
Chapter  8 Further Applications of Integration

ü 8.1  Arc Length and Surface Area  

Students should read Section 8.1 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

ü 8.1.1 Arc Length

The integrals for calculating arc length and surface area are generally difficult to do by hand.  Thus, Mathematica is the appropri-
ate tool for evaluating these integrals.

If y is a function of x, that is, y = f x, and f ' x exists and is continuous on a, b, then the arc length of the graph of f x over
the interval a, b is   

 L = a
b

1 + f ' x2 „ x

If x is a function of y, that is, x = g y, and g ' y exists and is continuous on c, d, then the arc length of the graph of g y over
the interval c, d is

  L = c

d
f ' y2 + 1 „ y

Example 8.1.  Estimate the arc length of  y = 1

x
 over the interval 1, 2.

Solution: Finding the arc length of this simple rational function by hand is virtually impossible.  This is because f ' x = - 1

x2
 and

thus the arc length integral is L = 1
2

1 + 1

x4
„ x, which cannot be evaluated in terms of elementary functions, as the following

answer illustrates.

In[68]:= 
1

2

1 
1

x4
x

Out[68]=

2  Gamma 7
4


3 Gamma 5
4



1

2
Hypergeometric2F1 1

2
, 

1

4
,

3

4
, 16

However, there are numerical techniques that we can use.  For example, the Mathematica command NIntegrate uses sophisti-
cated algorithms to gives us a good estimate for this definite integral: 

In[69]:= NIntegrate 1 
1

x4
, x, 1, 2

Out[69]= 1.13209

A more elementary method of estimating this arc length is Simpson's Rule as shown in Section 7.1 of this text.



In[70]:= Clearf, a, b, n
SIMPa_, b_, n_, f_ :

1  3 Sumfa  2 i  2 b  a  n  4 fa  2 i  1 b  a  n 

fa  2 i b  a  n, i, 1, n  2 b  a  n

In[72]:= fx_ : 1 
1

x4

TableFormTablen, NSIMP1, 2, n, f, n, 10, 100, 10,

TableHeadings  , "n", "Sn " 
Out[73]//TableForm=

n Sn

10 1.1321
20 1.13209
30 1.13209
40 1.13209
50 1.13209
60 1.13209
70 1.13209
80 1.13209
90 1.13209
100 1.13209

Thus, we see that Simpson's Rule gives us as accurate an estimate of the arc length, as does the NIntegrate command for n as
small as 20.

Example 8.2.  Consider the the ellipse whose equation is given by 

 x2

a2
+

y2

b2
= 1

Assume that a > b. Find the arc length of the upper half of the ellipse.   

Solution: To plot the ellipse for various values of a and b, we define a plotting command plot[a,b] as follows. 

In[74]:= Cleara, b, x, y, eq, plot

eqx_, y_, a_, b_ :
x2

a2


y2

b2
 1

plota_, b_ : ContourPloteqx, y, a, b  0, x, a, a, y, b, b,

AspectRatio  Automatic, Axes  True, Frame  False
Here is a plot of the ellipse for a = 2 and b = 3.
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In[77]:= plot2, 3

Out[77]=
-2 -1 1 2

-3

-2

-1

1

2

3

 On the upper half of the ellipse, we have y ¥ 0. Thus, we can solve for y and and take the positive solution. We will denote this
positive solution as a function of x, a, and b.

In[78]:= sol  Solvex2

a2


y2

b2
 1, y;

fx_, a_, b_  sol2, 1, 2

Out[79]=
b a2  x2

a

Clearly, the domain of f  is -a, a. The natural thing to do would be to evaluate the integral -a

a
1 +  f ' x2 „ x.  Try this

yourself, but be prepared to wait awhile.  Moreover, Mathematica will give the following output:

IfIma  0 && a Im 1

a2  b2

  1 

1  a Im 1

a2  b2

  0  a Im 1

a2  b2

  0  a Re 1

a2  b2

  0 ,

2 a32 b2 EllipticE1  b2

a2  Signa

a b2

, Integrate 1 
b2 x2

a4  a2 x2
, x, a, a,

Assumptions  Reb  0 && Rea  0 && Ima  0 && Imb  0  Ima  0  Ima  0

To understand this output, let us make a change of variable x = a sin t. Then the integral becomes (verify this) 

 -a
a

1 +  f ' x2 „ x = a -p2p2
1 + b2 sin2 t

a2 cos2 t
cos t d t
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The latter integral can be expressed as 

 2 a 0
p2

1 + b2 sin2 t

a2 cos2 t
cos t d t = 2 a 0

p2
cos2 t + b2 a2 sin2 t d t = 2 a 0

p2
1 - c2 sin2 t d t ,

where  c = 1 - b a2 and we have used the identity cos2 t = 1 - sin2 t.

