
Chapter 10 Infinite Series

ü 10.1 Sequences

Students should read Section 10.1 of Rogawski’s Calculus [1] for a detailed discussion of the material presented in this
section.

Recall that a sequence is a function whose domain is the set of non-negative integers. 

In Mathematica, we denote a sequence an as a function. Thus, instead of an we write an. The limit of a sequence is evaluated by

using the Limit command. When Limit[a[n], nÆ•] is evaluated, Mathematica automatically assumes that n is a continuous
variable (instead of a discrete variable). It employs various techniques to evaluate limits.  

To plot the graph of a sequence, we use the ListPlot command. ListPlot[list] plots the graph of list, where list is a list of points

x, y, denoted in Mathematica by {x,y}. In our case, list will be the table of values of the form {n,a[n]}.  The corresponding plot

command in this case would be ListPlot[Table[{n,a[n]},{n,min,max}].

Example 10.1.  Consider the sequence defined by 

an =
4 n+1

3 n+2

a) Find the first few terms of the sequence.

b) Plot the graph of the sequence.

c) Make a conjecture for the limit based on the graph.

d) Find the limit of the sequence.

Solution: 

a) We define the sequence as a function of n and use the Table command to generate the first ten terms of the sequence. 

In[1]:= Cleara, n
an_ :

4 n  1

3 n  2



In[3]:= TableFormTablen, an, n, 1, 10,

TableHeadings  , "n", "an "
Out[3]//TableForm=

n an

1 1

2 9
8

3 13
11

4 17
14

5 21
17

6 5
4

7 29
23

8 33
26

9 37
29

10 41
32

To obtain decimal expressions of these values, we evaluate

In[4]:= TableFormNTablen, an, n, 1, 10,

TableHeadings  , "n", "an "
Out[4]//TableForm=

n an

1. 1.
2. 1.125
3. 1.18182
4. 1.21429
5. 1.23529
6. 1.25
7. 1.26087
8. 1.26923
9. 1.27586
10. 1.28125

b) To plot the graph of the sequence, we use the ListPlot command. Here is a plot of the first 100 terms of the sequence.
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In[5]:= ListPlotTablen, an, n, 1, 100

Out[5]=

20 40 60 80 100

1.28

1.29

1.30

1.31

1.32

c) The graph suggests that the limit is 1.333 ....  We can use the Table command to see this more clearly.

In[6]:= TableFormNTablen, an, n, 1000, 10 000, 1000,

TableHeadings  , "n", "an "
Out[6]//TableForm=

n an

1000. 1.33278
2000. 1.33306
3000. 1.33315
4000. 1.33319
5000. 1.33322
6000. 1.33324
7000. 1.33325
8000. 1.33326
9000. 1.33327
10 000. 1.33328

Hence, the limit seems to be 1.3333... or 4/3. Here is a plot of y = 4 3 and the graph of the sequence for large values of n:
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In[7]:= Clearplot1, plot2
plot1  ListPlotTablen, an, n, 1, 1000, 10;
plot2  Plot4  3, x, 1, 1000;
Showplot1, plot2, PlotRange  1.25, 4  3

Out[10]=

200 400 600 800 1000

1.28

1.30

1.32

d) Finally, we confirm this in Mathematica by evaluating the limit as n goes to ¶.

In[11]:= Limitan, n  Infinity

Out[11]=
4

3

Example 10.2.  Consider the sequence defined by 

an =
-1n

n

a) Plot the graph of the sequence.

b) Does the sequence converge?

Solution:

a) Again, we use ListPlot to plot the graph.

In[12]:= Cleara, n
an_ :

1n

n
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In[14]:= ListPlotTablen, an, n, 1, 100

Out[14]=
20 40 60 80 100

-0.10

-0.05

0.05

0.10

b) From the graph, it is clear that the sequence approaches 0 in the limit. We confirm this using the Limit command.

In[15]:= Limitan, n  Infinity
Out[15]= 0

NOTE: There are instances where the sequence an  may not be well-defined if n  is treated as a real variable (as opposed to an
integer variable). In such cases, Mathematica may return the limit unevaluated or else gives an output that indicates the limit may
not exist, as the following example illustrates.

Example 10.3.  Determine whether or not the sequence defined below converges: 

an = -1n n

n+1

Solution: First, we will plot the graph of the sequence. 

In[16]:= Cleara, n
an_ : 1n

n

n  1

In[18]:= ListPlotTablen, an, n, 1, 100

Out[18]=
20 40 60 80 100

-1.0

-0.5

0.5

1.0

The graph clearly indicates the sequence does NOT converge (to a unique limiting value). We can see this by investigating the
following tables of values. The first one lists the even terms while the second one lists the odd terms of the sequence.
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In[19]:= TableFormTablen, Na2 n, n, 10, 100, 10,

TableHeadings  , "n", "a2n "
Out[19]//TableForm=

n a2n

10 0.952381
20 0.97561
30 0.983607
40 0.987654
50 0.990099
60 0.991736
70 0.992908
80 0.993789
90 0.994475
100 0.995025

In[20]:= TableFormTablen, Na2 n  1, n, 10, 100, 10,

TableHeadings  , "n", "a2n1 "
Out[20]//TableForm=

n a2n1

10 0.95
20 0.975
30 0.983333
40 0.9875
50 0.99
60 0.991667
70 0.992857
80 0.99375
90 0.994444
100 0.995

Finally, let us evaluate the limit.  

In[21]:= Limitan, n  Infinity
Out[21]= 2  Interval0,

This output, specifically the notation Interval[{0, p}], means that the limit does not exist uniquely, but has subsequences whose

limits take on the set of complex values e2 i x for all x œ 0, p.  This is because the variable n that appears in the Limit command

is automatically assumed by Mathematica to be a complex variable.  In our case, for n an integer variable, we have two subse-
quences, a2 n and a2 n+1 (even and odd, respectively), converging to different limits (1 and -1, respectively).  Thus, an diverges.

Example 10.4.  Consider the sequence an defined recursively by a1 = 1 and an+1 = an + 1 .  Generate the first ten terms of
this sequence and compute its limit.

Solution: Here is one method of defining a recursive sequence.  

In[22]:= Cleara, n
a1  1
an_ : an  Sqrtan  1  2

Out[23]= 1

NOTE: The second occurrence of  a[n]  in the preceding command tells Mathematica  to store all  intermediate values of  the
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recurrence in evaluating a[n]. 

Here are the first ten terms of the sequence:

In[25]:= TableFormTablen, an, n, 1, 10,

TableHeadings  , "n", "an "
Out[25]//TableForm=

n an

1 1

2 3

3 2  3

4 2  2  3

5 2  2  2  3

6 2  2  2  2  3

7 2  2  2  2  2  3

8 2  2  2  2  2  2  3

9 2  2  2  2  2  2  2  3

10 2  2  2  2  2  2  2  2  3

The following table gives decimal expressions of the same first ten terms and reveals the limit to be equal to 2.
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In[26]:= TableFormTablen, Nan, n, 1, 10,

TableHeadings  , "n", "an "
Out[26]//TableForm=

n an

1 1.
2 1.73205
3 1.93185
4 1.98289
5 1.99572
6 1.99893
7 1.99973
8 1.99993
9 1.99998
10 2.

NOTE: In general, Mathematica is not able to directly compute limits of sequences defined recursively.  Assuming an converges
(prove this!), we then compute its limit, called L, say, by letting nØ¶ in the recurrence formula for an: 

L = limnØ¶an = limnØ¶ an-1 + 2 = limnØ¶an-1 + 2 = L + 2

Solving the equation L = L + 2  then yields L = 2 as the limit.

In[27]:= SolveL  SqrtL  2, L
Out[27]= L  2

Example 10.5.  Let a1 = 1 and b1 = 2 .  Define two sequences recursively by  

an+1 = an bn   and bn+1 =
an+bn

2

a) Choose various values of a1 and b1 and calculate the first ten terms of the sequences an and bn. 
b)  Show that an § bn for every positive integer n.

c) Show that both sequences converge to the same limit.  (NOTE: This common limit is called the arithmetic-geometric mean of
a1and b1.)

Solution: 

a) Here is a program that generates the first ten values of an and bn.  

