
Chapter 13 Calculus of Vector-Valued Functions

Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible
to view 3-D plots generated by Mathematica from different perspectives.  First, place your screen cursor over the plot.  Then drag
the mouse while pressing down on the left mouse button to rotate the plot.

ü 13.1.  Vector-Valued Functions

Students should read Section 13.1 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

A vector-valued function is a vector where the components of the vector are themselves functions of a common parameter (or

variable). For example, r is a vector-valued function if rt = xt, yt, zt.  If we think of t as the time variable, the rt
describes the motion of a particle through three-dimensional space over time.  What we want to do is to understand what path is
taken.  We do this through graphing in three dimensions. Also, sometimes it is helpful to consider the projections of these curves
onto the coordinate planes.  For example, the projection of rt on the xy-plane is xt, yt, 0.
Example 13.1. Trace the paths of each of the following vector functions and describe its projections onto the xy-, xz-, and yz-
planes:

a)  rt = t, t2, 2 t
b)  rt = cos3 t, sin3 t, sin 2 t 
Solution:  We use the ParametricPlot3D command to trace the path of each curve and to see its projection.

a) First, we look at the plot of rt = t, t2, 2 t:
In[73]:= ParametricPlot3Dt, t2, 2 t, t, 3, 3, PlotStyle  Red, ImageSize  250

Out[73]=
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This curve looks very much like a parabola in 3-D space.  To see the projections, we look first at: 



In[74]:= ParametricPlot3Dt, t2, 0, t, 3, 3,

PlotRange  1, 1, PlotStyle  Orange, ImageSize  250

Out[74]=
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This is clearly a parabola in the xy-plane.

In[75]:= ParametricPlot3Dt, 0, 2 t, t, 3, 3, Ticks  Automatic, 1, 0, 1, Automatic,

PlotStyle  Orange, ImageSize  250, ImagePadding  15, 15, 15, 15

Out[75]=
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And this clearly a line in the xz-plane.  
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In[76]:= ParametricPlot3D0, t2, 2 t, t, 3, 3,

Ticks  1, 0, 1, Automatic, Automatic, PlotStyle  Orange, ImageSize  250

Out[76]=
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This last plot is also clearly a parabola, but in the yz-plane.

b)  Next, we look at rt = cos3 t , sin3 t, sin 2 t:
In[77]:= ParametricPlot3DCost3, Sin t3, Sin2 t,

t, 2 , 2 , PlotStyle  Orange, ImageSize  250

Out[77]=
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Note that since both sine and cosine are periodic with period 2 p, it is not necessary to extend the domain beyond -2 p or +2 p.
The projection in the xy-plane is:
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In[78]:= ParametricPlot3DCost3, Sin t3, 0,

t, 2 , 2 , PlotPoints  100, ImageSize  250

Out[78]=
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The projection in the xz-plane is:

In[79]:= ParametricPlot3DCost3, 0, Sin2 t, t, 2 , 2 , ImageSize  250

Out[79]=
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Lastly, the projection in the yz-plane is:

4   Chapter 13.nb



In[80]:= ParametricPlot3D0, Sin t3, Sin2 t, t, 2 , 2 , ImageSize  250

Out[80]=
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Note that the last two projections are almost exactly alike.  This is to be expected because the sine and cosine functions have the
same graph, but p 2 radians apart. 

ü Exercises 

In Exercises 1 through 3,  graph rt and its three projections onto the coordinate planes.

1.  rt = cos 2 t, cos t, sin t 2.  rt = t + 15, e0.08 t cos t, e0.08 t sin t
3.  rt = t, t, 25 t1 + t2
4. Which of the following curves have the same projection onto the xz-plane?  Graph the three projections to check your answer.

a.  r1t = t, et, t2 b.  r2t = et, t, t2 c.  r3t = t, cos t, t2

ü 13.2.  Calculus of Vector-Valued Functions

Students should read Section 13.2 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Since vector-valued functions are differentiated and integrated component by component, Mathematica will handle this easily
since it treats vectors as lists and automatically performs the indicated operation on each element of the list.