To simplify our notation, let us define the integrand in the preceding far left integral as

In[80]:= gt_, a_, b_  1  1  b  a2 Sint2

Out[80]= 1  1 
b2

a2
Sint2

Here are some values of the arc length of the upper half of the ellipse.

In[81]:= TableFormTable2 a 
0

2

gt, a, b t, a, 1, 3, b, 1, 3,

TableHeadings  "a1", "a2", "a3", "b1", "b2", "b3" 
Out[81]//TableForm=

b1 b2 b3
a1  2 EllipticE3 2 EllipticE8
a2 4 EllipticE 3

4
 2  4 EllipticE 5

4


a3 6 EllipticE 8
9
 6 EllipticE 5

9
 3 

Observe that we obtain exact values for the arc length when a = b.  Can you explain why?

The approximate values of the numbers appearing in the preceding table are as follows:

In[82]:= TableFormNTable2 a 
0

2

gt, a, b t, a, 1, 3, b, 1, 3, 10,

TableHeadings  "a1", "a2", "a3", "b1", "b2", "b3" 
Out[82]//TableForm=

b1 b2 b3
a1 3.141592654 4.844224110 6.682446610
a2 4.844224110 6.283185307 7.932719795
a3 6.682446610 7.932719795 9.424777961

NOTE:  The integral   1 - c2 sin2 t „ t  is  known as  an  elliptic integral.   It  is  very  useful  in  mathematics and has many

applications. In Mathematica,  it  is denoted by Elliptic[t,c^2].   The command Elliptic[x,m]  gives 0

x
1 -m sin2 t dt,  while

Elliptic[m] gives  0

p2
1 -m sin2 t dt.

ü 8.1.2 Surface Area

If f ' x exists and is continuous on a, b, then the surface area of revolution obtained by rotating the graph of f x about the x-
axis for a § x § b is  
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 S = 2 p a
b

f x 1 +  f ' x2 „ x

Similarly, if x = gy and g ' y exists and is continuous on c, d, then the surface area of revolution obtained by rotating g y
about the y-axis for c § y § d is 

  S = 2 p c

d
gy g ' y2 + 1 „ y

Again, evaluating these complicated integrals is what Mathematica does best, as the following examples illustrate.

Example 8.3.  Determine the surface area of revolution obtained by rotating the region under y = ‰-x  along the interval 0, 2
about the x-axis.

Solution: We calculate

In[83]:= Clearf, x
fx_ : x

S  2  
0

2

fx 1  f'x2 x

Out[85]=
1

2
 4  2 2 

2

1  4


2

4 1  4

 Log3  2 2   Log2  4  2 1  4 

In[86]:= N
Out[86]= 6.35887

Here is the corresponding surface of revolution (rotated 90 ° about the y-axis):

In[87]:= RevolutionPlot3DEx, x, 0, 2

Out[87]=

NOTE: Observe that in this case Mathematica was able to find an anti-derivative of the integrand.  However, not all integrals of
this form can be evaluated analytically as the next example illustrates.

Example 8.4.  Determine the surface area of revolution obtained by rotating the region under y = tan x along the interval 0, p

4


about the x-axis.

Solution: As in the previous example, we evaluate
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In[88]:= Clearf, x
fx_ : Tanx
NIntegrate2  fx 1  f'x2 , x, 0, Pi  4

Out[90]= 3.83908

To appreciate the complexity of the integral and understand why we used the command NIntegrate, we advise the reader to

define the anti-derivative F[t] below and evaluate F[p/4] (be prepared to wait awhile).

In[91]:= Ft_ : Integratefx 1  f'x2 , x, 0, t
Here is the corresponding surface of revolution:

In[92]:= RevolutionPlot3DTanx, x, 0, Pi  4

Out[92]=

ü Exercises 

In Exercises 1 and 2, calculate the arc length of the given function over the given interval:

1.  y = x4,  over 1, 2         2.  y = sin x,  over 0,
p

2


3.  Calculate the arc length of the astroid  x23 + y23 = 1.  Below is a plot of its graph.  Hint: By symmetry it suffices to calculate
only the portion in the first quadrant.
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In[93]:= ContourPlotx^2^1  3  y^2^1  3  1, x, 1, 1, y, 1, 1

Out[93]=

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

4.  Show that the circumference of the unit circle is 2p by calculating its arc length. Use the fact that the equation of the unit
circle is given by   x2 + y2 = 1.  

