Chapter 7 Techniques of Integration

m 7.1 Numerical Integration

Students should read Section 7.1 of Rogawski’s Calculus [1] for a detailed discussion of the material presented in this
section.

Numerical integration is the process of approximating a definite integral using appropriate sums of function values. We already
saw in Chapter 5 of this text formulas for Right, Left, and Midpoint Rules and their subroutines LRSUM, RRSUM, and
MRSUM, respectively. In this section, we will develop two additional rules: the Trapezoidal Rule and Simpson’s Rule.

m 7.1.1 Trapezoidal Rule
The Trapezoidal Rule approximates the definite integral j; f (X) d x by using areas of trapezoids and is given by the formula:

Th = S((b-a)/n)(Yo +2Yy1 + ... + 2Y¥n-1 + Yn)

where n is the number of trapezoids and y; = f(a+i(b—a)/n) . This formula can be found in your calculus text. Here is a
Mathematica subroutine, called TRAP, for implementing the Trapezoidal Rule:

n1:= Clear[f, a, b, n]

n2= TRAP[a_, b_,n_] :=
(Ffal + 2Sum[fla+ix (b-a)/n], {i,1,n-1}] + f[b]) (.5 (b-a) /n)

Example 7.1. Calculate the area under the function f(x) = x? on [0, 1] using the Trapezoidal Rule for various values of n.
Solution: The following output gives a table of approximations of lez d x based on the Trapezoidal Rule for n = 10, 20, ..., 100.

nEr= FIX_] 1= X2
TabIeForm[Table[{n, N[TRAP[O, 1, n]]}, {n, 10, 100, 10}],
TableHeadings » {{}, {"n", " Ta"}}]

Out[4]//TableForm=

n Th

10 0.335

20 0.33375
30 0.333519
40 0.333438
50 0.3334
60 0.33338
70 0.333367
80 0.333359
90 0.333354
100 0.33335

It is clear that these values are converging to 1/3, which is the exact value of our definite integral:
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out[s]=

m 7.1.2 Simpson’s Rule

One difference between Simpson’s Rule and all the other rules we have developed so far (TRAP, LRSUM, RRSUM, and
MRSUM) is that the number of partition points, n, in this case, must be even. The other difference is that Simpson’s Rule is a
quadratic approximation based on parabolas, whereas the other rules are linear approximations based on lines. The formula for
Simpson’s Rule is given by (refer to your calculus text for details):

Sh=(1/3)[yo+ 4y1+2Y,+4y3+2Ys+ ... +4 Yy 3+2Yn 2 +4Yy1+Yal (b—a)/n
=(1/)[(Yo+ 4y1+Y2)+ (Yo +4Yy3+Ya) + ..+ (Yn2 +4 Yn1 + yn)] (b —a)/n

where y; = f(a +i(b—a)/n). Here is a Mathematica subroutine, called SIMP, for implementing Simpson’s Rule:
nel= Clear[a, b, n]

n7= SIMP[a_, b_,n_] :=
(1/3)Sum[f[a + (20 -2) (b-a)/n] + 4F[a + (21-1) (b-a)/n] +
fla+2i1(b-a)/n], {i, 1, n/2}] (b-a) /n
Example 7.2. Calculate the area under the function f(x) = x2 on [0, 1] using Simpson’s Rule for various values of n.

Solution: We use the same set of values of n as in the previous example. This will allow us to compare Simpson’s Rule with the
Trapezoidal Rule.

nigl= F[X_] -= NG
TabIeForm[TabIe[{n, N[SIMP[O, 1, n]]}, {n, 10, 100, 10}71,
TableHeadings - {{}, {"n", " sa"}}]

Out[9]//TableForm=

n Sn
10 0.333333
20 0.333333
30 0.333333
40 0.333333
50 0.333333
60 0.333333
70 0.333333
80 0.333333
90 0.333333
100 0.333333

Notice how fast SIMP converges to the actual value of the integral (1/3) compared to TRAP.

Example 7.3. Calculate the definite integral of f(x)= sin(25 x2) on [0, 1] using Simpson’s Rule and approximate it to five
decimal places. What is the minimum number of partition points needed to obtain this level of accuracy?