The derivative of a vector valued function rt = xt, yt, zt is defined to be

r ' t = x ' t, y ' t, z ' t
while the integral of rt is

 rt „ t =  xt „ t,  yt „ t,  zt „ t.
Similarly, the limit is defined by

limtØa rt = limtØa xt, limtØa yt, limtØa zt.
Example 13.2.  Differentiate and integrate each of the following vector functions:

Chapter 13.nb   5



a) rt = t, t2, 2 t
b) st = cos3 t , sin3 t, sin 2 t
Solution:

(a)

In[81]:= Clearr, s, t
In[82]:= rt_ : t, t2, 2 t

st_ : Cost3, Sint3, Sin2 t
In[84]:= t rt
Out[84]= 1, 2 t, 2

In[85]:=  rt t

Out[85]=  t2

2
,

t3

3
, t2

(b)

In[86]:= t st
Out[86]= 3 Cost2 Sint, 3 Cost Sint2, 2 Cos2 t

In[87]:=  st t

Out[87]=  3 Sint
4


1

12
Sin3 t, 

3 Cost
4


1

12
Cos3 t, 

1

2
Cos2 t

Limits are handled the same way both in the calculus of vector-valued functions and in Mathematica:

Example 13.3.  Evaluate limit
hØ0

 rt+h-rt
h

  for rt = t, t2, 2 t.

Solution:

Since rt has been defined in the previous example, we merely evaluate

In[88]:= Limit rt  h  rt
h

, h  0
Out[88]= 1, 2 t, 2
As we would expect, this limit gives us the same answer for r ' t as in the previous example. 

Example 13.4.  Evaluate limit
tØ3

t2, 4 t, 1

t3
.

Solution:

6   Chapter 13.nb



In[89]:= Limitt2, 4 t,
1

t3
, t  2

Out[89]= 4, 8,
1

8


Derivatives of Dot and Cross Products

Using the formulas of the derivative of the dot and cross products for vector-valued functions is simple in Mathematica. As a
reminder, the formulas are:

d

dt
rt ◊st = rt ◊s ' t + r ' t ◊st and 

d

dt
rtμst = rtμs ' t + r ' tμst

Example 13.5.  Evaluate 
d

dt
rt ◊st and 

d

dt
rtμst for rt = t, t2, 2 t and st = cos3 t , sin3 t, sin 2 t.

Solution:

In[90]:= trt.st
Out[90]= Cost3  4 t Cos2 t  3 t Cost2 Sint  3 t2 Cost Sint2  2 t Sint3  2 Sin2 t
In[91]:= trtst
Out[91]= 2 t2 Cos2 t  6 t Cost Sint2  2 Sint3  2 t Sin2 t,

2 Cost3  2 t Cos2 t  6 t Cost2 Sint  Sin2 t,

2 t Cost3  3 t2 Cost2 Sint  3 t Cost Sint2  Sint3
Tangent Lines

Example 13.6.  Find the vector parametrization of the tangent line to rt = 1 - t2, 5 t, t3 at the point t = 1 and plot it along with

rt.
Solution: Recall that the tangent line at t0 has vector parametrization Lt = rt0 + t r ' t0:
In[92]:= rt_  1  t2, 5 t, t3

r't
Lt_  r1  t  r'1

Out[92]= 1  t2, 5 t, t3
Out[93]= 2 t, 5, 3 t2
Out[94]= 2 t, 5  5 t, 1  3 t
Here is a plot of the curve and the tangent line.
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In[95]:= ParametricPlot3Drt, Lt, t, 2, 4, ImageSize  Small

Out[95]=
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NOTE: Recall that the plot can be rotated to better view it from different perspectives.

ü Exercises 

In Exercises 1 and 2 evaluate the limits

1.  limtØp sin 2 t, cos t, tan 4 t 2.  limtØ0  1

t+1
, et-1

t
, 4 t

In Exercises 3 and 4 compute the derivative and integral.

3.  rt = tan t, 4 t - 2, sin t 4.  rt = et, e2 t
5.  Find a parametrization of the tangent line at the point indicated and plot both the vector-valued curve and the tangent line on
the same set of axes.

