
Chapter 15 Multiple Integration
Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible
to view 3-D plots generated by Mathematica from different perspectives.  First, place your screen cursor over the plot.  Then drag
the mouse while pressing down on the left mouse button to rotate the plot.

ü 15.1  Double Integral over a Rectangle

Students should read Section 15.1 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Integration can be generalized to functions of two or more variables.  As the integral of a single-variable function defines area of
a plane region under the curve, it is natural to consider a double integral of a two-variable function that defines volume of a solid
under a surface.  This definition can be made precise in terms of double Riemann sums where rectangular columns (as opposed to
rectangles) are used as building blocks to approximate volume (as opposed to area).  The exact volume is then obtained as a limit
where the number of columns increases without bound.

ü 15.1.1  Double Integrals and Riemann Sums

Let  f x, y  be  a  function  of  two  variables  defined  on  a  rectangular  domain  R = a, bä c, d  in  R2.   Let
P = a = x0 < x1 < ... < xm = b, c = y0 < y1 < ... < yn = d be an arbitrary partition of R into a grid of m ÿn rectangles, where m and

n  are integers.  For each sub-rectangle Rij = xi-1, xiä y j-1, y j  denote by  DAij  its area and choose an arbitrary base point

xij, yij œ Rij, where xij œ xi-1, xi and yij œ y j-1, y j.  The product f xij, yijDAij  represents the volume of the ij-rectangular

column situated between the surface and the xy-plane.  We then define the double Riemann sum Sp of f x, y on R with respect

to P to be the total volume of all these columns:

SP =
i=1

m


j=1

n

f xij, yijDAij

Define  P  to be the maximum dimension of all the sub-rectangles.  The double integral of f x, y on the rectangle R is then
defined as the limit of SP as  P Ø 0:

 
R

f x, y „A = lim
PØ0


i=1

m


j=1

n

f xij, yijDAij

If the limit exists regardless of the choice of partition and base points, then the double integral is said to exist.  Otherwise, the
double integral does not exist.

MIDPOINT RULE (Uniform Partitions):  Let  us consider uniform partitions P,  where  the points xi  and y j  are evenly

spaced, that is,  xi = a + iD x, y j = b + jD y for i = 0, 1, ..., m and j = 0, 1, ..., n, and with Dx = b - a m and Dy = d - c n.

Then the corresponding double Riemann sum is

Sm,n =
i=1

m


j=1

n

f xij, yijD xD y

Here is a subroutine called MDOUBLERSUM that calculates the double Riemann sum Sm,n  of f x, y over a rectangle R for

uniform partitions using the center midpoint of each sub-rectangle as base point, that is, xij = xi-1 + xi 2 = a + i - 1 2D x and



yij = y j-1 + y j2 = c +  j - 1 2D y.

In[435]:= Clearf
MDOUBLERSUMa_, b_, c_, d_, m_, n_ :

Sumfa  i  1  2  b  a  m, c  j  1  2  d  c  n  b  a  m  d  c  n,
i, 1, m, j, 1, n

Example  15.1.   Approximate  the  volume of  the  solid  bounded  below  the  surface  f x = x2 + y2  and  above  the  rectangle
R = -1, 1ä -1, 1 on the xy-plane using a uniform partition with m = 10 and n = 10 and center midpoints as base points.  Then
experiment with larger values of m and n and conjecture an answer for the exact volume.

Solution: We calculate the approximate volume for m = 10 and n = 10 using the subroutine MDOUBLERSUM:

In[437]:= fx_, y_  x^2  y^2;

MDOUBLERSUM1, 1, 1, 1, 10, 10

Out[438]=
66

25

In[439]:= N
Out[439]= 2.64

In[440]:= TableMDOUBLERSUM1, 1, 1, 1, 10  k, 10  k, k, 1, 10

Out[440]=  66

25
,

133

50
,

1798

675
,

533

200
,

1666

625
,

3599

1350
,

3266

1225
,

2133

800
,

16 198

6075
,

3333

1250


In[441]:= N
Out[441]= 2.64, 2.66, 2.6637, 2.665, 2.6656, 2.66593, 2.66612, 2.66625, 2.66634, 2.6664
It appears that the exact volume is 8/3.  To prove this, we evaluate the double Riemann sum Sm,n in the limit as m, nØ¶:

