 

In[605]:= ClearTu, Tv, n, r
Tuu_, v_  DGu, v, u;
Tvu_, v_  DGu, v, v;
nu_, v_  CrossTuu, v, Tvu, v

Out[608]= r2 Cosu Sinv2, r2 Sinu Sinv2,
r2 Cosu2 Cosv Sinv  r2 Cosv Sinu2 Sinv

Here is a plot of the sphere with its normal vector for  r = 3.  
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In[609]:= r  3; h  5;

Clearplot1, plot2
plot1  ParametricPlot3DGu, v, u, 0, 2 Pi, v, 0, h;
plot2  VectorFieldPlot3Dnu, v, u, 2 Pi, 2 Pi,

v, 0, h, z, 3, 3, VectorHeads  True, PlotPoints  10;
Showplot1, plot2, ImageSize  250
Clearr, h

Out[613]=

The surface area is 

In[615]:= SArea  
0

Pi


0

2 Pi

Normnu, v u v
Out[615]= 4  r Conjugater
For a real number r, the conjugate of r is r and hence the preceding output is 4 p r2.

Example 16.11.  Consider the parametrized surface S defined by Gu, v =  u cos v, u sin v, v, where 0 § u § 1, 0 § v § 2 p.
a) Find the surface area of S.

b) Evaluate  S
xyz „S.

Solution:
a)

In[616]:= Clear G, u, v
Gu_, v_  u Cosv, u Sinv, v

Out[617]= u Cosv, u Sinv, v
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In[618]:= ClearTu, Tv, n
Tuu_, v_  DGu, v, u
Tvu_, v_  DGu, v, v
nu_, v_  CrossTuu, v, Tvu, v

Out[619]= Cosv, Sinv, 0
Out[620]= u Sinv, u Cosv, 1
Out[621]= Sinv, Cosv, u Cosv2  u Sinv2
  The surface area AS is given by 

In[622]:= SArea  
0

1


0

2 Pi

Normnu, v v u

Out[622]=   2  ArcSinh1
which is approximately equal to  

In[623]:= N
Out[623]= 7.2118

b) We define f :

In[624]:= Clearf
fx_, y_, z_  x y z

Out[625]= x y z

The surface integral of f  is

In[626]:= 
0

1


0

2 Pi

fGu, v1, Gu, v2, Gu, v3 Normnu, v v u

Out[626]= 
1

16
 3 2  ArcSinh1

Or numerically,

In[627]:= N
Out[627]= 0.659983

ü   Exercises 

1. Plot the parametrized surface Gu, v = eu sin v, eu cos v, v over the domain D = u, v -1 § u § 1, 0 § v § 2 p. 
2. Plot the parametrized surface Gu, v = 3 sin u cos v, sin u sin v, cos v + 3 cos u over the domain 
D = u, v 0 § u § 2 p, 0 § v § 2 p.
3. Consider the parametrized surface Gu, v = e-u cos v, eu sin v, eu cos v.
a.  Find Tu, Tv, and n.
b.  Find the equation of the tangent plane at 0, p  2.
c.  Plot the tangent plane and surface.
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4. Consider the parametrized surface S: Gu, v =  u - v , 3 u + v, u2 - 2 u v + 6 v2, where 0 § u § 1, 0 § v § 1.

a.  Find the surface area of S. (Use NIntegrate for faster integration.)

b.  Evaluate  S
3 x + 2 y2 - z2 „S.

ü 16.5  Surface Integrals of Vector Fields

Students should read Section 16.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

An orientation of a surface S is a continuously varying choice of the unit normal vector enP at each point of the surface.  Thus,
en is given by either  

enP = nP
nP    or   enP = - nP

nP

If Fx, y, z is continuous at all points of a parametrized surface S, then the surface integral of F over S is given by 

 S
F ÿ„S =  S

F ÿen „S

where en is the unit normal determined by an orientation. The surface integral of F is also called the flux of F across S.

The surface integral of F over a parametrized surface S given by Gu, v = xu, v, yu, v, zu, v, where u, v œ D, is given by 

 S
F ÿ„S =  S

F ÿen „S =  D
FGu, v ◊nu, v „u „v

Example 16.12.  Find  S
F ◊„S, where Fx, y, z = x z, z , y x and S is given by  Gu, v = u - v2, u v, u2 - v, 0 § u § 2, and

1 § v § 3.