6.  Evaluate d

dt
rgt for rt = 4 sin 2 t, 2 cos 2 t and gt = t2.

ü 13.3.  Arc Length

Students should read Section 13.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

The arc length of a path rt = x t, y t, z t for a § t § b is given by

L = a

b  r ' t  „ t = a

b x ' t2 + y ' t2 + z ' t2 „ t 

and like the one-dimensional version is difficult to evaluate by hand.  Thus Mathematica is the perfect tool for calculating this.

Example 13.7.  Compute the arc length of rt = 1 - t2, 5 t, 2 t3  over the interval 1 § t § 2.

Solution:
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In[96]:= rt_ : 1  t2, 5 t, 2 t3
L  

1

2

Normr't t

Out[97]=
1
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Note that the above output indicates that Mathematica cannot find an antiderivative for the integrand, and thus we need to find

another technique to evaluate this integral.  Hence, we next try the numerical integrate command, NIntegrate, which does give
us our result:

In[98]:= L  NIntegrateNormr't, t, 1, 2
Out[98]= 15.285

Speed

The vector r ' t is also known as the velocity vector as it points in the (instantaneous) direction of motion described by rt.  Its
length or norm, r ' t, gives the speed at time t. 
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Example 13.8.  Compute the speed of rt = 1 - t2, 5 t, 2 t3 when t = 1, 1.5, and 2.

Solution: 

The following output gives a list of speeds of r ' t at the three given times using the Norm command, which calculates the norm
of a vector:

In[99]:= rt_ : 1  t2, 5 t, 2 t3
Speed  Normr'1, Normr'1.5, Normr'2

Out[100]=  65 , 14.7054, 617 
In[101]:= N
Out[101]= 8.06226, 14.7054, 24.8395
Observe that the speed is increasing as we move along the path of rt from t = 1 to t = 2.  This can be seen graphically by
plotting the speed:

In[102]:= Normr't
PlotNormr't, t, 1, 2

Out[102]= 25  4 Abst2  36 Abst4

Out[103]=

1.2 1.4 1.6 1.8 2.0

15

20
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NOTE: Observe how the Norm command inserts absolute values around each vector component in the formula for r ' t, which
seems redundant since each component is squared.  This is done because in Mathematica vector components are allowed to be
complex-valued, in which case absolute values are needed to refer to their magnitudes. 

ü Exercises 

In Exercises 1 and 2, compute the length of curve over the given interval.

1.  rt = 2 sin t, 6 t, 2 cos t,   -6 § t § 6 2.  rt = 12 t, 8 t32, 3 t2,   0 § t § 1

In Exercises 3 and 4, find the speed of a particle moving along the curve rt at the given value of t.

3.  rt = et-2, 15 t, 5  t,    t = 1 4.  rt = sin 2 t, cos 4 t, sin 6 t,   t = p 2 

5. Compute st = 0

t  r ' u  „u for rt = t2, 2 t2, t3 and interpret Mathematica's result.  
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6. For rt = 4 t, 1 - 3 t, 24 t, compute s t as in the previous exercise.  Then use s t to find an arc length parametrization of

rt, that is, find js = t, where j is the inverse of s t, and check to see that rj s has unit speed, that is, r ' j s  = 1.
Lastly, plot rt and rj s and compare them.

7.  Consider the helix rt = a sin t, a cos t, c t. 
a. Find a formula for the arc length of one revolution of rt.
b. Suppose a helix has radius 10, height 5, and makes three revolutions.  What is its arc length?

8. The Cornu spiral is defined by rt = xt, yt, where xt = 0
t
sin u2

2
 „u and yt = 0

t
cos u2

2
 „u.

a.  Plot the Cornu spiral over various intervals for t.
b.  Find a formula for its arc length along the interval -a § t § a, where a is a positive real number.
c.  What is its arc length in the limit as aØ¶?