In[28]:= Cleara, b, n
a1  1
b1  10

ai_ : ai  ai  1  bi  1 ;

bi_ : bi 
ai  1  bi  1

2
;

Out[29]= 1

Out[30]= 10
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In[33]:= TableFormTablek, Na k, 10, Nb k, 10, k, 1, 10 ,

TableHeadings  , "n", "an", "bn" 
Out[33]//TableForm=

n an bn
1 1.000000000 10.00000000
2 3.162277660 5.500000000
3 4.170434885 4.331138830
4 4.250027349 4.250786858
5 4.250407086 4.250407103
6 4.250407095 4.250407095
7 4.250407095 4.250407095
8 4.250407095 4.250407095
9 4.250407095 4.250407095
10 4.250407095 4.250407095

b) The following table suggests that an § bn for at least the first ten terms: 

In[34]:= TableForm
Tablek, Na k, 10, Nb k, 10, Nbk, 10  Nak, 10, k, 1, 10 ,

TableHeadings  , "n", "an", "bn", "bnan" 
Out[34]//TableForm=

n an bn bnan
1 1.000000000 10.00000000 9.00000000
2 3.162277660 5.500000000 2.337722340
3 4.170434885 4.331138830 0.160703945
4 4.250027349 4.250786858 0.000759508

5 4.250407086 4.250407103 1.7  108

6 4.250407095 4.250407095 0.  1010

7 4.250407095 4.250407095 0.  1010

8 4.250407095 4.250407095 0.  1010

9 4.250407095 4.250407095 0.  1010

10 4.250407095 4.250407095 0.  1010

For a better feel on this, let us plot the graphs on the same axes. To this end, we define two lists using the Table command and

use the ListPlot command to plot the graphs.

In[35]:= plot1  ListPlotTablek, ak, k, 1, 10, PlotStyle  Blue;
plot2  ListPlotTablek, bk, k, 1, 10, PlotStyle  Red;
Showplot1, plot2, PlotRange  0, 10

Out[37]=

0 2 4 6 8 10

2

4

6

8

10
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The above graph suggests that the two sequences converge to the same limit.  Unfortunately, Mathematica's Limit command
cannot help us compute the limit of an and bn due to their recursive nature. (Try this!) 

NOTE: We encourage the reader to experiment with different initial values for a1 and b1 to see if the sequences an and bn always
converge to the same limit.

Example 10.6.  Consider the sequence 

an =
n!1n

n
  

 a) Show that if  bn = ln an, then bn =
ln n!-n ln n

n
. 

 b)  Does bn converge? If so, find the limit. 

 c)  Does an converge? If so, find the limit. 

Solution:

a)  We define a sequence cn =
ln n!-n ln n

n
 and then show that bn = cn.

In[38]:= Cleara, b, c

an_ :
n1n

n
bn_ : Logan

cn_ :
Log n  n Logn

n

In[42]:= TableFormTableNcn, Nbn, Ncn, 10  Nbn, 10, n, 2, 10,

TableHeadings  Automatic, " cn ", " bn ", " cnbn "
Out[42]//TableForm=

cn bn cnbn

1 0.346574 0.346574 0.  1011

2 0.501359 0.501359 0.  1010

3 0.591781 0.591781 0.  1010

4 0.65194 0.65194 0.  1010

5 0.695218 0.695218 0.  1010

6 0.72803 0.72803 0.  1010

7 0.753866 0.753866 0.  1010

8 0.774799 0.774799 0.  1010

9 0.792144 0.792144 0.  1010

The preceding table indicates that the two sequences are the same.  Here is a plot of both:
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In[43]:= ListPlotTablen, bn, n, 1, 100, Tablen, cn, n, 1, 100,

PlotRange  1, 0.1, AxesOrigin  0, 0

Out[43]=

20 40 60 80 100

-1.0

-0.8

-0.6

-0.4

-0.2

This plot clearly shows that bn = cn, that is, lnan = ln n!1n

n
 = ln n!-n ln n

n
.  We leave it to the student to establish this equality

using properties of the natural logarithmic function.  

b) The previous plot indicates that the limit of bn is -1.  To confirm this, we use the Limit command.

In[44]:= Limitbn, n  Infinity
Out[44]= 1

c) Since bn = ln an, it follows that an = ebn  and hence limnØ¶an = e-1.  Again, we verify this using the Limit command: 

In[45]:= Limitan, n  Infinity

Out[45]=
1



ü Exercises 

In Exercises 1 though 3, determine the convergence of the given sequence. 

1.  an =
3 n2+n+2

2 n2+1
2. an = ln  2 n+3

n+1
  3. an = n

n

 

4.  Let   cn =
1

n+1
+ 1

n+2
+ 1

n+3
+ ... + 1

2 n
. 

a.  Find the first ten terms of the sequence.
b.  Plot the graph of the sequence.
c.  Is the sequence increasing? Bounded? Convergent? Prove each of your assertions.
d.   Find limnØ¶ cn.

5. The nth harmonic number is defined to be the sum  

Hn = 1 + 1

2
+ 1

3
+ ... + 1

n
.

Let an = Hn - ln n and bn = 1

n+1 1

x
„ x.

a.  Show that Hn ¥ bn for n = 1, 2, 3, ..., 10.  Prove that this holds for all positive integers n.

b.  Show that an ¥ 0 for n = 1, 2, 3, ..., 10.  Prove that this holds for all positive integers n.
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c.  Use the ListPlot command to plot the graph of an.  Does the graph indicate that an is decreasing or increasing?

d.  Evaluate limnØ¶an.

e.  The limit in part d) is called Euler's Constant and is denoted by g. Compute g accurate to 20 digits.

ü 10.2  Infinite Series

Students should read Section 10.2-10.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

ü 10.2.1 Finite Sums

Sum[a[n], n, n1, n2] evaluates the finite sum of an as n goes from n1 to n2.  

Sum[a[n], n, n1, Infinity] evaluates the infinite series of an as n goes from n1 to ¶.  

Using the BasicMathInput Palette, we can also enter finite sums or infinite series as nn1
n2 an or nn1

 an, respectively.

Example 10.7.  Compute the following finite sums:

a) n=1
10 -1n

n
b)  k=1

5 k - 1 k + 1

c) k=1
30 20

k
2k d)  i=1

n 3 i - 2 e)  k=0
10 k2+1

k3+2 k2+1

Solution: 

a) 

In[46]:= 
n1

10 1n

n

Out[46]= 
1627

2520

b) 

In[47]:= Sumk  1 k  1, k, 1, 5
Out[47]= 50

c) The binomial coefficient  n
m

 = n!

m! n-m!  is expressed in Mathematica by the command Binomial[n, m].

In[48]:= 
k0

30

Binomial30, k 2k

Out[48]= 205 891 132 094 649

NOTE: The above number is the same as 330 = 205 891 132 094 649. Verify this!

d) 
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In[49]:= 
j1

n

3 j  2

Out[49]=
1

2
n  3 n2

In[50]:= Simplify

Out[50]=
1

2
n 1  3 n

e) 

In[51]:= 
k0

10 k2  1

k3  2 k2  1

Out[51]=
361 278 549 115 758 513

126 627 880 430 636 728

ü 10.2.2  Partial Sums and Convergence

Example 10.8.  Consider the series n=1
¶ 1

4 n2-1
.   Let sn denote its nth partial sum. 

a)  Find s100. 
b)  Compute every 10th partial sum up to n = 100.
c)  Compute every 1000th partial sum up to n = 10, 000.
d)  From the tables of values in parts a) and b) what do you infer about the convergence of the series?  Prove your assertion. 

Solution:   

a) First, we define sn in Mathematica and then evaluate s100.

In[52]:= Clears, n
sn_ : 

j1

n 1

4 j2  1

s100

Out[54]=
100

201

In[55]:= N
Out[55]= 0.497512

b) Here, we use the command Table[s[n],{n,1,J,K}], which gives the list of every K-th value of sn, as n goes from 1 to J.  The

command TableForm[N[Table[s[n],{n, 1, J, K }]]] lists the values in column form.

In[56]:= Tablesn, n, 1, 100, 10

Out[56]=  1

3
,

11

23
,

21

43
,

31

63
,

41

83
,

51

103
,

61

123
,

71

143
,

81

163
,

91

183
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In[57]:= N
Out[57]= 0.333333, 0.478261, 0.488372, 0.492063,

0.493976, 0.495146, 0.495935, 0.496503, 0.496933, 0.497268
In[58]:= TableFormTablen, Nsn, n, 10, 100, 10,

TableHeadings  , "n", "sn "
Out[58]//TableForm=

n sn

10 0.47619
20 0.487805
30 0.491803
40 0.493827
50 0.49505
60 0.495868
70 0.496454
80 0.496894
90 0.497238
100 0.497512

c)

In[59]:= TableFormTablen, Nsn, n, 1000, 10 000, 1000,

TableHeadings  , "n", " sn "
Out[59]//TableForm=

n sn

1000 0.49975
2000 0.499875
3000 0.499917
4000 0.499938
5000 0.49995
6000 0.499958
7000 0.499964
8000 0.499969
9000 0.499972
10 000 0.499975

d) It seems that the partial sums converge to 0.5. We  confirm this by evaluating

In[60]:= Limitsn, n  

Out[60]=
1

2

Can you prove this?  Hint: Use the method of partial fractions to decompose this series into a telescoping series as discussed in
your calculus text.