Solution: We first evaluate SIMP using values for n in increments of 20.
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niop= FIX_] 2= Sin[25x?]
TableForm[TabIe[{n, N[SIMP[O, 1, n]]}, {n, 20, 200, 20}71,
TableHeadings » {{}, {"n", " sn"}}]

Out[11]//TableForm=

n Sn
20 0.0958943
40 0.10526
60 0.105526
80 0.105566
100 0.105576
120 0.10558
140 0.105582
160 0.105582
180 0.105583
200 0.105583

Based on the output our approximation, accurate to five decimal places, is 0.10558. This first occurs between n =100 to n = 120.
We evaluate SIMP inside this range to zoom in on the minimum number of partition points needed.

nizk= F[X_] 2= Sin[25x?]

TableForm[TabIe[{n, N[SIMP[O, 1, n]]}, {n, 100, 120, 2}71,
TableHeadings » {{}, {"n", " sn"}}]

Out[13]//TableForm=

n Sn
100 0.105576
102 0.105577
104 0.105577
106 0.105578
108 0.105578
110 0.105579
112 0.105579
114 0.105579
116 0.10558

118 0.10558

120 0.10558

Thus, we see that the minimum number of points needed is n = 116. How does this compare with the minimum number of points
needed by TRAP to obtain the same level of accuracy?

NOTE: Observe that SIMP does not converge as fast in this example as in the previous example. This is because the function
f(x)= sin(25 x2) is oscillatory as the following graph demonstrates:



4 Mathematica for Rogawski's Calculus

4= Plot[F[x], {X, 0, 1}]

Ryauiil
R

Try increasing the frequency of this function, say to sin 100 x to see how well SIMP performs.

= 7.1.3 Midpoint Rule

Since most calculus texts include again the Midpoint Rule in the section on numerical integration, for completeness, we will too.
The Riemann sum using the midpoints of each subinterval is given by the following formula:

niisl= Clear [F]
MRSUM[a_, b _, n_] :=Sum[f[a+ (i-1/2) x (b-a) /n] %= (b-a) /n, {i, 1, n}]

Example 7.4. Calculate the area under the function f(x) = x% on [0, 1] using the Midpoint Rule for various values of n.

Solution:

na7p= F[X_] :
TabIeForm[TabIe[{n, N[MRSUM[O, 1, n]]}, {n, 10, 100, 10}7],
TableHeadings -» {{}, {"n", "Midpoint rule"}}]

Out[18]//TableForm=

n Midpoint rule
10 0.3325
20 0.333125
30 0.333241
40 0.333281
50 0.3333
60 0.33331
70 0.333316
80 0.33332
90 0.333323
100 0.333325
m Exercises

1. Consider the definite integral flzln(x) dx.

a) Using the Trapezoidal Rule, Simpson's Rule, and Midpoint Rule, approximate this integral for n = 10, 20, ..., 100.

b) Compare how fast each subroutine (TRAP, SIMP, MRSUM) converges to fln(x)dx and decide which of these rules is
"best.”
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2. Repeat Exercise 1 for the following definite integrals:
a) Ki dx b) Llcos(xz) dx ) Llexz dx

x+1
Can you make any general conclusions about which rule (Trapezoidal, Simpson’s, Midpoint) is best?

3. For each of the functions given below, set up a definite integral for the volume of the solid of revolution obtained by revolving
the region under f (x) along the given interval and about the given axis. Then use the subroutines TRAP, SIMP, and MRSUM
to approximate the volume of each solid accurate to two decimal places (use various values of n to obtain the desired accuracy).

a) f (x) = cosx; [0, n/2]; x-axis b) f(x) = e*: 10, 1]; y-axisc) f(x) =sinx, [0, xr], X — axis

m 7.2 Techniques of Integration

Students should read Sections 7.2 trhough 7.4 and 7.6 of Rogawski's Calculus [1] for a detailed discussion of the material
presented in this section.

All calculus texts have at least a chapter devoted to "Techniques of Integration.” When using Mathematica, these techniques are
usually not necessary since Mathematica automatically gives you the answer.

m 7.2.1 Substitution

On occasion, we do need to use techniques of integration, even when using Mathematica.

Example 7.5. Evaluate the following integral: fzx V(@) -1 dx.