ü 13.4.  Curvature

Students should read Section 13.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Vector tools previously studied including arc length enables one to study the idea of curvature, which serves as a measure of how
a curve bends, that is, the rate of change in direction of a curve.  In arriving at a definition of curvature, consider a path in vector
form and parametrized by

rt = x t, y t, z t
The parametrization is classified as regular if r ' t ∫ 0 for all  values of t and for which r t is defined.  Assume then that rt is
regular and define the unit tangent vector in the direction of r ' t, denoted T t, as follows:

Tt = r' t
r' t .

This unit tangent vector T at any point enables us to determine the direction of the curve at that point, so one may define the
curvature k (Greek letter kappa) at a point as

k =  dT

ds
 = T' t

r' t ,

which represents the magnitude of the rate of change in the unit tangent vector with respect to arc length. One denotes the vector
dT ds  as the curvature vector.  Its scalar length therefore measures curvature.  For example, a straight line has k = 0 (zero
curvature) as one would expect.  For a circle of radius r, we have k = 1  r (reciprocal of r).  This makes sense since a larger
circle should have smaller curvature.  In general, if we were to secure a circle, called the osculating circle, that best fits a curve at
a specific point on the curve, then curvature of the curve at such a point should agree with the curvature of the osculating circle,
that is, 

k = 1

r

Moreover, the radius r of this circle is called the radius of curvature. Note that the equations linking k and r illustrate their
inverse relationship: 

k = 1

r
 and r = 1

k

Example 13.9.  Compute the curvature k for a circle of radius r defined by 
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rt = r cos t, r sin t

Solution: We first compute the unit tangent vector T using the formula Tt = r' t
r' t :

In[104]:= Clearr, T, t, 
In[105]:= rt_   Cost,  Sint

r't
Tt_  r't  SimplifyNormr't

Out[105]=  Cost,  Sint
Out[106]=  Sint,  Cost

Out[107]=   Sint
Abs Cost2  Abs Sint2

,
 Cost

Abs Cost2  Abs Sint2



Observe that in this output Mathematica is not able to reduce the expression inside the radical, which simplifies to r as a result of

the fundamental trigonometric identity cos2 x + sin2 x = 1.  This is due to the Norm command, which employs absolute values.

To remedy this, we use the formula r ' t = r ' t ◊r ' t  instead of the Norm command.

In[108]:= Tt_  r't  SqrtSimplifyr't.r't

Out[108]=   Sint
2

,
 Cost

2



We then compute the curvature using the formula k = T' t
r' t :

In[109]:=   SqrtSimplifyT't.T't  Simplifyr't.r't

Out[109]=
1

2

Since the radius r is assumed to be positive, we conclude that k = 1

r2
=  1

r
 = 1

r
 as expected.

Example 13.10.  Compute the curvature k for the curve defined by f x = x2 at the point 3, 9.
Solution: Observe that the graph of a function y = f x can be parametrized by x = t and y = f t and hence rt = t, f t. In
this case the formula for curvature reduces to 

In[110]:= Clearr, t, f
rt_  t, ft

Out[111]= t, ft
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In[112]:= Tt_ 
r't

Sqrtr't.r't
  SqrtSimplifyT't.T't  Simplifyr't.r't

Out[112]=  1

1  ft2

,
ft

1  ft2



Out[113]=
ft2

1  ft23

which is the same as k =
f '' x

1+ f ' x232 . With f x = x2, we get

In[114]:= ft_  t2



Out[114]= t2

Out[115]= 2
1

1  4 t23

At x = t = 3, the curvature becomes

In[116]:=  . t  3

Out[116]=
2

37 37

Here is a plot of the curvature along with the function.

In[117]:= Plotft, , t, 0, 3

Out[117]=
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Example 13.10.  Compute the curvature k and the radius of curvature r for the curve defined by 
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rt = 1 - t, t2 + 1, 2

3
t3 + 1 at t = 1 2.