Solution:

In[628]:= ClearF, G, x, y, z, u, v
Fx_, y_, z_  x z, z, y x
Gu_, v_  u  v2, u v, u2  v

Out[629]= x z, z, x y
Out[630]= u  v2, u v, u2  v
In[631]:= ClearTu, Tv, n

Tuu_, v_  DGu, v, u
Tvu_, v_  DGu, v, v
nu_, v_  CrossTuu, v, Tvu, v

Out[632]= 1, v, 2 u
Out[633]= 2 v, u, 1
Out[634]= 2 u2  v, 1  4 u v, u  2 v2

In[635]:= Flux  
0

2


1

3

FGu, v1, Gu, v2, Gu, v3 .nu, v v u

Out[635]= 
6928

15
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Example  16.13.   Find   S
F ◊„S,  where  Fx, y, z = x2, z2 , y + x2  and  S  is  the  upper  hemisphere  x2 + y2 + z2 = 4  with

outward normal orientation.

Solution:   First, we find the parametric equation of the cylinder.  This can be given by x = 2 cos u sin v,  y = 2 sin u sin v, and
z = 2 cos v, where 0 § u § 2 p and 0 § v § p 2. 

For the hemisphere to have the outward orientation, we note that n = TvμTu. With this in mind we compute the flux of F across
S through the following steps.

In[636]:= ClearF, G, x, y, z, u, v
Fx_, y_, z_   x2, z2, x2  y  z3
Gu_, v_   2 Cosu Sinv , 2 Sinu Sinv , Cosv 

Out[637]= x2, z2, x2  y  z3
Out[638]= 2 Cosu Sinv, 2 Sinu Sinv, Cosv
In[639]:= ClearTu, Tv, n

Tuu_, v_  DGu, v, u
Tvu_, v_  DGu, v, v
nu_, v_  CrossTvu, v, Tuu, v

Out[640]= 2 Sinu Sinv, 2 Cosu Sinv, 0
Out[641]= 2 Cosu Cosv, 2 Cosv Sinu, Sinv
Out[642]= 2 Cosu Sinv2, 2 Sinu Sinv2, 4 Cosu2 Cosv Sinv  4 Cosv Sinu2 Sinv

In[643]:= Flux  
0

Pi2

0

2 Pi

FGu, v1, Gu, v2, Gu, v3 .nu, v u v

Out[643]=
28 

5

ü  Exercises 

1. Find  S
F ◊„S, where Fx, y, z =  ez, z, y x and S is given by Gu, v = u v, u - v, u, 0 § u § 2, and -1 § v § 1, and 

oriented by n = TuμTv.

2. Find  S
F ÿ„S, where Fx, y, z =  z, x , y  and S is the portion of the ellipsoid  x2

16
+

y2

9
+ z2

4
= 1 for which x § 0,   y § 0, and 

z § 0 with outward normal orientation.

3. Let S be given by Gu, v = 1 + v cos
u

2
 cos u, 1 + v cos

u

2
 sin u , v sin

u

2
, 0 § u § 2 p, and 

-1

2
§ v § 1

2
.

a. Plot the surface S. (S is an example of a Mobius strip.)
b. Find the surface area of S.

c. Evaluate  S
x2 + 2 y2 + 3 z2 „S.

d. Find the intersection points of S and the xy-plane.

e. For each of the points on the intersection of S and the xy-plane, find the normal vector n.

f. Show that n varies continuously but that n2 p, 0 = -nu, 0. (This shows that S is not orientable and hence it is impossible to 
integrate a vector field over S.) 
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Chapter 17 Fundamental Theorems of Vector 
Analysis
Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible
to view 3-D plots generated by Mathematica from different perspectives.  First, place your screen cursor over the plot.  Then drag
the mouse while pressing down on the left mouse button to rotate the plot.

NOTE: In order to perform the operations of curl and divergence on vector fields discussed in this section using Mathematica, it

is necessary to first load the VectorAnalysis package:

In[644]:= Needs"VectorAnalysis`"
The Fundamental Theorem of Calculus for functions of a single variable states that the integral of a function f x over an interval
a, b (domain) can be calculated as the difference of its anti-derivative Fx at the endpoints (boundary) of the interval:


a

b

f x „ x = Fb - Fa

This integral relationship between domain and boundary can be generalized to vector fields involving the operations of curl and
divergence and is made precise by three theorems that will be discussed in this chapter: Green's Theorem, Stoke's Theorem, and
Divergence Theorem.  