Example 10.9.  Let sn be the nth partial sum of the harmonic series 

  k=1
¶ 1

k
.   

a)  Find   s100. 
b)  Compute every 1000th partial sum up to n = 10, 000
c)  Plot the graphs of the partial sums.
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d)  From the table of values in part (b) what do you infer? Prove your assertion. 

Solution:  We will follow the method of the preceding example.  First, we define the nth partial sum.

In[61]:= Clears, n
sn_ : Sum1  k, k, 1, n

a) Then s100 is given by 

In[63]:= s100
Out[63]= 14 466 636 279 520 351 160 221 518 043 104 131 447 711 

2 788 815 009 188 499 086 581 352 357 412 492 142 272

In[64]:= N
Out[64]= 5.18738

b) Here is a table of values of every 1000th term in the sequence sn for n less than or equal to 10, 000. 

In[65]:= TableFormTablen, Nsn, n, 1000, 10 000, 1000,

TableHeadings  , "n", " sn "
Out[65]//TableForm=

n sn

1000 7.48547
2000 8.17837
3000 8.58375
4000 8.87139
5000 9.09451
6000 9.27681
7000 9.43095
8000 9.56447
9000 9.68225
10 000 9.78761

c) Here is a plot of sn.

In[66]:= ListPlotTablen, sn, n, 1, 300, 20

Out[66]=

50 100 150 200 250

1

2

3

4

5

6

The graph above indicates a slow growth that makes it difficult to reach a definitive conclusion regarding the convergence of the
harmonic series. 

d) The table in b) and the plot in c) both suggest that the sequence of the partial sums is increasing. To convince ourselves of this,
we compare s2n  and n

2
.
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In[67]:= TableFormTablen  2., Ns2n, n, 1, 10,

TableHeadings  , " n
2

", " s2n "
Out[67]//TableForm=

n
2

s2n

0.5 1.5
1. 2.08333
1.5 2.71786
2. 3.38073
2.5 4.0585
3. 4.74389
3.5 5.43315
4. 6.12434
4.5 6.81652
5. 7.50918

This table suggests that s2n ¥ n

2
 for n ¥ 2.  Use this fact (a proof of it can be found in your calculus text) to establish the diver-

gence of the harmonic series.

Example 10.10.  Determine whether the following series converges or diverges.

a)   n=1
¶ -1n

n2
b)  j=1

¶ j-1

j
c)  n=1

¶  1

n
- 1

n+1
 d)  n=1

¶ lnn + 1 - ln n

Solution: In all cases, we let Mathematica attempt to evaluate the infinite sum. For those cases where Mathematica returns a
numeric output, this is understood to mean that the series converges and that the sum of the series is the given value. 

a)

In[68]:= 
n1

 1n

n2

Out[68]= 
2

12

Thus, the series converges to - p2

12
. To see this graphically, we plot the graph of the partial sums of the series using the ListPlot

command, along with the horizontal line representing its sum s = - p2

12
º -0.822467.

In[69]:= Clears, n

sn_  
k1

n 1k

k2
;
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In[71]:= plot1  ListPlotTablen, sn, n, 1, 100;

plot2  Plot 2

12
, x, 1, 100;

Showplot1, plot2

Out[73]=

0 20 40 60 80 100

-0.8230

-0.8228

-0.8226

-0.8224

-0.8222

-0.8220

-0.8218

b) Observe that lim jØ¶
j-1

j
= 1 ∫ 0.  Hence, the series does not converge according to the Test for Divergence. This explains the

following output message from Mathematica if we attempt to evaluate the series.

In[74]:= 
j1

 j  1

j

Sum::div : Sum does not converge. à

Out[74]= 
j1

 1  j

j

c) Since this is a telescoping series, it can be shown that the nth partial sum is given by sn = 1 - 1

n+1
.  This can be seen in the

following output:

In[75]:= sn_ : 
k1

n 1

k


1

k  1
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In[76]:= TableFormTablen, sn, n, 1, 10,

TableHeadings  , "n", " sn "
Out[76]//TableForm=

n sn

1 1  1

2

2 1  1

3

3 1
2

4 1  1

5

5 1  1

6

6 1  1

7

7 1  1

2 2

8 2
3

9 1  1

10

10 1  1

11

Hence, the series converges to 1, which we confirm with Mathematica.

In[77]:= 
n1

 1

n


1

n  1

Out[77]= 1

d) This, too, is a telescoping series with the nth partial sum given by sn = ln n + 1 (verify this).  Hence, the series diverges, as
shown by the following output.

In[78]:= 
n1



Logn  1  Logn

Sum::div : Sum does not converge. à

Out[78]= 
n1



Logn  Log1  n

ü Exercises 

1. Consider the series n=1
¶ 1

n2+3 n+2
.

a.  Use the Apart command to decompose the terms of the series, an =
1

n2+3 n+2
, into partial fractions.

b.  Use part (a) to find a formula for the nth partial sum of the series. 

c) Is the series convergent? If so, then find its sum. 

In Exercises 2 through 5, determine if the given series is convergent.  If it is, then find its sum.

18 Mathematica for Rogawski's Calculus



2.  n=1
¶ 1

nn+1 3.  n=0
¶ -1n

n!
4.  n=1

¶ -1n+1   

5. The sereis n=0
¶ a rn is called a geometric series.  

a.   Find the nth partial sum of the geometric series.
b.   For what values of r does the series converge? Diverge?
c.   Find the sum of the geometric series for those values where the series converges.

6.  Consider the series n=1
¶ 1

n
3

.

a.  Use the ListPlot command to plot the first ten partial sums of this series.

b.  Show that the series converges.

ü 10.3  Tests for Convergence  

Students should read Sections 10.4-10.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

ü 10.3.1  Comparison and Limit Comparison Tests

 The Comparison Test: Suppose 0 § an § bn for all n >M , where M  is some positive integer. 

a) If nã1
¶ bn is convergent, then n=1

¶ an is also convergent.

b) If nã1
¶ an is divergent, then n=1

¶ bn is also divergent.

The Limit Comparison Test: Suppose an  and bn  are both positive and  limnØ¶
an

bn
= l. If  0 < l <¶ (i.e.,, if l  is a finite positive

number), then n=1
¶ an and n=1

¶ bn both converge or both diverge. 

To test convergence of a given seriesn=1
¶ an  using the Limit Comparison Test,  it is important that the series n=1

¶ bn  easily be

checked for convergence. 

Example 10.11.  Discuss the convergence of the series  

  n=1
¶ 1

n2+2

 

Solution:  Since 1

n2+2

< 1

n2

= 1

n
 and the harmonic series n=1

¶ 1

n
 was shown to divergence in Example 10.8 of this text, it

follows by the Comparison Test that our series diverges also.  This is verified by Mathematica:

In[79]:= 
n1

 1

n2  2

Sum::div : Sum does not converge. à

Out[79]= 
n1

 1

2  n2

Example 10.12.  Discuss the convergence of the series  
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  n=1
¶ 3 n3+40 n2+4

n5+200 n4+1
 

Solution: To find another series to compare ours with, we consider one with terms bn =
3

n2
.  This comes from considering lower

powers of n in both the numerator and denominator of an.

In[80]:= Cleara, b, n

an_ :
3 n3  40 n2  4

n5  200 n4  1

bn_ :
3

n2

In[83]:= Limit an
bn , n  Infinity

Out[83]= 1

Since the series n=1
¶ 3

n2
 is convergent (p-series) and limnØ¶

an

bn
= 1, we conclude from the Limit Comparison Test that our series

n=1
¶ 3 n3+40 n2+4

n5+200 n4+1
 is also convergent.

Example 10.13.  Discuss the convergence of the series n=1
¶ 1 - cos 1

n
. 

Solution: We note that limnØ¶ 1 - cos 1

n
 = 0.  This is confirmed by Mathematica.

In[84]:= Limit1  Cos1  n, n  
Out[84]= 0

Thus, the necessary condition for convergence is satisfied. But this does not guarantee convergence.  We will use the ListPlot
command to plot the graph of the partial sums to see if the series converges.

In[85]:= Clears
sn_ : Sum1  Cos1  k, k, 1, n

In[87]:= ListPlotTablen, sn, n, 1, 100, PlotRange  0, 1

Out[87]=

0 20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

The graph above clearly indicates convergence. To see that this is indeed true, we compare it with a series that is known to

converge: n=1
¶ 1

n2
. To this end, let us define an and bn as follows.
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In[88]:= Cleara, b, n
an_ : 1  Cos 1

n


bn_ :
1

n2

Observe that both an and bn are positive terms for all n. Hence, we can apply Limit Comparison Test:

In[91]:= Limit an
bn , n  Infinity

Out[91]=
1

2

Therefore, the given series, n=1
¶ 1 - cos 1

n
, converges.