Solution: Again we begin by computing the unit tangent vector T: 

In[118]:= Clearr, T, t, 
In[119]:= rt_  1  t, t^2  1, 2  3 t^3  1

r't
Tt_  r't  SqrtSimplifyr't.r't

Out[119]= 1  t, 1  t2, 1 
2 t3

3


Out[120]= 1, 2 t, 2 t2

Out[121]=  1

1  2 t22

,
2 t

1  2 t22

,
2 t2

1  2 t22



We then compute the curvature using the same formula as in the previous example and evaluate it at t = 1 2:

In[122]:=   SqrtSimplifyT't.T't  Simplifyr't.r't
 . t  1  2

Out[122]= 2
1

1  2 t24

Out[123]=
8

9

Hence, the curvature k = 8 9 at t = 1 2 and the corresponding radius of curvature is r = 1 k = 9 8.

Curvature Formula (Cross Product)

There is an alternative formula for calculating the curvature of space curves that involves the cross product and eliminates the
need to compute the unit tangent vector function:

k =  r'' t μ r' t 
 r' t 3 =  at μ vt 

 vt 3  

Example 13.11.  Compute the curvature kt and the radius of curvature for the helix defined by rt = cos t, sin t, t for any real
number t.

Solution: We first find the derivative of the unit tangent vector with respect to t. 

In[124]:= Clearr, T, t, 
rt_  Cost, Sint, t
r't
r''t

Out[125]= Cost, Sint, t
Out[126]= Sint, Cost, 1
Out[127]= Cost, Sint, 0
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In[128]:= t_  SqrtSimplifyCrossr''t, r't.Crossr''t, r't 
SqrtSimplifyr't.r't3

Out[128]=
1

2

It follows that k = 1

2
 and r = 2 for all values of t.  Hence, our helix is a curve of constant curvature.

ü Exercises

In Exercises 1 and 2, find r ' t and Tt and evaluate T2.
1.  rt = 3 + 2 t i + 2 - 5 t j + 9 t k 2. vt = sin t, cos t, 1
3. Use Mathematica  to find the curvature function kx  for y = cos x.  Also plot kx  for 0 § x § 1. Where does the curvature
assume its maximum value?

4. Determine the unit normal vectors to rt = t i + sin t j at t = p

4
 and t = 3 p

4
.

5. Determine the curvature of the vector-valued function rt = 3 + 2 t i + 6 t j + 5 - t k.   

6. Find a formula for the curvature of the general helix rt = a cos t i + a sin t j + c t k.   

ü 13.5.  Motion in Three Space

Students should read Section 13.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Recall that the velocity vector is the rate of the change of the position vector with respect to time while the acceleration vector
represents the rate of change of the velocity vector with respect to time.  Moreover, speed is defined to be the absolute value of
the velocity vector. In short, we have the following:

vt = r ' t, st = vt and at = v ' t = r '' t
One can secure the velocity vector and the position function if the acceleration vector is known via integration.  More specifically:

vt = 0
t
au „u + v0 where v0 represents the initial velocity vector and rt = 0

t
vu „u + v0 t + r0 where r0 is the initial position.

Example  13.12.   Find  the  velocity  vector,  the  speed,  and  the  acceleration  vector  for  the  vector-valued  function
rt = t3 i + 1 - t j + 4 t2 k at time t = 1.

Solution: 
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In[129]:= Clearr, v, s, a
rt_  t^3, 1  t, 4 t^2
vt_  r't
st_  Sqrtvt.vt
at_  r''t
v1
s1
a1

Out[130]= t3, 1  t, 4 t2
Out[131]= 3 t2, 1, 8 t

Out[132]= 1  64 t2  9 t4

Out[133]= 6 t, 0, 8
Out[134]= 3, 1, 8
Out[135]= 74

Out[136]= 6, 0, 8

Thus, v1 = r ' 1 = 3 i - j + 8 k, s1 = 74 , and a1 = 6 i + 8 k. 

Example 13.13.  Find rt and vt if a t = t i+4 j subject to the initial conditions v0 = 3 i - 2 j and r0 = 0.

Solution: We first solve for vt by integrating at:
In[137]:= Clearr, v, a

at_  t, 4
vt_  Integrateau, u, 0, t  v01, v02

Out[138]= t, 4

Out[139]=  t2

2
 v01, 4 t  v02

Here, the constant vector of integration v0 = v01, v02 = 3, -2 equals the initial velocity:

In[140]:= Solvev0  3, 2, v01, v02
Out[140]= v01  3, v02  2

Thus, vt = t2

2
i + 4 t j + 3 i - 2 j.