ü 17.1  Green's Theorem

Students should read Section 17.1 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Let  Fx, y = Px, y, Qx, y a vector field continuous on an oriented curve C.  Recall that the line integral of F along C  is
denoted by 

C
Fx, y, z ◊„ s = C

P „ x +Q „ y

If c t = xt, yt, zt is the vector equation of the curve C, then

C
P „ x +Q „ y = a

bPxt, yt d x

d t
+Qxt, yt d y

d t
 d t

The following is a generalization of the Fundamental Theorem of Calculus to two dimensions, which relates a double integral
over a region with a corresponding line integral along its boundary.

Green's Theorem: If C  is a simple closed curve oriented counterclockwise and D is the region enclosed, and if P and Q are
differentiable and have continuous first partial derivatives, then  

C
P „ x +Q „ y =  D

 ∑Q

∑ x
- ∑ P

∑ y
 „A

Refer to your textbook for a detailed discussion and proof of Green's Theorem.

Example 17.1. Compute the line integral C
e2 x+y „ x + e-y „ y, where C is the boundary of the square with vertices 0, 0, 1, 0,

1, 1, 1, 0 oriented counterclockwise.

Solution: We will use Green's Theorem.  Thus, we need to verify that the hypotheses of Green's Theorem hold. To this end, we

132   Mathematica for Rogawski's Calculus Volume III Body 2nd Edition.nb



define the function P and Q and compute their partial derivatives.   

In[645]:= Clearx, y, P, Q
Px_, y_  E2 xy

Qx_, y_  Ey

Out[646]= 2 xy

Out[647]= y

In[648]:= DPx, y, x
DPx, y, y
DQx, y, x
DQx, y, y

Out[648]= 2 2 xy

Out[649]= 2 xy

Out[650]= 0

Out[651]= y

The partial derivatives are continuous inside the square and the curve is oriented counterclockwise. Thus, the hypotheses of
Green's Theorem are satisfied.  Note that the region D enclosed by C is given by 0 § x § 1 and 0 § y § 1.

In[652]:= 
0

1


0

1

DQx, y, x  DPx, y, y y x

Out[652]= 
1

2
1  2 1  

In[653]:= N
Out[653]= 5.4891

NOTE: If we were to solve this using the definition of line integral as discussed in Chapter 16 of this text, we would then need to
consider four pieces of parametrization of C and then sum the four integrals.   Toward this end, let us use C1 for the lower edge,
C2 for the right edge, C3 for the top edge, and C4 for the left edge of the square.  Here are the parametrizations followed by their
line integrals.
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In[654]:= Clearx1, x2, x3, x4, y1, y2, y3, y4, t, F, c1, c2, c3, c4
Fx_, y_  Px, y, Qx, y 
x1t_  t

y1t_  0

c1t_  x1t, y1t

x2t_  1

y2t_  t

c2t_  x2t, y2t

x3t_  1  t

y3t_  1

c3t_  x3t, y3t

x4t_  0

y4t_  1  t

c4t_  x4t, y4t
Out[655]= 2 xy, y
Out[656]= t

Out[657]= 0

Out[658]= t, 0
Out[659]= 1

Out[660]= t

Out[661]= 1, t
Out[662]= 1  t

Out[663]= 1

Out[664]= 1  t, 1
Out[665]= 0

Out[666]= 1  t

Out[667]= 0, 1  t

In[668]:= 
0

1

Fx1t, y1t.c1't t  
0

1

Fx2t, y2t.c2't t 


0

1

Fx3t, y3t.c3't t  
0

1

Fx4t, y4t.c4't t

Out[668]= 1 
1



1  



1

2
1  2  1

2
 1  2

In[669]:= N
Out[669]= 5.4891
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ü  Exercises 

In Exercises 1 through 4, use Green's Theorem to evaluate the given line integral.

1. C
y2 sin x „ x + x y „ y, where C is the boundary of the triangle with vertices 0, 0, 1, 0, 1, 1, oriented counterclockwise.

2. C
2 x2 y „ x + x3 „ y, where C is the circle x2 + y2 = 4, oriented counterclockwise.

3. C
x2 + y2 „ x + y ex „ y, where C is the boundary of the region bounded between the parabola y = 5 - x2 and the line 

y = 2 x - 3, oriented clockwise.

4. C
x

x2+y2
„ x -

y

x2+y2
„ y, where C is the boundary of the quarter-annulus situated between the circles x2 + y2 = 1 and x2 + y2 = 9 

in the first quadrant (see plot below), oriented counterclockwise.