ü 10.3.2  The Integral Test

The Integral Test.  Given an infinite series 

 n=1
¶ an

we define f x so that f n = an  . If f x is positive on the interval 1, ¶, decreasing on this interval, and if limxØ¶ f x = 0,
then 

 1
¶

f x „ x     and      n=1
¶ an

both converge or both diverge.

Example 10.14.  Use the integral test to determine the convergence of the following series.

a)   n=1
¶ 1

n
c)   j=1

¶ j e- j2 c)  n=1
¶ 1

n ln n

Solution:

a) Here, an =
1

n
 and so we define f n in Mathematica: 

In[92]:= Clearf, x
fx_ :

1

x

In[94]:= f'x

Out[94]= 
1

2 x32

Since f ' x < 0 for all x œ 1, ¶, it follows that f  is decreasing.  Clearly f  is positive in value and  limxØ¶ f x = 0. Thus we

can apply the Integral Test by evaluating 1
¶

f x „ x:
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In[95]:= Integratefx, x, 1, Infinity

Integrate::idiv : Integral of 
1

x
 does not converge on 1,¶. à

Out[95]= 
1

 1

x
x

To confirm this, we evaluate this improper integral according to its limit definition:

In[96]:= ClearF, b
Fb_ : Integratefx, x, 1, b

In[98]:= LimitFb, b  
Out[98]= 

b) Here, we define f  as 

In[99]:= Clearf, x
fx_  x Ex2

Out[100]= x2
x

In[101]:= Plotfx, x, 0, 5, PlotRange  0, 1

Out[101]=

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

The graph clearly shows that the function is decreasing. We can confirm this by solving 

In[102]:= f'x
Solvef'x  0

Out[102]= x2
 2 x2

x2

Out[103]= x  
1

2
, x 

1

2


In[104]:= f'1

Out[104]= 
1
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In[105]:= N1  Sqrt2
Out[105]= 0.707107

Thus, f has critical points at ±
1

2
º 0.707.  Since f ' 1 < 0, we conclude that f  is decreasing on 1, ¶. 

The graph also shows that limxØ¶ f x = 0. Again, we can confirm this by evaluating 

In[106]:= Limitfx, x  Infinity
Out[106]= 0

Hence, the Integral Test can be used to determine if the series is convergent. That the series j=1
¶ j e- j2  is convergent follows

from the fact that   

In[107]:= 
1



fx x

Out[107]=
1

2 

Since the corresponding integral is convergent, it follows that the series j=1
¶ j e- j2  is also convergent.   

c) In this case, we define f  as 

In[108]:= Clearf, x
fx_ 

1

x Logx

Out[109]=
1

x Logx
In[110]:= Plotfx, x, 2, 100

Out[110]=

20 40 60 80 100

0.04

0.06

0.08

0.10

0.12

0.14

We leave it for the reader to check that f  satisfies all the conditions of the Integral Test, which we now apply.
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In[111]:= 
2



fx x

Integrate::idiv : Integral of 
1

x Logx
 does not converge on 2,¶. à

Out[111]= 
2

 1

x Logx
x

Since the preceding output states that the integral is divergent, we conclude that the corresponding series is divergent also.

Example 10.15.  For what values of p does the series n=2
¶ 1

nln np  converge?

Solution: We apply the Integral Test.  Toward this end, we define f x so that f n = 1

nln np  and then verify that f x is positive

and decreasing on the interval a, ¶,  and that limxØ¶ f x = 0:

In[112]:= Clearf, x, p
fx_ :

1

x Logxp

In[114]:= Limitfx, x  Infinity
Out[114]= 0

 To confirm this limit, we will plot graphs of f x for some values of p

In[115]:= PlotEvaluateTablefx, p, 4, 2, .5, x, 2, 100, PlotRange  0, 5

Out[115]=

0 20 40 60 80 100

1

2

3

4

5

In the plot above, observe that some of the graphs are initially increasing, but then begin to decrease at a certain point.  Let us
then find the interval over which the function f x is decreasing for each  p. To this end, we compute the derivative f ' x and
solve f ' x < 0 for x.

In[116]:= f'x

Out[116]= 
p Logx1p

x2


Logxp

x2

In[117]:= Simplify

Out[117]= 
Logx1p p  Logx

x2
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In[118]:= Solvef'x  0, x
Out[118]= x  p
Since (ln x-1-p > 0 for all x > 1, we see that f ' x < 0 if ln x > -p, or equivalently, x = ‰-p.  Thus, f x is decreasing on 2, ¶
where a is the maximum of 2 and ‰-p. 

To apply the Integral Test, we integrate f over the interval 2, ¶.  This is easier than integrating over the interval a, ¶, and

permissible since the integrals 2
¶

f x „ x and a
¶

f x „ x either converge or diverge together.

In[119]:= Integratefx, x, 2, 

Out[119]= ConditionalExpressionLog21p

1  p
, Rep  1

The preceding output shows that 2
¶

f x „ x is convergent for p > 1.  However, the case p § 1 remains unsolved.  To evaluate the

integral in this situation, we define its anti-derivative Fb = 2
b

f x „ x and find the limit of Fb as bØ ¶.

In[120]:= ClearF, b
Fb_  Integratefx, x, 2, b

Out[121]= ConditionalExpressionLog21p  Logb1p

1  p
, Reb  1  b  Reals

Since b is a real number and b > 2 , the solution to our integral is the first one, that is, Fb = ln 21-p-ln b1-p

1-p
, provided p ∫ 1. But

then for p < 1, we see that limbØ¶Fb =¶ since limbØ¶ lnb1-p =¶.  For p > 1, we have limbØ¶Fb = ln 21-p

1-p
, which we

already knew from the second previous Mathematica output.  The following tables might be helpful to convince you about this.

In[122]:= TableLimitFb, b  Infinity, p, 3, .9, .5
Out[122]= , , , , , , , 
In[123]:= TableLimitFb, b  Infinity, p, 1.1, 9, .5
Out[123]= 10.3733, 2.0766, 1.3605, 1.12346, 1.02813, 0.997425, 1.0048, 1.03926,

1.09605, 1.1734, 1.27122, 1.39056, 1.53333, 1.70219, 1.90056, 2.13262
For p = 1, we make this substitution inside the integral and evaluate it directly:

In[124]:= p  1;
Integratefx, x, 2, 

Integrate::idiv : Integral of 
1

x Logx
 does not converge on 2,¶. à

Out[125]= 
2

 1

x Logx x

Therefore, the infinite series n=2
¶ 1

nln np  is convergent for p > 1 and divergent for p § 1.

NOTE: To see how slow the growth of this series is for the value of p = 1, we consider the following table of partial sums. Recall
that f n is the nth term of the series and hence the nth partial sum is given by
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In[126]:= Clearp, s, n
sn_  Sumfk, k, 2, n

Out[127]= 
k2

n Logkp

k

The following output shows that the sum of the first ten thousand terms is only about 3.01501088. 

In[128]:= p  1;

Ns10 000
Out[129]= 3.01501

Here is a plot of the graph of the first ten thousand partial sums in steps of 1,000.

In[130]:= ListPlotTablen, sn, n, 1000, 10 000, 1000

Out[130]=

4000 6000 8000 10 000

2.80

2.85

2.90

2.95

3.00

ü 10.3.3  Absolute and Conditional Convergence

Suppose an > 0 for all n. The infinite series 

  n=1
¶ -1n an  

is called an alternating series.  If the series n=1
¶ -1n an  is convergent but the series n=1

¶ an  is divergent, then the alternating

series is called conditionally convergent.  If n=1
¶ an  is convergent, then the alternating series n=1

¶ -1n an  is called absolutely

convergent.   

Alternating Series Test: If an is decreasing and limnØ¶an = 0, then the series n=1
¶ -1n an is convergent. 

Example 10.16.  Determine if the given series is conditionally or absolutely convergent. 

a)   n=1
¶ -1n

n2+1
c)   n=2

¶ -1n

n ln n
  

Solution:

a) We define an =
1

n2+1
 in Mathematica and check that an satisfies the conditions of the Alternating Series Test.

In[131]:= Cleara, n
an_ :

1

n2  1
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In[133]:= Limitan, n   
Out[133]= 0

In[134]:= fx_  ax;

f'x

Out[135]= 
2 x

1  x22

Thus, an is decreasing since f ' x > 0, where f n = an.  Moreover, an converges to 0. Hence, the series n=1
¶ -1n

n2+1
   is convergent

by the Alternating Series Test.

To check absolute convergence, we use the Limit Comparison Test with bn =
1

n2
.

In[136]:= Limit an
1  n2

, n  Infinity

Out[136]= 1

Since  the  series  n=1
¶ 1

n2
 is  convergent  and  the  previous  output  shows  limnØ¶

an

bn
= 1,  we  conclude  that  the  series

n=1
¶ an =n=1

¶ 1

n2+1
 is also convergent.  Therefore, the alternating series n=1

¶ -1n

n2+1
 is absolutely convergent.

b) We procced as in part a). 