Solution: We evaluate this integral in Mathematica:

In[19]:= JZX \I (2X)2—l dx

2X [T 4% — Log|2% + /~1+ 4% |
Log[4]

Out[19]=

To students in a first-year calculus course, this answer makes no sense. There are many integrals that Mathematica cannot

evaluate at all, or cannot evaluate in terms of elementary functions (such as the integral above). Some of these integrals are

doable in terms we should understand, once we first use an appropriate technique of integration. In the above example, all we
need to do is first make the following substitution: u = 2* and d u = (In 2) 2*d x, which transforms the integral to:

1 [
In[20];= ———— j U2 -1 du

Log[2]

TRV 2 _1
> u 1+u 2Log

Log[2]

U+\/—1+U2]

out[20]=

This is the correct answer. All we need to do is substitute 2* for u, and add the arbitrary constant of integration, getting:

2|_olg[2] ( ZXW - Log[2" + m] )+e

Note that the Mathematica function Log[x] is equivalent to the standard form In x.

m 7.2.2 Trigonometric Substitution



6 Mathematica for Rogawski's Calculus

Example 7.6. Evaluatef

X2\ x2-9

Solution: By hand, the integral dx would normally be evaluated with a trigonometric substitution of the form

x = 3secd. But with Mathematica, we can do this directly:

In[21]:=

J o=

9 X

Out[21]=

This, of course, is the correct answer, when we remember that Mathematica does not add an arbitrary constant to indefinite
integrals.

m 7.2.3 Method of Partial Fractions

Integrals of rational expressions often require the Method of Partial Fraction Decomposition to evaluate them (by hand). For
example:

(x+4)

f3x3 _f(x+4 x+1)dx 5In|x+4|-2In|x+1|=In L)

X2+5 x+4

On the other hand, Mathematica will give us essentially the same answer for this integral, but does its work behind the scenes
without revealing its technique:

3x-3

In[22]:= Slmpllfy[j le]

x2+5x+4

ou2= -2 Log[1+X] +5Log[4 + X]

If we would like to see the partial fraction decomposition of the integrand, Xi;’xi‘l, Mathematica will also do that for us without

strain by using the Apart command:

3x-3
In[23]:= Apart[ ]
x2+5x+4
2 5
Out[23]= - +

1+X 4+X

2 x34x2-2 x+2

Example 7.7. Evaluatef
()<2+1)2

Solution: We simply evaluate this integral using Mathematica:

J2x3+ X2 -2x + 2
In[24]:= dx
(x2+ 1)°

4+ X 3 ArcTan[X]
out[24]= + +Log [1 + XZ]
2 (1+x2) 2
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3 y2_ .. R
ZXX2XE then this is straightforward
(x2+1)

But again, if we would like to see the partial fraction decomposition of the integrand,

with Mathematica:

2x3+ X2 -2%x + 2
(x2+ 1)°

1-4x 1+2x

In[25]:= Apart[

]

out[25]= +
(1+x2)%  1+x2

m Exercises

1. Evaluate f(l +In(x)) V 1+ (xIn(x))? dx with Mathematica. If it doesn't give an understandable answer, use a technique of
integration that changes the integral into one that Mathematica will evaluate.

In Exercises 2 through 5, use Mathematica to find the partial fraction decomposition of the given functions and then integrate
them:
. X2 +3x—44 . 3x2—4 x+5 4. 25 5. 10
(x=3) (x+5) (3x-2) (x=1) (x2+1) X (x2+2 x+5) X(x2+2 X+5)2

In Exercises 6 through 10, use Mathematica to evaluate the given integrals.

G.ILOZX 7.fx3\/9—x2 dx 8.

(-2

f L dx
V 25+x2

9. [sin®xdx 9. fta“_ltdt 10. [sinh® x cosh x d x

1412

m 7.3 Improper Integrals

Students should read Section 7.7 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Recall that there are two types of improper integrals.

Type I: If we assume that f (x) is integrable over [a, b] for all b = a, then the improper integral of f (x) over [a, co) is defined as
f"f(x)clx = Iimtﬂogf(x)alx,
provided this limit exists. Similarly, we define
Potdx = lime o [Pf0dx,
provided this limit exists.
Type L1 If f (x) is continuous on [a, b) but discontinuous at x = b, we define
jabf(x)clx = Iimtﬁb_fatf(x)dx,
provided this limit exists. Similarly, if f (x) is continuous on (a, b] but discontinuous at x = a,
j:f(x)de = Iimt%a+ff(x)aix,
provided this limit exists. Finally, if f (x) is continuous for all x on [a, b] except at x = ¢, where a < ¢ < b, we define

j:f(x)clx= Iimm_f:f(x)clx+ Iimm+ff(x)dx,
provided both of these limits exist.