5. Let Fx, y = 2 x y + y3, x2 + 3 x y + 2 y.  Use Green's Theorem to demonstrate that the line integral C
Fx, y, z ◊„ s = 0 for 

every simple closed curve C.  What kind of a vector field do we call F?

ü 17.2  Stokes's Theorem

Students should read Section 17.2 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Let Fx, y, z = F1, F2, F3 be a vector field.  The curl of F, denoted by curlF or ! μF, is defined by 

curlF =! μF =

i j k
∑

∑x

∑

∑y

∑

∑z

F1 F2 F3

=  ∑F3

∑y
-

∑F2

∑z
,
∑F1

∑z
-

∑F3

∑x
,
∑F2

∑x
-

∑F1

∑y


Here, we are using the del or symbol ! (nabla) to denote the vector operator ! =  ∑

∑x
, ∑

∑y
, ∑

∑z
.

The Mathematica command for computing the curl of a vector field F is Curl[F,coordsys], where coordsys is the coordinate
system of the vector field.  This is demonstrated in the next example.

The following is a generalization of the Fundamental Theorem of Calculus three dimensions, which relates a surface integral
involving curl with a corresponding line integral along its boundary.

Stokes's Theorem: If  Fx, y, z a vector field with continuous partial derivatives and if S is an oriented surface S with boundary
∑S,  then 

∑S
F ÿ„S =  S

curlF ◊„S

If S is closed, then it has no boundary and hence both integrals are equal to 0.

NOTE: Recall that if the surface S  is given by Gu, v = xu, v, yu, v, zu, v, where u, v œ D, then S
curlF ÿ„S is given

by 

 S
curlF ◊„S =  D

curlF Gu, v ◊nu, v „u „v

Refer to your textbook for a detailed discussion and proof of Stokes's Theorem.
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Example 17.2.  Find the curl of the vector field Fx, y, z =  x sin y z, ex y z , y x2.
Solution: We use the Curl command:

In[670]:= ClearF, F1, F2, F3, x, y, z
F1  x Siny z
F2  Exy z
F3  x 2 y

F  F1, F2, F3
Out[671]= x Siny z
Out[672]= xy z

Out[673]= x2 y

Out[674]= x Siny z, xy z, x2 y
In[675]:= CurlF, Cartesianx, y, z

Out[675]= xy  x2, 2 x y  x y Cosy z, xy z
y

 x z Cosy z

NOTE: We obtain the same answer for the curl of F using the explicit formula:

In[676]:= curl  y F3  zF2, zF1  xF3, xF2  yF1

Out[676]= xy  x2, 2 x y  x y Cosy z, xy z
y

 x z Cosy z

Or equivalently,

In[677]:= CurlF  DF3, y  DF2, z, DF3, x  DF1, z, DF2, x  DF1, y

Out[677]= xy  x2, 2 x y  x y Cosy z, xy z
y

 x z Cosy z

Example 17.3.  Let f x, y, z be a function of three variables with continuous first and second partial derivatives and let F =! f

be the gradient of f .  Find the curl of the vector field F.  

Solution: 

In[678]:= Clearf, F1, F2, F3, x, y, z
F1  Dfx, y, z, x
F2  Dfx, y, z, y
F3  Dfx, y, z, z
F  F1, F2, F3

Out[679]= f1,0,0x, y, z
Out[680]= f0,1,0x, y, z
Out[681]= f0,0,1x, y, z
Out[682]= f1,0,0x, y, z, f0,1,0x, y, z, f0,0,1x, y, z
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Then the curl of F is 

In[683]:= CurlF, Cartesianx, y, z
Out[683]= 0, 0, 0
To see why the curl is zero, let us examine each partial derivative used in computing the curl of F.  

In[684]:= DF3, y
DF2, z

Out[684]= f0,1,1x, y, z
Out[685]= f0,1,1x, y, z
NOTE: Here, f 0,1,1x, y, z stands for the second partial derivative fyz. Thus, the two partial derivatives that appear in the x-

component of the curl of F are equal and hence their difference is zero. Similarly, we have 

In[686]:= DF3, x
DF1, z

Out[686]= f1,0,1x, y, z
Out[687]= f1,0,1x, y, z
and 

In[688]:= DF2, x
DF1, y

Out[688]= f1,1,0x, y, z
Out[689]= f1,1,0x, y, z
Example 17.4.  Compute ∑S

F ÿ„S, where Fx, y, z =  x y z, z + 3 x - 3 y , y 2 x and S is the upper hemisphere of radius 4.