In[442]:= ClearS, m, n;

Sm_, n_  SimplifyMDOUBLERSUM1, 1, 1, 1, m, n

Out[443]=
4

3
2 

1

m2


1

n2

In[444]:= LimitLimitSm, n, m  Infinity, n  Infinity

Out[444]=
8

3

To see this limiting process visually, evaluate the following subroutine, called DOUBLEMIDPT, which plots the surface of the
function corresponding to the double integral along with the rectangular columns defined by the double Riemann sum considered

in the previous subroutine MDOUBLERSUM.
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In[445]:= Clearf;

DOUBLEMIDPTf_, a_, b_, m_, c_, d_, n_ : Module
dx, dy, i, j, xstar, ystar, mrect, plot,
dx  Nb  a  m;
xstar  Tablea  i  dx, i, 0, m;
dy  Nd  c  n;
ystar  Tablec  j  dy, j, 0, n;

mcolumn  TableCuboidxstari, ystarj, 0,
xstari  1, ystarj  1, fxstari  xstari  1  2,

ystarj  ystarj  1  2, i, 1, m, j, 1, n;
plot  Plot3Dfx, y, x, a, b, y, c, d, Filling  Bottom;

Showplot, Graphics3Dmcolumn, ImageSize  300
In[447]:= fx_, y_ : x2  y^2;

DOUBLEMIDPTf, 1, 1, 10, 1, 1, 10

Out[448]=

Here is an animation that demonstrates how the volume of the rectangular columns approach that of the solid in the limit as
m, nØ¶:

Important Note: If you are reading the printed version of this publication, then you will not be able to view any of the anima-

tions generated from the Animate command in this chapter.  If you are reading the electronic version of this publication format-

ted as a Mathematica Notebook, then evaluate each Animate command to view the corresponding animation.  Just click on the
arrow button to start the animation.  To control the animation just click at various points on the sliding bar or else manually drag
the bar.
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In[449]:= AnimateDOUBLEMIDPTf, 1, 1, a, 1, 1, a , a, 5, 50, 5 

Out[449]=

a

ü 15.1.2  Double Integrals and Iterated Integrals in Mathematica 

The Mathematica  command for  evaluating double  integrals is  the same as  that  for  evaluating integrals of  a  single-variable
function, except that two limits of integration must be specified, one for each independent variable.  Thus:

Integrate[f[x,y],{x,a,c},{y,c,d}] analytically evaluates the double integral  R
f x, y „A over the rectangle R = a, bä c, d.  

NIntegrate[f[x,y],{x,a,c},{y,c,d}] numerically evaluates the double integral  R
f x, y „A over the rectangle R = a, bä c, d.  

Iterated Integrals:  In practice, one does not actually use the limit definition in terms of Riemann sums to evaluate double

integrals, but instead apply Fubini's Theorem to easily compute them in terms of iterated integrals:

Fubini's Theorem: (Rectangular Domains) If R = x, y : a § x § b, c § y § d, then
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 
R

f x, y „A = 
a

b


c

d

f x, y „ y „ x = 
c

d


a

b

f x, y „ x „ y

Thus, Mathematica will naturally apply Fubini's Theorem whenever possible to analytically determine the answer.  Depending on
the form of the double integral, Mathematica may resort to more sophisticated integration techniques, such as contour integration,
which are beyond the scope of this text.

Example  15.2.   Calculate  the  volume of  the  solid  bounded  below  by  the  surface  f x = x2 + y2  and  above  the  rectangle
R = -1, 1ä -1, 1.
Solution: The volume of the solid is given by the double integral  R

f x, y „A.  To evaluate it, we use the Integrate command:

In[450]:= fx_, y_ : x^2  y^2;

Integratefx, y, x, 1, 1, y, 1, 1

Out[451]=
8

3

This confirms the conjecture that we made in the previous example for the exact volume.

NOTE: Observe that we obtain the same answer by explicitly computing this double integral as an integrated integral as follows.
Moreover, for rectangular domains, the order of integration does not matter.