8 Mathematica for Rogawski's Calculus

By using the Limit command in Mathematica along with Integrate, Mathematica eliminates the drudgery of having to evaluate
these integrals by hand.

Example 7.8. Evaluate the following improper integrals:

a) g—idy
b) [“e X dx
c) Exlnxdx

1
d)f;1+X2 dx

Solution:

a) We evaluate

1
In[26]:= J'm— dy
20y

1
Integrate::idiv : Integral of — does not converge on {20, co}. >

y
1
out[26]= Jw— dy
20y

Thus, evaluating this integral directly using Mathematica tells us it does not exist. Alternatively, we could have used the limit
definition:

t1
In[27]:= Limit[f —dy, t-» oo]

20y

Out[27]= <o

Observe the difference in the two outputs above. Both correctly express the answer as divergent; however, the second answer is
better since it reveals the nature of the divergence (infinity), which is the answer we would expect if solving this problem by hand.

b) We evaluate

In[28]:= re‘z X dx
2

1

2t

Out[28]=
Again, we obtain the same answer using the limit definition (as it should):

t
In[29]:= Limit[j e?Xdx , to oo]
2

1

2t

Out[29]=

Mathematica will similarly handle discontinuities. In the following example, the function has a discontinuity at x = 0.

¢) We evaluate
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1
In[30]:= J X Log[Xx] dx
o

Out[30]= — —

1
In[31]:= Limit[ijog[x] dx, t- 0, Direction -» —1]
t

, (t¢Reals || O<Re[t] <1||Re[t] >1) &&

Nl

ouzi= ConditionalExpression [—

(%t eReaIs||Re[rtt] >0 ] Re{rtt] s—l)]

d) We evaluate

1
In[32]:= f d X
—o0 1+ X2

Out[32]= JT

Note that Mathematica does not require us to break the integral up into two integrals, which would be required according to its
definition, if evaluated by hand. On the other hand, there is nothing wrong with dividing this integral into two in Mathematica:

NOTE: Observe that it does not matter where we divide the integral. It is valid to express fm L dx+ f L ix for the

1+x2 1+x2

integral f; lsz dx for any real value a as long as they are convergent. However, evaluating this sum in Mathematica yields

different expressions for the answer, which depend on the sign of a and whether it is real or complex. This is shown in the
following output:

inza= Clear[a]

1 1
f t:11X+Jm dx
o1 + X2 a 1+x2

out[35]= ConditionalExpression[

% (JTH'LLog[lHia]—jl H

Conjugate[Log[l-ia]] Refa] ==0&&Im[a] <0

Log[l-1a] True
1 i ; .
- (eriLog[lfjla] . HConJugalte[Log[lﬂlaH Re[a] ==0&&Im[a] >0 ] 1.
2 Log[1l+ 1 a] True
Im[a] sl}

If instead, a is given a fixed value, then Mathematica will give us our answer of x:



10 Mathematica for Rogawski's Calculus

niEe= a=1

1 1
ﬁ d1X+J0 dx
o1 + X2 a 1+x2

out3e]= 1

Out[37]= JT

m Exercises
In Excercises 1 through 8, evaluate the given improper integrals:

1 [* eotat 2, L dx 3. [— dx 4. [ xe™ dx

-3 (x+4)32 (x+2)1/3
5 [P-L ax 6. [ L gx 7. [PL ax 8 L ax
: x—1 * J—co eX4e X : fl‘m %999 : fl‘m 1003

11. Find the volume of the solid obtained by rotating the region below the graph of y = ¢ about the x-axis for 0 < x < co.