In[137]:= Cleara, n
an_ :

1

n Logn
In[139]:= Limitan, n   
Out[139]= 0

In[140]:= fx_  ax;

f'x

Out[141]= 
1

x2 Logx2


1

x2 Logx

For the same reasons we conclude that an  is decreasing and converges to 0.  Hence, the series n=2
¶ -1n

n ln n
   is convergent by the

Alternating Series Test.

To check absolute convergence, we apply the Intgeral Test to f x:
In[142]:= Clearm

Limit
2

m

fx x, m  Infinity
Out[143]= 

From this, we conclude that the series is conditionally convergent.

Example 10.17.  Show that the series 
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  n=1
¶ -1n

n2+1

  

is conditionally convergent.  Find a value of n for which the partial sum sn  approximates the series by an error less than 10-5.
Also, find the corresponding value for sn.

Solution: We leave it for the reader to check that the series converges conditionally as in the preceding example.  For the second
part of the problem, we proceed by first defining the partial sums of the series.

In[144]:= Clears, a, n
an_ :

1

n2  1

sn_ : Sum1k ak, k, 1, n
If S denotes the sum of the alternating series, it can be shown that S - sn < an+1 (refer to your calculus text for a proof of this
fact).  The following table of values gives some numerical evidence of this fact:


n1

 1n

1  n2

In[147]:= TableNAbs
n1

 1n

n2  1

 sm, Nam, m, 1, 10 

Out[147]= 0.266189, 0.707107, 0.181024, 0.447214,
0.135203, 0.316228, 0.107332, 0.242536, 0.088784, 0.196116,
0.075615, 0.164399, 0.0658064, 0.141421, 0.0582284, 0.124035,
0.0522031, 0.110432, 0.0473006, 0.0995037

In[148]:= ClearS, n
S  

n1

 1n

n2  1

Out[149]= 
n1

 1n

1  n2

The table below gives the values of an for large values of n.

In[150]:= TableNa10n , n, 1, 10 
Out[150]= 0.0995037, 0.0099995, 0.001, 0.0001,

0.00001, 1.  106, 1.  107, 1.  108, 1.  109, 1.  1010

Thus, n = 106 is a possible value. But solving an = 10-5 can give us a more accurate value.

In[151]:= NSolveax  105, x
Out[151]= x  100 000., x  100 000.
Thus, if n = 100 001, we have S - sn < 10-5.  We confirm this with Mathematica:
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In[152]:= NS  s100 001
Out[152]= 4.99993  106

Can you find a smaller value of n for which S - sn < 10-5?

ü 10.3.4  Ratio Test

 The Ratio Test:  Suppose an > 0 and let    

   r = limnØ¶
an+1

an
.  

a) If r < 1, the series n=1
¶ an converges. 

b) If r > 1, the series n=1
¶ an diverges.

c) If r = 1, no conclusion can be drawn about the convergence of the series n=1
¶ an.  In other words, if r = 1, then we must use

another test to determine the convergence. 

Example 10.18.  Use the Ratio Test to determine the convergence of the following series.

a)   n=1
¶ nn

n!
c)   j=2

¶ 1

j ln j3
c)  n=1

¶ 3 n3+40 n2+4

n5+200 n4+1

Solution: For each series, we define an to be its nth term and evaluate limnØ¶
an+1

an
.  

a) 

In[153]:= Cleara, n
an_ :

nn

n

In[155]:= Limitan  1  an, n   
Out[155]= 

Since ‰ > 1, the series n=1
¶ nn

n!
 converges by the Ratio Test.

b)

In[156]:= Cleara, j
aj_ :

1

j Logj3

Limitaj  1  aj, j   
Out[158]= 1

This output means that we must use a different test. However, this is an instance of Example 11.12 in this text with p = 3.  Hence,
the series converges by the Integral Test.

c)

In[159]:= Cleara, n

an_ :
3 n3  40 n2  1

n5  200 n4  1
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In[161]:= Limitan  1  an, n   
Out[161]= 1

Again, this output means we are forced to use a different test.  Therefore, we shall use the Limit Comparison Test instead. To this

end, we define bn =
3

n2
:

In[162]:= Clearb, n
bn_ :

3

n2

In[164]:= Limit an
bn , n  Infinity

Out[164]= 1

Since the series n=1
¶ 1

n2
 is convergent, we conclude that the series n=1

¶ 3 n3+40 n2+4

n5+200 n4+1
 is also convergent.

ü 10.3.5  Root Test

 The Root Test:  Suppose an > 0 and let    

   r = limnØ¶ an1n.  

a) If r < 1, the series n=1
¶ anconverges. 

b) If r > 1, the series n=1
¶ an diverges.

c) If r = 1, no conclusion can be drawn about the convergence of the series n=1
¶ an. In other words, if r = 1, then we must use

another test to determine the convergence. 

Example 10.19.  Use the Root Test  to determine the convergence of the following series:

a)   n=1
¶  n

2 n+1
n

b)   n=1
¶ 1

n 3n+n2
c)  n=1

¶ 3 n+1

n2+n+1

Solution: For each series we define an to be its nth term and evaluate limnØ¶ an1n. 

a) 

In[165]:= Cleara, n
an_ :

n

2 n  1

n

In[167]:= Limitan1n, n   

Out[167]=
1

2

Thus, the series n=1
¶  n

2 n+1
n

 converges by Root Test.

b)

In[168]:= Cleara, n
an_ :

1

n 3n  n2
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In[170]:= Limitan1n, n   

Out[170]=
1

3

Even though the preceding Limit command is returned as unevaluated, the N command reveals that it is approximately 1/3. 

In[171]:= N
Out[171]= 0.333333

To verify this, we use the Squeeze Theorem (discussed in your calculus text) with bn =
1

2 n 3n  and cn =
1

n 3n .   First, note that

bn § an § cn.  We can verify this using the following plot: 

In[172]:= Plot 3x

2 x
, ax,

3x

x
, x, 1, 10, PlotStyle  Green, Red, Blue

Out[172]=

4 6 8 10

0.01

0.02

0.03

0.04

We now define bn and cn as and evaluate limnØ¶ cn1n  and limnØ¶ bn1n.

In[173]:= Clearb, c, n
bn_ :

1

2 n 3n

cn_ :
1

n 3n

In[176]:= Limitbn1n, n  Infinity
Limitcn1n, n  Infinity

Out[176]=
1

3

Out[177]=
1

3

Thus, we also have limnØ¶ an1n = 1

3
 and hence the series converges by the Root Test. 

c)

In[178]:= Cleara, n
an_ :

3 n  2

n2  n  1
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In[180]:= Limit an1n, n   
Out[180]= 1

The Root Test fails. Let us try the Ratio Test:

In[181]:= Limit an  1
an , n  Infinity

Out[181]= 1

The Ratio Test fails as well. We can easily verify that the Integral Test is applicable. We will evaluate the integral    

In[182]:= 
1



ax x

Integrate::idiv : Integral of 
2

1 - x + x2
+

3 x

1 - x + x2
 does not converge on 1,¶. à

Out[182]= 
1

 2  3 x

1  x  x2
x

To confirm the divergence of the improper integral, we leave it to the reader to evalaute the function Fx defined below for large
values of x. 

In[183]:= ClearF, b
Fb_ : 

1

b

ax x

ü Exercises 

In Exercises 1 through 6, use the Comparison Test or the Limit Comparison Test to determine if the given series is convergent. If
it is convergent, then find its sum.

1.  n=1
¶ n

n3+1

2.  n=2
¶ ln n

n2+3 ln n
3.  n=1

¶ n4+200 n2+1000 n+2222

n6+5 n4+n+1
  

4.  n=1
¶ ln n

n2
   5.  n=2

¶ 1

nln n
6.  n=1

¶ 1 - 2-1n   

 In Exercises 7 through 9, use the Integral Test to determine if the given series is convergent. If it converges, then find its sum.

7.  n=1
¶ n

n2+1
8.  n=2

¶ n

2n 9.  n=1
¶ ln n3

n2
  

10. For what values of p does the series n=1
¶ 1

np ln n
 converge?

11. Consider the series n=2
¶ ln nk

np .  

a.   Fix a value of p (say, p = 2 or p = 1 2) and find all values of k for which the series converges.

b.   Fix a value of k (say, k = 2 or k = -2) and find all values of p for which the series converges.

c.   Generalize the results of a) and b) to all values of p and k.

12.  Let f  be  a positive valued function that decreases on 1, ¶ and let an = f n. It can be shown that 
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 1

¶
f x „ x §n=1

¶ an § a1 + 1

¶
f x „ x .

a.  Use f x = 1

x1.1
 to verify this. 

b.  Approximate n=1
¶ 1

n1.1
 using its nth partial sums with n = 10, 100, 1000, 10 000.