In Exercises 5 through 7, compute the surface area of the given functions rotated about the x-axis over the given intervals:

5.  y = x3 + 1

x
,  over 1, 4      6.  y = 4 - x2323

 over 0, 8    7.  y = cos x, over 0, p 
8.  Show that the surface area of the unit sphere is 4p by rotating the top half of the unit circle  x2 + y2 = 1 about the x-axis.

ü 8.2  Center of Mass

Students should read Section 8.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

A lamina is a thin plate whose mass is distributed throughout a region in the plane. Suppose a lamina has a constant density r and
that the lamina occupies a region in the plane under the graph of a continuous function f  over the interval a, b, where f x ¥ 0
for all x. 

The mass of the lamina is given by 

M = r a
b

f x „ x

Then the moments of the lamina with respect to x-axis and y-axis are denoted by Mx and My and are defined by       

 Mx =
1

2
r a

b f x2 „ x

My = r a
b
x f x „ x

The center of mass (also called the centroid) of the lamina is defined to be x, y, where

 x =
My

M
 and y = Mx

M

NOTE:  If the lamina described above as a density r that continuously depends on x, that is, if r = rx for x in the interval a, b,
then the moments, the total mass, and the center of mass are given by   

M = a
brx f x „ x
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 Mx =
1

2 a

b
rx f x2 „ x

My = a

b
x rx f x „ x

 x =
My

M
 and y = Mx

M

Example 8.5.  Suppose a lamina lies underneath the graph of y = 16 - x2 and over the interval -4, 4.

a)  Assume the density of the lamina is r = 3. Find the mass, moments, and the center of mass of the lamina. 
b)  Assume the density of the lamina is r = x

2
+ 2. Find the mass, moments, and the center of mass of the lamina. 

Solution: 

a) We use the above formulas with r = 3:

In[94]:= fx_  16  x2

Out[94]= 16  x2

The mass is given by 

In[95]:= M  3 
4

4

fx x

Out[95]= 256

The moment with respect to the x-axis is 

In[96]:= Mx  3  2 
4

4

fx2 x

Out[96]=
8192

5

The moment with respect to the y-axis is 

In[97]:= My  3 
4

4

x fx x

Out[97]= 0

The coordinates for the center of mass are 

In[98]:= xbar  My  M
ybar  Mx  M

Out[98]= 0

Out[99]=
32

5

Observe that the region of the lamina is symmetric with respect to the y-axis. Hence, the fact that x = 0 is also clear from the fact
that the density is a constant. 

Below is the plot of the lamina and its center of mass:
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In[100]:= plot1  Plotfx, x, 4, 4 , Filling  Axis;

plot2  ListPlotxbar, ybar, PlotStyle  PointSize0.02, Red;
Showplot1, plot2

Out[102]=

b) Here, r = x + 4. With the above notation we have 

In[103]:= fx_  16  x2

x_ 
x

2
 2

Out[103]= 16  x2

Out[104]= 2 
x

2

The mass is 

In[105]:= Mv  
4

4

x fx x

Out[105]=
512

3

The moment with respect to the x-axis is 

In[106]:= Mxv  1  2 
4

4

x fx2 x

Out[106]=
16 384

15

The moment with respect to the y-axis is 

In[107]:= Myv  
4

4

x x fx x

Out[107]=
2048

15

The coordinates for the center of mass are 
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In[108]:= xbarv  Myv  M

ybarv  Mxv  M

Out[108]=
8

15

Out[109]=
64

15

Here is a plot of the lamina showing the center of masses with the uniform density of r = 3 and variable density of r = x

2
+ 2

represented by the red and green dots, respectively.

In[110]:= plot3  ListPlot xbarv, ybarv, PlotStyle  Green, PointSize.02;
Showplot1, plot2, plot3

Out[111]=

NOTE: Observe that the center of mass with variable density (green dot) is shifted to the right, as expected, since the density is
more weighted to the right.