Solution:  Note  that  ∑S  is  a  circle  of  radius  4  lying  on  the  xy-plane.  Hence,  ∑S  can  be  parametrized  by  the  curve
ct = xt, yt, zt where

 x = 4 cos t, y = 4 sin t, z = 0, where  0 § t § 2 p

We then use this parametrization to evaluate the line integral ∑S
F ÿ„S =0

2 p
Fxt, yt, zt ÿc ' t „ t:
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In[690]:= ClearF, x, y, z, t, c, curlF
Fx_, y_, z_  x y z, z  3 x  3 y, y2 x
xt_  4 Cost
yt_  4 Sint
zt_  0

ct_  xt, yt, zt
Out[691]= x y z, 3 x  3 y  z, x y2
Out[692]= 4 Cost
Out[693]= 4 Sint
Out[694]= 0

Out[695]= 4 Cost, 4 Sint, 0

In[696]:= 
0

2 Pi

Fxt, yt, zt.c't t
Out[696]= 48 

Next, we use Stokes's Theorem to obtain the same answer via the corresponding surface integral.  The parametrization of the
upper hemisphere of radius 4 is given by Su, v = xu, v, yu, v, zu, v, where

 x = 4 cos u sin v,  y = 4 sin u sin v, and z = 4 cos v,    where    0 § u § 2 p, 0 § v § p 2

We now compute the normal of the upper hemisphere:

In[697]:= ClearS, u, v, Tu, Tv, n
Su_, v_ :  4 Cosu Sinv, 4 Sinu Sinv, 4 Cosv 
Tuu_, v_ : DSu, v, u
Tvu_, v_ : DSu, v, v
nu_, v_  CrossTvu, v, Tuu, v

Out[701]= 16 Cosu Sinv2, 16 Sinu Sinv2,
16 Cosu2 Cosv Sinv  16 Cosv Sinu2 Sinv

The curl of F is 

In[702]:= curlFx_, y_, z_  CurlFx, y, z, Cartesianx, y, z
Out[702]= 1  2 x y, x y  y2, 3  x z
Thus, the surface integral is given by 

In[703]:= 
0

Pi2

0

2 Pi

curlFSu, v1, Su, v2, Su, v3 .nu, v u v
Out[703]= 48 

This answer agrees with the one obtained using the line integral definition.

Example 17.5.  Find the flux of the curl of the vector field Fx, y, z =  x2, z2 , y + x2 across S, where S is the part of the cone

z2 = x2 + y2 for which 1 § z § 4 with outward normal orientation.
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Solution:  First, we will need the following parametric equations to describe the cone S: x = u cos v , y = u sin v, and z = u, where
0 § v § 2 p and 1 § u § 4. 

For the cone to have outward orientation, we set n = TvμTu  (right-hand rule) since Tv  points in the horizontal direction around
the cone and Tu points in the direction along the length of the cone.

In[704]:= ClearF, S, u, v, Tu, Tv, n
Fx_, y_, z_  x2  y2, x  z2, 0
Su_, v_ :  u Cosv , u Sinv , u 
Tuu_, v_ : DSu, v, u
Tvu_, v_ : DSu, v, v
nu_, v_  CrossTvu, v, Tuu, v

Out[705]= x2  y2, x  z2, 0
Out[709]= u Cosv, u Sinv, u Cosv2  u Sinv2
 We now compute the flux of curl F across S through the following steps.

In[710]:= curlFx_, y_, z_  CurlFx, y, z, Cartesianx, y, z
Out[710]= 2 z, 0, 1  2 y

In[711]:= Flux  
1

4


0

2 Pi

curlFSu, v1, Su, v2, Su, v3.nu, v v u
Out[711]= 15 

ü  Exercises 

NOTE: In order to perform the curl operation in Mathematica, it is necessary to first load the VectorAnalysis package.  See
instructions given at the beginning of this chapter.

In Exercises 1 and 2, find the curl of the given vector field.

1. Fx, y, z =  ln x2 + y2 + z2, x  z , ex sin y z
2. Fx, y, z = - x

x2+y2+z232 , -
y

x2+y2+z232 , - z

x2+y2+z232 

In Exercises 3 and 4, verify Stokes's Theorem for the given vector field F and surface S.

3. Fx, y, z =  x3 e - 3 x y + z3, 2 z3 - x z2 + y4, 6 y + 2 z3 x2 and S is the part of the paraboloid z = x2 + y2 for which z § 9 and 

with outward normal orientation.
4. Fx, y, z =  x y z, x y, x + y + z and S is the elliptical region in the plane y + z = 2 whose boundary is the intersection of the 
plane with the cylinder x2 + y2 = 1 and with upward normal orientation.