In Exercises 13 through 16, determine if each of the infinite series is absolutely convergent, conditionally convergent, or diver-

gent. Justify your conclusions! 

13.  n=1
¶ -1n n2-1

n2+1
14. n=1

¶ 20 n2-n-1

n3+n2+33
15. n=1

¶ -2n

n!
16.  n=1

¶ -1n+1 n + 1 - n  ]

17.  Discovery Exercise: 

a.  Determine the convergence or divergence of n=2
¶ 1

n ln ln ln n0.5
, n=2

¶ 1

n ln ln ln n , and n=2
¶ 1

n ln ln ln n2
.

b.  Generalize your work in part a) by determining for which real numbers p the seriesn=2
¶ 1

n ln ln ln np  converges.

In Exercises 18 through 25, determine the convergence or divergence of the given infinite series using any of the convergence
tests discussed in this section.

18. n=1
¶ 3 n+1

4 n+5
19. n=1

¶ n

2 n2+1
 20. n=1

¶ n+3

4 n3+5
  21. n=1

¶ n 2

3
n

 

22. n=1
¶ n 3

2
n

 23. n=1
¶ nn

n!
24. n=1

¶ n!2

3 n!  25. n=0
¶ -1n 1 + 1

n
n

 

26.  The Ratio Test proved to be inconclusive for some of the series in the previous exercise. Can you conjecture for what type of
series the Ratio Test will fail in general? Use other tests to rework the problems in the first exercise where the Ratio Test failed.

27. Of the following four conditions, one guarantees that a series will diverge, two conditions guarantee that a series will con-
verge, and one has no guarantee (the series can either converge or diverge).  Identify each one and explain your reasoning.

limnØ¶
an+1

an
= 0

limnØ¶
an+1

an
= 1

2

limnØ¶
an+1

an
= 1

limnØ¶
an+1

an
= 2

28.  Identify the two series that are the same:

a. n=1
¶ n 3

4
n

b. n=0
¶ n + 1  3

4
n

c. n=1
¶ n 3

4
n-1

In Exercises 29 through 32, determine the convergence or divergence of the series: 

29.   n=1
¶ 2 n

n

+1) n  30,  n=0
¶ e-n  31.  n=1

¶  -2 n

3 n+1
3 n

 32.  n=1
¶  n

2 n+1
) n

 

33. Construct two examples of infinite series, the first convergent and the second divergent, for which the Root Test generates
inconclusive information.  

34. Use the Root Test to test for convergence or divergence of the series:
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a. 1

ln 33
+ 1

ln 44
+ 1

ln 55
+ 1

ln 66
+ ...

b. 1+ 
2

3
+ 3

32
+ 4

33
+ 5

34
+

6

35
+...

Hint: Write a formula for the general nth term in each case.

ü  10.4  Power Series

Students should read Sections 10.6-10.7 of Rogawski's Calculus [1] for a detailed discussion of the material presented in
this section.

ü 10.4.1  Taylor Polynomials

The Taylor polynomial of a given function f  at a point x = a is given by  

Tnx = f a + f ' a x - a + f '' a
2!

x - a2 +
f ''' a

3!
x - a3 + ....+

f na
n!

x - an.

The Mathematica Series[f,{x, a, n}] generates the nth Taylor polynomial Tnx plus a term of the form Oxn+1.  To obtain the

Taylor polynomial without this term, we use the command Normal[Series[f,{x, a, n}]].

The nth remainder Rnx of f x at x = a is defined by

Rnx = f x - Tnx.
Taylor's Theorem states that 

Rnx = 1

n! a

x
f n+1u x - un „u.

Here is a way to define the Taylor polynomial of f at x = a by defining Tnx and the nth remainder Rnx (using Taylor's Theo-

rem for Rn) without referring to Mathematica's built-in command Series. 

In[185]:= Cleara, x, f, T, R
Tx_, a_, n_ : 

k0

n Dfx, x, k . x  a

k
x  ak

Rx_, a_, n_ :
1

n


a

x

Dfu, u, n  1  x  un u

Example 10.20.  Let f x = ex.  Find its 5th Taylor polynomial at x = 0.

Solution: We use the Series command to obtain the answer: 

In[188]:= NormalSeriesEx, x, 0, 5

Out[188]= 1  x 
x2

2


x3

6


x4

24


x5

120

Using the polynomial Tx, a, n, we defined above we get 
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In[189]:= Clearf
fx_ : Ex

Tx, 0, 5

Out[191]= 1  x 
x2

2


x3

6


x4

24


x5

120

In[192]:= Rx, 0, 5

Out[192]=
1

120
120  120 x  120 x  60 x2  20 x3  5 x4  x5

Example 10.21.  Find the nth Taylor polynomial of f x at x = a for various values of a and n.  

 a) f x = x  b)  f x = cos x 

Solution:  a) We shall use the same function T[x,a,n] defined in the previous example (make sure you evaluate this function
before you evaluate the table below).

In[193]:= Cleara, x, f
Tx_, a_, n_ : 

k0

n Dfx, x, k . x  a

k
x  ak

Rx_, a_, n_ :
1

n


a

x

Dfu, u, n  1  x  un u

In[196]:= Clearf
fx_  x

TableFormTable Tx, a, n , a, 1, 5, n, 1, 3 ,

TableHeadings 

"at a=1", "at a=2", "at a=3", "at a=4", "at a=5", "n=1", "n=2", "n=3"
Out[197]= x

Out[198]//TableForm=

n=1 n=2 n=3

at a=1 1  1
2
1  x 1  1

2
1  x  1

8
1  x2 1  1

2
1  x  1

8
1  x2  1

16
1 

at a=2 2  2x

2 2
2  2x

2 2
 2x2

16 2
2  2x

2 2
 2x2

16 2
 2x3

64 2

at a=3 3  3x

2 3
3  3x

2 3
 3x2

24 3
3  3x

2 3
 3x2

24 3
 3x3

144 3

at a=4 2  1
4
4  x 2  1

4
4  x  1

64
4  x2 2  1

4
4  x  1

64
4  x2  1

512
4

at a=5 5  5x

2 5
5  5x

2 5
 5x2

40 5
5  5x

2 5
 5x2

40 5
 5x3

400 5

b) We proceed as in part a):
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In[199]:= Clearf
fx_  Cosx
TableFormTable Tx, a, n , a, 0, 2 Pi, Pi  2, n, 1, 4 ,

TableHeadings  "at a=0", "at a=/2", "at a=", "at a=3/2", "at a=2",

"n=1", "n=2", "n=3", "n=4"
Out[200]= Cosx
Out[201]//TableForm=

n=1 n=2 n=3 n=4

at a=0 1 1  x2

2
1  x2

2
1  x2

2
 x4

24

at a=/2 

2
 x 

2
 x 

2
 x  1

6
 

2
 x3 

2
 x  1

6
 

2
 x3

at a= 1 1  1
2
  x2 1  1

2
  x2 1  1

2
  x2  1

24


at a=3/2  3 

2
 x  3 

2
 x  3 

2
 x  1

6
 3 

2
 x3

 3 

2
 x  1

6
 3 

2
 x3

at a=2 1 1  1
2
2   x2 1  1

2
2   x2 1  1

2
2   x2  1

24
2

Example 10.22.  Let f x = 1

2+3 x2
. 

a) Find the Taylor polynomials Tnx of f  at x = 0 for n = 1, 2, ..., 6.
b) Draw the graphs of the function f  and its Taylor polynomials found in part a).
c) Over which interval does the nth Taylor polynomial gives a close approximation to f x if n = 4, n =10, and n = 20? 

Solution:

a) Here are the Taylor polynomials up to order n = 6.

In[202]:= Clearf
fx_ 

1

2  3 x2

TableFormTable n, Tx, 0, n , n, 1, 6 ,

TableHeadings  , "n", "Tn at a=0"

Out[203]=
1

2  3 x2

Out[204]//TableForm=

n Tn at a=0

1 1
2

2 1
2
 3 x2

4

3 1
2
 3 x2

4

4 1
2
 3 x2

4
 9 x4

8

5 1
2
 3 x2

4
 9 x4

8

6 1
2
 3 x2

4
 9 x4

8
 27 x6

16

b)  We first use the Plot command to plot the graphs of f  and its Taylor polynomial at x = 0 for the desired values of n.  We then

use the Show command to plot both graphs on the same axes.
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In[205]:= Clearplot1, plot2
plot1  Plotfx, x, 3, 3, PlotStyle  Red;
plot2  PlotEvaluateTableTx, 0, n, n, 1, 6, x, 3, 3 ;
Showplot1, plot2

Out[208]=

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

0.5

c) We use the same commands as in part b) except that we do not use the Table command. The first one is for the case n = 4.