12. Determine how large the number b has to be in order that f"xz—lﬂ dx < .0001.

13. Evaluate the improper integral f_11|?1| dx.
X

1
x2+1

14. Determine how large the number b should be so that f’ dx < .0001.

15. Consider the function defined by
G = [ttetdt

a) Evaluate G(n) forn=0, 2,, 3, 4, ..., 10. Make a conjecture about these values. Verify your conjecture.
b) Evaluate G((2n-1)/2),forn=1, 2, 3, ...10. Make a conjecture about these values. Verify your conjecture.
¢) Plot the graph of G(x) on the interval [0, 5].

NOTE: The function G is called the gamma function and is denoted by I'[x]. In Mathematica it is denoted by Gamma[x]. The
gamma function was first introduced by Euler as a generalization of the factorial function.

m 7.4 Hyperbolic and Inverse Hyperbolic Functions

Students should read Section 7.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

m 7.4.1. Hyperbolic Functions

The hyperbolic functions are defined in terms of the exponential functions. They have a direct connection to engineering
mathematics, including bridge construction. For example, cables from suspension bridges typically form a curve called a
catenary (derived from the Latin word catena, which means chain) that is described by these functions.

The six hyperbolic functions are denoted and defined as follows:

eX—e*
eX+e

. X_ =X X —X
smhx:%, coshx:%, tanh x =

eX+e* 2
apet sechx = prapet cschx = Py

cothx =



Chapter 1 11

The reason these functions are called hyperbolic functions is due to their connection with the equilateral hyperbola x? — y? = 1.
Here, one defines x = cosht and y = sinht. Hence, one obtains the basic hyperbolic identity cosh? t — sinh? t = 1, much the same
manner as the corresponding trigonometric identity cos?t + sin’t =1, when one considers the unit circle x? + y2 =1 with
x=costand y=sint.

In Mathematica, we use the same notation with the obvious convention that the first letter of each function is capitalized and
square brackets must be used in place of parentheses. Thus, sinh x will be entered as Sinh[x].

Example 7.9. Consider the hyperbolic sine function f(x) = sinh x.
a) Plot the graph of f.

b) From the graphs deduce the domain and range of the function.
c) Is f bounded?

d) Does f attain an absolute minimum? Maximum?

e) Repeat a) through d) for the hyperbolic function g(x) = cosh x
) Repeat a) through d) for the hyperbolic function h(x) = tanh x.

Solution: We begin by defining f in Mathematica:

inizel= Clear [F, X]
f[x_] = Sinh[Xx]

ouz9l= Sinh[x]
a) We next plot its graph on the interval [-3, 3].

In[40]:= PlOt[f[X], {X, -3, 3]‘]

10+

Out[40]=

-3 -2 = 1 2 3

,lo L

b) The preceding graph indicates that the domain and range of sinh x is (—c0, o). To convince yourself, you should plot the graph
over wider intervals. We should also expect this from the definition of sinh x itself. Can you explain why?

¢) The function sinh x is not bounded. The graph earlier should not be used as a proof of this. However, we can evaluate its limit
at —oo and oo to see that this is indeed true.

n41= LImMIt[F[X], X » -]
Limit[F[X], X » o]

Out[41l]= —oo
Out[42]= oo
d) The limits just computed show that sinh x has no absolute maximum or minimum since it is unbounded.

e) Next, we consider the hyperbolic cosine function denoted by cosh x.
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n43= Clear[g, X]
g[x_] = Cosh[x]

outs4l= Cosh [X]

nasi= Plot[g[X], {X, -3, 3}]

10+

Out[45]=

L I T 3

The preceding graph indicates that the domain of cosh X is (—co, c0). The range appears to be [1, o). Can you prove this?

The hyperbolic cosine function, cosh x, is not bounded from above. This can be seen from the following limits:

6= Limit[Cosh[X], X » -]
Limit[Cosh[X], X » x]

Out[46]= oo

Out[47]= oo

Again, since cosh x is not bounded from above, it follows that cosh x has no absolute maximum. As we have observed in part b)
of this example, cosh x has absolute minimum value 1, attained at x = 0.

f) Finally, we consider the hyperbolic tangent function, tanh x:

nag= Clear[h, X]
h[x_1 = Tanh[X]

out49)= Tanh [X]

niso= Plot[h[X], {X, -3, 3}]

10+

05F

Out[50]= I I I | |

-05r+

—-1.0+
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Again, the preceding graph indicates that the domain of tanh x is (—co, o). The range appears to be (-1, 1). This can be seen
from the following limits:

5= Limit[Tanh[X], X » -]
Limit[Tanh[X], X » o]

outs1= -1

out52= 1

The graph of tanh x also indicates that it is strictly increasing on its domain. This can be proven by showing that its derivative,
which we will calculate later, is strictly positive. It is clear that tanh x has no absolute extrema.