In Exercises 5 and 6, use Stokes's Theorem to compute the flux of the curl of the vector field F across the surface S.

5. Fx, y, z =  tanx y z, ey-x z, secy2 x and S is the upper hemisphere of radius 4.

6. Fx, y, z =  x2 z, x y2, z2 and S consists of the top and four sides of the cube (excluding the bottom) with vertices at 0, 0, 0, 
1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1.

ü 17.3  Divergence Theorem

Students should read Section 17.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
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section.

Let Fx, y, z = F1, F2, F3 be a vector field.  The divergence of F, denoted by divF or ! ◊ F, is defined by 

divF = ! ◊ F =
∑F1

∑x
+

∑F2

∑ y
+

∑F3

∑z

where ! =  ∑

∑x
, ∑

∑y
, ∑

∑z
.

The Mathematica command for computing the divergence of a vector field F is Div[F,coordsys], where coordsys is the coordi-
nate system of the vector field.  This is demonstrated in the next example.

The following is another generalization of the Fundamental Theorem of Calculus three dimensions, which relates a triple integral
of a solid object involving divergence with a corresponding surface integral along its boundary.

Divergence Theorem: Let W  be a region in R3 whose boundary ∑W  is a piecewise smooth surface, oriented so that the normal
vectors to ∑W  point outside of W , and Fx, y, z be a vector field with continuous partial derivatives whose domain contains W .
Then

 ∑W
F ◊„S =   W

divF „V

Refer to your textbook for a detailed discussion and proof of the Divergence Theorem.

Example 17.8.  Find the divergence of the vector field Fx, y, z =  x sin yz, ex y z , yx2.
Solution: 

In[712]:= ClearF1, F2, F3, x, y, z
F1  x Siny z
F2  Exy z
F3  x 2 y

F  F1, F2, F3
Out[713]= x Siny z
Out[714]= xy z

Out[715]= x2 y

Out[716]= x Siny z, xy z, x2 y
Then the divergence of F is 

In[717]:= DivF, Cartesianx, y, z

Out[717]= 
xy x z

y2
 Siny z

NOTE: Again we obtain the same answer for the divergence of F using the explicit formula:

In[718]:= DF1, x  DF2, y  DF3, z

Out[718]= 
xy x z

y2
 Siny z

Example 17.9.  Find  S
F ◊„S, where Fx, y, z =  x , y2, y + z and S = ∑W  is the boundary of the region W contained in the
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cylinder  x2 + y2 = 4 between the plane z = x and z = 8.

Solution: If S is the boundary of the solid W , then W  is given by

W = x, y, z : -2 § x § 2, - 4 - x2 § y § 4 - x2 , x § z § 8
In[719]:= ClearF, divF, x, y, z

Fx_, y_, z_  x, y2, y  z
divF  DivFx, y, z, Cartesianx, y, z

Out[720]= x, y2, y  z
Out[721]= 2  2 y

By the Divergence Theorem, we see that  S
F ÿ„S is given by 

In[722]:= 
2

2


 4x2

4x2


x

8

divF z y x

Out[722]= 64 

ü  Exercises 

NOTE: In order to perform the divergence operation in Mathematica, it is necessary to first load the VectorAnalysis package.
See instructions given at the beginning of this chapter.

In Exercises 1 and 2, find the divergence of the given vector field F.

1. Fx, y, z =  x y z, x2 + y2 + z2, x y + y z + x z
2. Fx, y, z =  ex y cos z, ey z sin z, z2
In Exercises 3 and 4, verify the Divergence Theorem for the given vector field F and solid region W.

3. Fx, y, z = x2 y, y2 z, z2 x  and W = x, y, z : x2 + y2 + z2 < 1 is the unit ball. 

4. Fx, y, z = ex cos y, ex sin y, x y z  and W is the region bounded by the paraboloid z = x2 + y2 and z = 4.

In Exercises 5 and 6, use the Divergence Theorem to calculate the flux of the vector field F across the surface S.

5. Fx, y, z =  x ez , y2, y + z x and S is tetrahedron bounded by the plane 3 x + 4 y + 5 z = 15 and the coordinate planes in the 

first octant.

6. Fx, y, z =  x y z, x2 + y2 + z2, x y + y z + x z  and S is the unit cube with vertices at 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 
0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1.
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