In[209]:= Clearplot1, plot2
plot1  Plotfx, x, 3, 3, PlotStyle  Red;
plot2  PlotEvaluateTx, 0, 4, x, 3, 3 ;

Showplot1, plot2

Out[212]=

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

0.5

It seems that the two graphs are close to each other  if x is in the interval -0.5, 0.5. To see this close up, we recommend that
you change the range of values for x in both plots (plot1 and plot2) to the interval -1, 1. We can confirm this by plotting the 4th
remainder of f x at x = 0. 
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In[213]:= PlotEvaluateRx, 0, 4, x, 1, 1, PlotRange  1, 1

Out[213]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

We repeat the above with n = 10.

In[214]:= Clearplot1, plot2
plot1  Plotfx, x, 3, 3, PlotStyle  Red;
plot2  PlotEvaluateTx, 0, 100, x, 3, 3 ;

Showplot1, plot2

Out[217]=

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

0.5

The graph above clearly indicates the 10th Taylor polynomial gives a close approximation for f  in the interval -.6, .6. Again,
plotting  Rn will confirm this. 
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In[218]:= PlotEvaluateRx, 0, 10, x, 1, 1, PlotRange  1, 1

Out[218]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

If we continue in this manner, we see that the Taylor polynomial  Pn for large values of n gives a better approximation of f  in the
interval -1, 1.  In fact, for n = 20, we see that Rnx is almost zero in the interval -0.7, 0.7, which is an improvement over the
previous interval -0.6, 0.6 obtained for n = 10. 

In[219]:= PlotEvaluateRx, 0, 20, x, 1, 1, PlotRange  1, 1

Out[219]=
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

ü 10.4.2  Convergence of Power Series

A series of the form 

n=0
¶ anx - x0n = a0 + a1x - x0 + a2x - x02 + a3x - x03 + ....

is called a power series. 

The set of all x for which the series converges is called the interval of convergence.

If the series converges for x = x0 only, we say is radius of interval is R = 0. In this case, its interval of convergence is x0.
If the series converges for all real numbers x, we say its radius of convergence is R =¶. In this case, its interval of convergence
is -¶, ¶. 
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If the series converges for some x ∫ x0 and diverges for some y, then it can be shown that there exists R > 0 such that the power
series converges for all x for which x - x0 < R and diverges for all x for which x - x0 > R. The convergence at x = x0 - R
and x = x0 + R needs to be checked. 

When the radius of convergence R is a positive real number, there are four possiblities for the interval of convergence: 

x0 - R, x0 + R or x0 - R, x0 + R or x0 - R, x0 + R or x0 - R, x0 + R 
depending on the convergence at the end points of the intervals.

The radius of convergence R of the power series n=0
¶ anx - x0n can be found by using the Ratio or Root Test.  Let 

 r = limnØ¶
an+1

an
    or    r = limnØ¶ an

n

a) If r = 0, then R =¶. 
b) If r =¶, then  R = 0 .

c) If 0 < r <¶, then R = 1

r
.

Example 10.23.  Find the radius and interval of convergence for the given power series.

a)   n=0
¶ n

2 n+1
xn b)   n=1

¶ x-3n

n 3n c)  n=0
¶ x+2n

n2+n+1
 

d)   n=0
¶ nn xn e)   n=0

¶ 1

n!
x - 1n   

Solution:

a) Let us define smx to be the mth partial sum of the series and plot the graph of some of these partial sums. We will plot every
100th partial sum up to 10,000 terms.  

In[220]:= Clears, n, m
sx_, m_ : 

n0

m n

2 n  1
xn

In[222]:= PlotEvaluateTablesx, m, m, 1, 1000, 100, x, 2, 2

Out[222]=

-2 -1 1 2

-2μ1026

2μ1026

4μ1026

This clearly indicates that the partial sums diverge outside -1, 1. Here is the plot over the interval -1, 1.
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In[223]:= PlotEvaluateTablesx, m, m, 1, 1000, 100, x, 1, 1

Out[223]=

-1.0 -0.5 0.5 1.0

0.5

1.0

1.5

We now use calculus. Here, note that an =
n

2 n+1
 and x0 = 0. We first define an  in Mathematica and find the radius of conver-

gence. We recall a  (absolute value of a) is entered as Abs[a].

In[224]:= Cleara, n, r
an_ :

n

2 n  1

In[226]:= r  LimitAbsan  1
an , n  Infinity

Out[226]= 1

Thus, the radius of convergence is R = 1

r
= 1

1
= 1. The power series convrges on -1, 1. To check convergence at the endpoints

x = -1 and x = 1, we note that the power series becomes n=0
¶ n

2 n+1
-1nand n=0

¶ n

2 n+1
1n, both of which are divergent, since

their nth terms do not converge to 0. Here, Mathematica confirms the divergence at the endpoints.

In[227]:= 
n0

 n

2 n  1
1n

Sum::div : Sum does not converge. à

Out[227]= 
n0

 1n n

1  2 n

In[228]:= 
n0

 n

2 n  1
1n

Sum::div : Sum does not converge. à

Out[228]= 
n0

 n

1  2 n

Therefore, the interval of convergence is -1, 1.

b)  n=1
¶ x-3n

n 3n
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In[229]:= Cleara, r, n
an_ :

1

n 3n

In[231]:= r  Limit an  1
an , n  Infinity

Out[231]=
1

3

Thus the radius of convergence is R = 1

r
= 1

13 = 3. 

Since x0 = 3, the power series converges on x0 - R, x0 + R = 3 - 3, 3 + 3 = 0, 6. We need to check the endpoints x = 0 and
x = 6. We substitute these in the power series and evaluate  

In[232]:= 
n1

 x  3n

n 3n
. x  0, 6

Out[232]= Log2, 
Thus, the interval of convergence is 0, 6.

 c)  n=1
¶ x+2n

n2+n+1

In[233]:= Cleara, r, n
an_ :

1

n2  n  1

In[235]:= r  LimitAbs an  1
an , n  

Out[235]= 1

Hence, the radius of convergence is R = 1

1
= 1. Since x0 = -2, we see that the power series converges at least on the open interval

-2 - 1, -2 + 1 = -3, -1. To determine the actual interval of convergence we need to check the endpoints. As in part c), we
evaluate 

In[236]:= 
n0

 x  2n

n2  n  1
. x  3, 1

Out[236]= HypergeometricPFQ1, 113, 123,  3

2

 3

2
,

3

2

 3

2
, 1,

HypergeometricPFQ1, 113, 123,  3

2

 3

2
,

3

2

 3

2
, 1

In[237]:= N
Out[237]= 0.76131  4.70246  1016 , 1.79815  4.96787  1016 
Since this is  not clear, we examine the series by  plugging in by hand x = -3 and x = -1. When x = -3 the series becomes

n=1
¶ -3+2n

n2+n+1
= n=1

¶ -1n

n2+n+1
, which is an alternating series. We leave it to the reader to verify that the Alternating Series Test

applies in this case.  Thus, we have a convergent series.

42 Mathematica for Rogawski's Calculus



Next, we substitute x = -1 to obtain the series n=1
¶ -1+2n

n2+n+1
= n=1

¶ 1

n2+n+1
 to which we apply the Integral Test (verify that the

conditions of the Integral Test are satisfied):   

In[238]:= Integrate 1

x2  x  1
, x, 0, Infinity

Out[238]=
2 

3 3

Thus, the series converges in this case as well. Therefore, the interval of convergence for the power series is -3, -1.
  d)   n=0

¶ nn xn   

In[239]:= Cleara, r, n
an_ : nn

In[241]:= r  LimitAbs an  1
an , n  

Out[241]= 

Thus, the radius of convergence is R = 0 and the series converges for x = 0 only.

e)   n=0
¶ 1

n!
x - 1n

In[242]:= Cleara, r, n
an_ :

1

n

In[244]:= r  LimitAbs an  1
an , n  

Out[244]= 0

Thus, the radius of convergence is R =¶ and the series converges for all real x.  Hence, the interval of convergence is -¶, ¶.

ü 10.4.3  Taylor Series

The Taylor series for f x at x = a is given by the power series

 n=0
¶ f na

n!
x - an = f a + f ' a x - a + f '' a

2
x - a2 +

f ''' a
6

x - a3 + .....

The Mathematica command Series[f,{x, a, n}] generates the power series of f  at x = a to the order x - an.  It is not possible to
write all the terms explicitly since there are infinitely many.

Example 10.24.  Let f x = 1+x

1+x2
. 

a) Find the first ten terms of the Taylor series of f  at x = 0.
b) Estimate the radius and interval of convergence of the Taylor series of f  at x = 0.   

Solution:

a) We use the Series command to obtain the Taylor series as follows:   
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In[245]:= Clearf, x
fx_ :

1  x

2  x

In[247]:= Seriesfx, x, 0, 10

Out[247]=
1

2


3 x

4


3 x2

8


3 x3

16


3 x4

32


3 x5

64


3 x6

128


3 x7

256


3 x8

512


3 x9

1024


3 x10

2048
 Ox11

This output gives the Taylor series to order n = 10.

b) To first gain intuition for the radius of convergence of the Taylor series, we define the nth Taylor polynomial of f x as a

function of n (note our use of the Normal command to truncate the remainder term from the Taylor series).