NOTE: The reader will notice some similarities between the hyperbolic functions and the associated trigonometric functions.
Moreover, if one studies the theory of functions of a complex variable, the relationship between these classes of transcendental
functions becomes even more transparent; for numerous identities exist between the classes of functions.

m 7.4.2 ldentities Involving Hyperbolic Functions

It is immediate that the ratio and reciprocal identities for the hyperbolic functions coincide with their trigonometric counterparts.
In fact, for each trigonometric identity, there is a corresponding (not necessarily the same) hyperbolic identity. Following are
some examples.

Example 7.10. Show that the following identities hold true.
a) 1 — tanh? x = sech? x b) cosh(x + y) = cosh x cosh y + sinh x sinh y

Solution:
a) We use the definitions for tanh x and sech x to express each side of the identity in terms of exponentials:
nis3= Simplify[ (1 - Tanh[x]?) /. Tanh[x] » (EAX-E~(-X)) / (E~"X+E"(-X))]
4 2%
Out[53]=

(1+e2%)?

nisa= Simplify[Sech[x]? /. Sech[x] » 2/ (E"Xx+E" (-x))]

4
out[54]=
(e +eX)2
2 X
We leave it for the reader to verify that both of these outputs agree, that is, ( 4e2 7 = (e’x4ex)2 (cross-multiply and then simplify).
1+e2* +

The identity can also be confirmed in Mathematica by evaluating the difference between its left- and right-hand sides, which
should equal zero:

nissi= Simplify[1 - Tanh[x]? - Sech[x]?]
outs5]= 0

NOTE: We can also confirm the identity graphically by plotting the graphs of each side of the identity, which should coincide.
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nisel= Plot[{1-Tanh[x] "2, Sech[x] "2}, {X, -2, 2}]

Out[56]=

b) We again evaluate the difference between the left- and right-hand sides of the identity:

7= Simplify[Cosh[X +y] - (Cosh[x] Cosh[y] + Sinh[x] Sinh[y])]

outs71= 0

m 7.4.3 Derivatives of Hyperbolic Functions

We next contrast the formulas for the derivatives of the trigonometric functions versus the formulas for the derivatives of the
companion hyperbolic functions.

Example 7.11. Compare the derivatives of the given pair of functions.
a) sinh x and sin x b) coshxand cosx  c)tanh x and tan x

Solution: We use the derivative command, D, to evaluate derivatives of each pair.
a)

nisel= D[Sinh[X], X]
D[Sin[X], X]

outsgl= Cosh [X]
out59]= COS [X]
b)

o= D[Cosh[X], X]
D[Cos[X], X]

outeo)= Sinh [X]
outell= -~ SEN[X]
b)

ne2r= D[Tanh[X], X]
D[Tan[X], X]

oue2l= Sech[x]?

ouie3= Sec[X]?
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It is clear that derivatives of hyperbolic and trigonometric functions are quite similar.

m 7.4.4 Inverse Hyperbolic Functions

In light of the fact that hyperbolic functions are defined in terms of the exponential functions, it is readily apparent that the
inverse hyperbolic functions are defined in terms of the natural logarithmic function. The inverses of the hyperbolic functions

have notation similar to those of inverse trigonometric functions. Thus, the inverse of sinh x is denoted by arcsinh x or sinh™ x.
In Mathematica, the notation is sinh™* x is ArcSinh[x].

Example 7.12. Plot the graphs of sinh™* x and sinh x on the same axis.