Example 8.6.  Suppose a lamina covers the top half of the ellipse

 x2

a2
+

y2

b2
= 1

a) Assume the density of the lamina is r = 1. Find the mass, moments and the center of mass of the lamina. 
b) Assume the density of the lamina is r = e-x. Find the mass, moments and the center of mass of the lamina. 

Solution:  To distinguish between the uniform and variable density cases in parts a) and b), respectively, we attach the letter u

and v to the notation in this solution. Thus, Mu will be the mass corresponding to the uniform density while Mv is the mass
corresponding the variable density. 

a) We solve the equation of the ellipse for y:

In[112]:= Cleara, b, x, y

sol  Solvex2

a2


y2

b2
 1, y

Out[113]= y  
b a2  x2

a
, y 

b a2  x2

a


In the top half of the ellipse , we have y ¥ 0. Thus, we take the second solution, simplify, and define it as a function of x, a, and b  
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In[114]:= fax_, a_, b_ : b 1 
x2

a2

Let the mass, the moment with respect to the x-axis, the moment with respect to the y - axis , and the center of mass be denoted
by M a, b, Mxa, b, Mya, b, and xa, b, ya, b), respectively.  We now compute these quantities assuming r = 1.

In[115]:= Cleara, b, Mua, Mxua, Myua, xbaru, ybaru
Muaa_, b_  

a

a

fax, a, b x

Mxuaa_, b_  1  2 
a

a

fax, a, b2 x

Myuaa_, b_  
a

a

x fax, a, b x

Out[116]=
a b 

2

Out[117]=
2 a b2

3

Out[118]= 0

In[119]:= xbaruaa_, b_ 
Myuaa, b
Muaa, b

ybaruaa_, b_ 
Mxuaa, b
Muaa, b

Out[119]= 0

Out[120]=
4 b

3 

That  x = 0 is also clear from the fact that the density is a constant and the upper half of the ellipse is symmetric with respect to
the y -axis.  

The mass of the lamina, the moments of the lamina with respect to the x- and y-axis for various values of a and b are as follows:
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In[121]:= umassa  TableFormTableMuaa, b, a, 1, 3, b, 1, 3,

TableHeadings  "a1", "a2", "a3", "b1", "b2", "b3";
uxmomenta  TableForm TableMxuaa, b , a, 1, 3, b, 1, 3 ,

TableHeadings  "a1", "a2", "a3", "b1", "b2", "b3";

uymomenta  TableForm TableMyuaa, b , a, 1, 3, b, 1, 3 ,
TableHeadings  "a1", "a2", "a3", "b1", "b2", "b3";

TableFormumassa, uxmomenta, uymomenta,
TableHeadings  "Mass", "xmoment", "ymoment", 

Out[124]//TableForm=

Mass

b1 b2 b3

a1 

2
 3 

2

a2  2  3 

a3 3 

2
3  9 

2

xmoment

b1 b2 b3

a1 2
3

8
3

6

a2 4
3

16
3

12

a3 2 8 18

ymoment

b1 b2 b3
a1 0 0 0
a2 0 0 0
a3 0 0 0

The corresponding y-coordinate of the center of mass in each case is (recall that x = 0 for all cases)

In[125]:= centermassua  Table Mxuaa, b
Muaa, b , a, 1, 3, b, 1, 3;

TableFormcentermassua,
TableHeadings  "a1", "a2", "a3", "b1", "b2", "b3"

Out[126]//TableForm=

b1 b2 b3

a1 4
3 

8
3 

4


a2 4
3 

8
3 

4


a3 4
3 

8
3 

4


The following animation shows how the center of mass changes as a and b varies.

In[127]:= plot4aa_, b_ :

Plotfx, a, b, x, a, a, PlotRange  5, 5, 15, 15, Filling  Axis;

plot5aa_, b_ : ListPlot Myuaa, b
Muaa, b ,

Mxuaa, b
Muaa, b ,

PlotStyle  Red, PointSize0.02
plotuaa_, b_ : Showplot4aa, b, plot5aa, b

Important Note::  If  you  are reading the printed version of  this  publication, then you  will  not  be able to view any  of  the

animations generated from the Animate command in this chapter.  If you are reading the electronic version of this publication

formatted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation.  Just click
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on the arrow button to start the animation.  To control the animation just  click at  various points on the sliding bar or else
manually drag the bar.