In[141]:= vt_  vt . v01  3, v02  2

Out[141]= 3 
t2

2
, 2  4 t

Next, we solve for rt by integrating vt:
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In[142]:= rt_  Integratevu, u, 0, t  r01, r02

Out[142]= r01  3 t 
t3

6
, r02  2 t  2 t2

Again, the constant vector of integration r0 = r01, r02 = 0, 0 equals the initial position:

In[143]:= Solver0  0, 0, r01, r02
Out[143]= r01  0, r02  0

Hence, rt =  t3

6
+ 3 t i + 2 t2 - 2 t j.

Components of Acceleration

There are two components of acceleration: tangential and normal.  More precisely, the acceleration vector a can be decomposed

as  a = aT T + aN N,  where  aT =
d2 s

dt2
= a ◊ v

 v   is  the  tangential  component  and  aN = k ds

dt
2
= a ¥ v 

 v   is  the  normal  component.

Moreover, one has aT
2 + aN

2 = a2 so that aN =  a 2 -aT
2  and aT =  a 2 -aN

2 .

Example 13.14.  Determine the tangential and normal components of acceleration for the vector function r t = t3, t2, t.
Solution: 

In[144]:= Clearr, v, s
rt_  t^3, t^2, t
r't
r''t

Out[145]= t3, t2, t
Out[146]= 3 t2, 2 t, 1
Out[147]= 6 t, 2, 0
In[148]:= speed  SimplifySqrtr't.r't

Out[148]= 1  4 t2  9 t4

The result in the last output represents the speed at time t.  In order to secure the tangential component of the acceleration, we
differentiate the previous output: 

In[149]:= at  Dspeed, t

Out[149]=
8 t  36 t3

2 1  4 t2  9 t4

The normal component of the acceleration is
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In[150]:= an  r''t.r''t  at2

Out[150]= 4  36 t2 
8 t  36 t32

4 1  4 t2  9 t4

In[151]:= Simplifyan

Out[151]= 2
1  9 t2  9 t4

1  4 t2  9 t4

NOTE: The components of acceleration can also be found through the formulas aT =
a ◊ v

 v   and aN =
a ¥ v 
 v  ,  confirmed using

Mathematica as follows:

In[152]:= at  r''t.r't  Sqrtr't.r't
an  SqrtCrossr''t, r't.Crossr''t, r't  Sqrtr't.r't

Out[152]=
4 t  18 t3

1  4 t2  9 t4

Out[153]=
4  36 t2  36 t4

1  4 t2  9 t4

ü Exercises 

In Exercises 1 and 2, calculate the velocity and acceleration vectors and the speed at the time indicated:
1.  rt = t2 i + 1 - t j + 5 t2 k, t = 2. 2.  rt = cos t i + sin t j + tan 2 t k, t = p

6
.

3.  Sketch the path rt = 1 - t2 i + 1 - t j for -3 § t § 3 and compute the velocity and acceleration vectors at t = 0, t = 1, and
t = 2.

4.  Find vt given at and the initial velocity v0.

a.  at = t i + 3 j, v0 = 1

2
i + 2 j b.  at = e2 t i + 0 j + t + 2 k, v0 = i - 3 j + 2 k

5.  Find rt and vt given at together with the initial velocity and position at rest:
a.  at = e3 t i + 4 t j + t - 2 k, v0 = 0 i + 0 j + k, r0 = 0 i + 3 j + 4 k
b. at = 0 i + 0 j + sin t k, v0 = i + j, r0 = i.

6.  Find the decomposition of at into its tangential and normal components at the indicated point:
a.  rt = 3 - 4 t i + t + 1 j + t2 k at t = 1
b.  rt = t i + e-t j + t e-t k at t = 0

7.  Show that the tangential and normal components of acceleration of the helix given by rt = cos t i + sin t j + t k are equal
to 0 and 1, respectively.
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