Solution: Recall that the graph of a function and the graph of its inverse are reflections of each other across the line y = x. This
is confirmed by the following plot of sinh™ x (in blue) and sin x (in red).

ne4= Plot[{Sinh[x], X, ArcSinh[x]}, {x, -3, 3},
PlotStyle » {Blue, Green, Red}, AspectRatio -» Automatic, PlotRange » {-3, 3}]

3,

oute4]= _ s s L s ‘ ‘
-3 -2 -1 — 1 2 3
b
ol
3t
Example 7.13. Show that tanh™* x = é In(%) for—1<x<1.
Solution: We plot the graphs of y =tanh™* x and y = % In(%:) on the same axes. Note that Mathematica's notation of tanh™* x is

ArcTanh [x] and Iny is entered as Log[y]:
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In{65]:= Plot[{ArcTanh[x], % Log[iii]}, x, -2, 2}]
sl
2l
i

R ) 1 2
f
F
sl

The fact that there is only one graph indicates that the functions are the same. We prove this by letting y = tanh™! x and solving
[
eV+ey’

for y as follows. From y =tanh™! x we get x =tanhy = Now solving this last equation for y in Mathematica yields:

neel= Solve[X = (ENY -EN(-Y)) / (EAY +EN(-Y)), V]

Solve::ifun : Inverse functions are being used by Solve, so
some solutions may not be found; use Reduce for complete solution information. >

m”’ {yﬂog[m]}}

The first solution in the preceding output is imaginary, which we ignore, and consider only the second solution. Hence,

out[66]= {{y - Log [f

— Vv -1- 1 1
tanh ™ x =y=1In = =In,[= =3 In(:2).
Na=w 1x 2 \ix

NOTE: The message in the previous output refers to the fact that when solving equations involving inverse functions, not all
solutions are necessarily found by Mathematica since there may be infinitely many of them or they depend on the domain of
definition. For example, the equation sin x = 1 has infinitely many solutions, in particular all values of the form x=7/2 + 2 n,
where n is any integer. On the other hand, solving this equation in Mathematica yields only the solution in its principal domain,
that is, x =n/2:

ne7:= Solve[Sin[X] =1, X]

Solve::ifun : Inverse functions are being used by Solve, so
some solutions may not be found; use Reduce for complete solution information. >

out[67]= {{x - g}}

m EXxercises

In Exercises 1 through 5, verify the given hyperbolic identities using the Simplify command. Also state the corresponding
trigonometric identity.

1. sinh(x + y) = sinh x cosh y + cosh x sinh y 2. cosh2x = cosh? x + sinh? x 3. tanh2x=li::—:::x
tanh x+tanh y

4. cosh(x + y) =cosh xcoshy + sonhxsinhy 5. tanh(x + y) = Tewnhxtanhy
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6. Determine the first few positive integral powers of cosh x + sinh x. Can you form a general conjecture for the nth case,
namely (cosh x + sinh x)", where n is any natural number? Then justify your conclusion via mathematical induction.

In Exercises 7 through 12, determine the derivatives of thegiven functions and simplify your answers where possible. Compare
your solution via paper and pencil methods with the one generated by Mathematica.

7. f(x)=tanh (1 +x?) 8. f(x)=xsinhx — coshx 9. f0=_| _lljttaa::i
10. f(x) = x2sinh™%(2 x) 11. f(x)=xtanh > x + In (\/ 1-x2 ) 12. f(x) = x coth x — sech x

13. The Gateway Arch in St. Louis was designed by Eero Saarinen and was constructed using the equation
y = 211.49 — 20.96 cosh (0.03291765 x)

for the central curve of the arch, where x and y are measured in meters and | x| < 91.20.

a) Plot the graph of the central curve.

b) What is the height of the arch at its center?

¢) At what points is the arch 100 meters in height?

d) What is the slope of the arch at the points in part (c)?

14. A flexible cable always hangs in the shape of a catenary y = ¢ + acosh (x / a), where cand a are constants and a > 0. Plot
several members of the family of functions y = acosh (x / a) for various values of a. How does the graph change as a varies?

In Exercises 15 through 17, evaluate each of the given integrals:

. n cosh x sech? x
15. [sinhx cosh" x dx 16. [ dx 17. fzmnhx dx
18. Lett= In(“f) and define
2 . .
—— cosh(tn), if nisodd
o ={ \;? inh(tn), ifni
— sinh(tn), if niseven
NS inh(tn), if nisev
Evaluate f(n) forn=1, 2, 3, ..., 20. Do these values seem familiar? If not, we highly recommend the interesting article by

Thomas Osler, Vieta-like products of nested radicals with Fibonacci and Lucas numbers, to appear in the journal Fibonacci
Quarterly.