In[248]:= ClearT, x, n
Tx_, n_ : NormalSeriesfx, x, 0, n

Here is a list of the first 20 of these polynomials. 

In[250]:= TableTx, n, n, 0, 10

Out[250]=  1

2
,

1

2


3 x

4
,

1

2


3 x

4


3 x2

8
,

1

2


3 x

4


3 x2

8


3 x3

16
,

1

2


3 x

4


3 x2

8


3 x3

16


3 x4

32
,

1

2


3 x

4


3 x2

8


3 x3

16


3 x4

32


3 x5

64
,

1

2


3 x

4


3 x2

8


3 x3

16


3 x4

32


3 x5

64


3 x6

128
,

1

2


3 x

4


3 x2

8


3 x3

16


3 x4

32


3 x5

64


3 x6

128


3 x7

256
,

1

2


3 x

4


3 x2

8


3 x3

16


3 x4

32


3 x5

64


3 x6

128


3 x7

256


3 x8

512
,

1

2


3 x

4


3 x2

8


3 x3

16


3 x4

32


3 x5

64


3 x6

128


3 x7

256


3 x8

512


3 x9

1024
,

1

2


3 x

4


3 x2

8


3 x3

16


3 x4

32


3 x5

64


3 x6

128


3 x7

256


3 x8

512


3 x9

1024


3 x10

2048


Observe that each polynomial appears twice, that is, T2 n = T2 n+1, since f  is an even function.  Next, we plot the graphs of some
of these polynomials:
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In[251]:= Clearplot1
plot1 

PlotEvaluateTableTx, n, n, 1, 20, x, 5, 3, PlotRange  10, 10

Out[252]=
-4 -2 2

-10

-5

5

10

To compare the graph of these polynomials, we plot the graph of f  and use the Show command.  

In[253]:= Clearplot2
plot2  Plotfx, x, 5, 3, PlotRange  10, 10, PlotStyle  Red

Out[254]=
-4 -2 2

-10

-5

5

10
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In[255]:= Showplot1, plot2, PlotRange  10, 10

Out[255]=
-4 -2 2

-10

-5

5

10

Observe that the graphs of the Taylor polynomials in the preceding plot seem to give a good approximation to f  only inside the
interval -2, 2.  This suggests that the radius of convergence is 2.  This becomes more evident as we plot the graph of Tn  for
large values of n as shown in the following plot, where n = 30, 35, 40, 45, 50.

In[256]:= Clearplot3
plot3  PlotEvaluateTableTx, n, n, 30, 50, 5, x, 3, 3;

plot4  Plotfx, x, 5, 3, PlotStyle  Red, Thickness0.002;
Showplot3, plot4, PlotRange  10, 10

Out[259]=
-4 -2 2

-10

-5

5

10

To prove that the radius of convergence is indeed R = 2, we first find a formula for the Taylor coefficients.  Based on the follow-

ing table, it is clear that a0 = 1 2 and an = -1n 32n+1 (prove this for all n).

In[260]:= an_ : Dfx, x, n  n . x  0

Tablean, n, 0, 10

Out[261]=  1

2
, 

3

4
,

3

8
, 

3

16
,

3

32
, 

3

64
,

3

128
, 

3

256
,

3

512
, 

3

1024
,

3

2048


We now apply the Ratio Test on n=0
¶ an xn.

46 Mathematica for Rogawski's Calculus



In[262]:= Cleara
an_  1^n  3  2^n  1
r  LimitAbs an  1

an , n  

Out[263]= 3 1n 21n

Out[264]=
1

2

Hence, the radius of convergence is R = 1 r = 2.

Next, we determine whether the endpoints should be included in the interval of convergence.  For this, we evaluate our Taylor
series at x = -2 and x = 2.

In[265]:= 
n1



an 2^n


n1



an 2^n

Sum::div : Sum does not converge. à

Out[265]= 
n1

 3

2
12 n

Sum::div : Sum does not converge. à

Out[266]= 
n1

 3 1n

2

This shows that the Taylor series diverges at both endpoints.  Thus, the interval of convergence is -2, 2. 
Example 10.25.  Let f x = sin x. 

a) Find the Taylor series of f  at x = 0.
b) Find the radius and interval of convergence of the Taylor series.   

Solution:

a) We repeat the steps in the previous example.

In[267]:= Clearf
fx_ : Sinx

In[269]:= ClearT
Tx_, n_ : NormalSeriesfx, x, 0, n

In[271]:= TableTx, n, n, 0, 10

Out[271]= 0, x, x, x 
x3

6
, x 

x3

6
, x 

x3

6


x5

120
, x 

x3

6


x5

120
, x 

x3

6


x5

120


x7

5040
,

x 
x3

6


x5

120


x7

5040
, x 

x3

6


x5

120


x7

5040


x9

362 880
, x 

x3

6


x5

120


x7

5040


x9

362 880
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Observe that all terms of the Taylor polynomials are odd powers of x.  Can you explain why?

Here is a plot of the graphs of the first ten of these polynomials and the function f .

In[272]:= Clearplot1, pl0t2
plot1  PlotEvaluateTableTx, n, n, 0, 10, x, 3 Pi, 3 Pi;
plot2  Plotfx, x, 3 Pi, 3 Pi, PlotStyle  Red;
Showplot1, plot2, PlotRange  10, 10

Out[275]=
-5 5

-10

-5

5

10

b) Observe that the higher the order of the Taylor polynomial the better it approximates f  over a wider interval.  To see this more
clearly, we plot Tn for n = 20, 40, 60.

In[276]:= Clearplot1, plot2
plot1  Plotfx, x, 40, 40, PlotStyle  Red, PlotRange  5, 5;
plot2 

Plot EvaluateTx, 20 , x, 40, 40 , PlotStyle  Blue, PlotRange  5, 5;
plot3  Plot EvaluateTx, 40 , x, 40, 40 ,

PlotStyle  Blue, PlotRange  5, 5;
plot4  Plot EvaluateTx, 60 , x, 40, 40 ,

PlotStyle  Blue, PlotRange  5, 5;
Showplot1, plot2

Out[281]=
-40 -20 20 40

-4

-2

2

4
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In[282]:= Showplot1, plot3

Out[282]=
-40 -20 20 40

-4

-2

2

4

In[283]:= Showplot1, plot4

Out[283]=
-40 -20 20 40

-4

-2

2

4

The preceding plots suggest that the radius of convergence for the Taylor series of sin x is R =¶.  To prove this, we first find a
formula for the Taylor coefficients an.  Again, based on the following table, it is clear that an = sinp n 2 n ! (prove this for all
n).

In[284]:= an_ : Dfx, x, n  n . x  0

Tablean, n, 0, 10

Out[285]= 0, 1, 0, 
1

6
, 0,

1

120
, 0, 

1

5040
, 0,

1

362 880
, 0

We now apply the Root Test on n=0
¶ an xn.
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In[286]:= Cleara, n, r
an_  SinPi  n  2  n

Tablean, n, 0, 10
r  LimitAbsan^1  n, n  

Out[287]=

Sin n 

2


n

Out[288]= 0, 1, 0, 
1

6
, 0,

1

120
, 0, 

1

5040
, 0,

1

362 880
, 0

Out[289]= 0

Hence, the radius of convergence is R =¶.

ü Exercises 

In Exercises 1 through 6,  determine the radius and interval of convergence for the given power series.

1. n=1
¶ -1n+1 xn

4n  2. n=0
¶ 2 n !  x

2
) n 3. n=1

¶ n! xn

2 n!
4. n=0

¶ -1n xn

n+1
5. n=0

¶ 4 xn  6. n=0
¶ 2 xn

n!

7. Give examples of power series that have an infinite radius of convergence, a radius of convergence containing only the center,
and a radius of convergence of one.

8. Find the Taylor series for f x = e2 x centered about c = 0.

9. Find the Taylor series for f x = ln x centered about the point c = 1.

In Exercises 10 through 12, find the MacLaurin series for each of the given function.

10. f x = sin 2 x 11. gx = sinh x 12. hx = arc sin x  x

13. Consider the function f x =  e-1x2
if x ∫ 0

0 if x = 0
.  

a.  Plot the graph of this function using Mathematica.
b.  Use the limit definition of the derivative and L'Hopital's Rule to show that every higher-order derivative of f  at x = 0 vanishes.
c.  Find the MacLaurin series for f .  Does the series converge to f ? 

14. Use Taylor series to evalaute the following definite integral, which cannot be integrated via elementary means: 

 0

1 sin x

x
„ x. 

15. Find the following limit using the theory of Taylor series.

  lim xØ 0 1-cos x

x
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