In[130]:= Animateplotuaa, b, a, 1, 8, b, 1, 10

Out[130]=

a

b

-4 -2 2 4

-15

-10

-5

5

10

15

b) Here, r = e-x. With the above notations modified to reflect variable density,  we have 

In[131]:= Cleara, b, Mv, Mxv, Myv, xbarv, ybarv
x_  Ex

Mvba_, b_  
a

a

x fax, a, b x

Mxvba_, b_  1  2 
a

a

x fax, a, b2 x

Myvba_, b_  
a

a

x x fax, a, b x

Out[132]= x

Out[133]= ConditionalExpressionb  BesselI1, a, a  0

Out[134]=
2 b2 a Cosha  Sinha

a2

Out[135]= ConditionalExpressiona b  BesselI2, a, a  0
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In[136]:= xbarvba_, b_ 
Myvba, b
Mvba, b

ybarva_, b_ 
Mxvba, b
Mvba, b

Out[136]= ConditionalExpression a BesselI2, a
BesselI1, a , a  0

Out[137]= ConditionalExpression2 b a Cosha  Sinha
a2  BesselI1, a , a  0

Observe that the formulas for the mass and moments of the lamina are no longer elementary.  Here is a table of numerical values
for these quantities assuming various choices for a and b:

In[138]:= umassb  TableFormTableMvba, b, a, 1, 3, b, 1, 3,

TableHeadings  "a1", "a2", "a3", "b1", "b2", "b3";
uxmomentb  TableForm TableMxvba, b , a, 1, 3, b, 1, 3 ,

TableHeadings  "a1", "a2", "a3", "b1", "b2", "b3";
uymomentb  TableForm TableMyvba, b , a, 1, 3, b, 1, 3 ,

TableHeadings  "a1", "a2", "a3", "b1", "b2", "b3";
TableFormNumassb, uxmomentb, uymomentb,

TableHeadings  "Mass", "xmoment", "ymoment", 
Out[141]//TableForm=

Mass

b1 b2 b3
a1 1.7755 3.551 5.3265
a2 4.99713 9.99427 14.9914
a3 12.4199 24.8398 37.2596

xmoment

b1 b2 b3
a1 0.735759 2.94304 6.62183
a2 1.94877 7.79506 17.5389
a3 4.48558 17.9423 40.3702

ymoment

b1 b2 b3
a1 0.426464 0.852928 1.27939
a2 4.32879 8.65758 12.9864
a3 21.1606 42.3213 63.4819

The coordinates for the center of mass are 

In[142]:= centermassvb  NTable Myvba, b
Mvba, b ,

Mxvba, b
Mvba, b , a, 1, 3, b, 1, 3

Out[142]= 0.240194, 0.414395, 0.240194, 0.828791, 0.240194, 1.24319,
0.866255, 0.389977, 0.866255, 0.779953, 0.866255, 1.16993,
1.70377, 0.361161, 1.70377, 0.722323, 1.70377, 1.08348

Here is a plot showing the two centers of mass with for uniform and variable density.

14 Mathematica for Rogawski's Calculus



In[143]:=

plot4ba_, b_ : Plotfx, a, b, x, a, a,

PlotRange  8, 8, 1, 8, AspectRatio  Automatic, Filling  Axis;

plot5ba_, b_ : ListPlot Myvba, b
Mvba, b ,

Mxvba, b
Mvba, b ,

PlotStyle  Green, PointSize0.02
plotvba_, b_ : Showplot4ba, b, plot5ba, b

Important Note:   If  you are reading the printed version of this publication, then you will  not be able to view any  of the

animations generated from the Animate command in this chapter.  If you are reading the electronic version of this publication

formatted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation.  Just click
on the arrow button to start the animation.  To control the animation just  click at  various points on the sliding bar or else
manually drag the bar.

In[146]:= Animateplotvba, b, a, 1, 8, b, 1, 8

Out[146]=

a

b

-5 5

2

4

6

8

ü Exercises 

1.  Suppose a lamina is lying underneath the graph of y = 1 + x2 over the interval 0, 2 .
a) Assume the density of the lamina is r = 3. Find the mass, moments, and the center of mass of the lamina. 
b) Assume the density of the lamina is r = 2 x. Find the mass, moments, and the center of mass of the lamina. 
c) Plot the lamina and the center of mass on the same axes for both parts a) and b) above.
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2.  Suppose a lamina of constant density r = 2 is in the shape of the astroid  x23 + y23 = 1.  Find its mass, moments, and center
of mass.  Plot the lamina with its center of mass.
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