In[452]:= IntegrateIntegratefx, y, x, 1, 1, y, 1, 1
IntegrateIntegratefx, y, y, 1, 1, x, 1, 1

Out[452]=
8

3

Out[453]=
8

3

Example 15.3.  Compute the double integral  R
x e-y2

„A on the rectangle R = 0, 1ä 0, 1.
Solution: Observe that the Integrate command here gives us an answer in terms of the non-elementary error function Erf:

In[454]:= Integratex  E^y^2, x, 0, 1, y, 0, 1

Out[454]=
1

4
 Erf1

This is because the function f x, y = x e-y2
 has no elementary anti-derivative with respect to y due to the Gaussian factor e-y2

(bell curve).  Thus, we instead use the NIntegrate Command to numerically approximate the double integral:

In[455]:= NIntegratex  E^y^2, x, 0, 1, y, 0, 1
Out[455]= 0.373412

ü Exercises 

1. Consider the function f x, y = 16 - x2 - y2 defined over the rectangle R = 0, 2ä -1, 3.
a. Use the subroutine MDOUBLERSUM to compute the double Riemann sum Sm,n of f x, y over R for m = 2 and n = 2.

b.  Repeat part a)  by generating a table of double Riemann sums for m = 10 k  and n = 10 k  where k = 1, 2, ..., 10.  Make a

conjecture for the exact value of  R
f x, y „A. 

c. Find a formula for Sm,n in terms of m and n.  Verify your conjecture in part b) by evaluating limm,nØ¶Sm,n.
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d. Directly compute  R
f x, y „A using the Integrate command.

2. Repeat Exercise 1 but with f x, y = 1 + x 1 + y 1 + x y defined over the rectangle R = 0, 1ä 0, 1.

3.  Evaluate  the  double  integral    x4 + y4 „A  over  the  rectangle  R = -2, 1ä -1, 2  using  both  the  Integrate  and

NIntegrate commands.  How do the two answers compare?

4. Calculate the volume of the solid lying under the surface z = e-yx + y2 and over the rectangle R = 0, 2ä 0, 3.  Then make a

plot of this solid.

5. Repeat Exercise 4 but with z = sinx2 + y2 and rectangle R = - p , p ä - p , p .
6.  Evaluate  the double integral  R

f x, y „A  where  f x, y = x y cosx2 + y2  and R = -p, pä -p, p.   Does your  answer

make sense?  Make a plot of the solid corresponding to this double integral to intuitively explain your answer.  HINT: Consider
symmetry.

7. Find the volume of solid bounded between the two hyperbolic paraboloids (saddles) z = 1 + x2 - y2 and z = 3 - x2 + y2 over
the rectangle R = -1, 1ä -1, 1.
8. Find the volume of the solid bounded by the planes z = 2 x, z = -3 x + 2, y = 0, y = 1, and z = 0.

ü 15.2  Double Integral over More General Regions

Students should read Section 15.2 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

For domains of integration that are non-rectangular but still simple,  that is,  bounded between two curves, Fubini's  Theorem
continues to hold.  There are two types to consider: 

Fubini's Theorem: (Simple Domains)

Type I (Vertically Simple): If D = x, y : a § x § b, ax § y § bx, then

 
D

f x, y „A = 
a

b


ax

bx
f x, y „ y „ x

The corresponding Mathematica command is Integrate[f[x,y],{x,a,b},{y,a[x],b[x]}].

Type II (Horizontally Simple): If D = x, y : c § y § d, ay § x § by, then

 
D

f x, y „A = 
c

d


ay

by
f x, y „ x „ y

The corresponding Mathematica command is Integrate[f[x,y],{y,c,d},{x,a[y],b[y]}].

Warning: Be careful not to reverse the order of integration prescribed for either type.  For example, evaluating the command

Integrate[f[x,y],{y,a[x],b[x]},{x,a,b}] for Type I (x and y are reversed) will lead to incorrect results.

Example 15.4.  Calculate the volume of the solid bounded below by the surface f x, y = 1 - x2 + y2 and above the domain D
bounded by x = 0, x = 1, y = x, and y = 1 + x2.

Solution: We observe that x = 0 and x = 1 represent the left and right boundaries, respectively, of D.  Therefore, we plot the
graphs of the other two equations along the x-interval 0, 2 to visualize D (shaded in the following plot):
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In[456]:= Clearx, y
plot1  Plotx, 1  x^2, x, 0, 1, Filling  1  2, ImageSize  250

Out[457]=

Here is a plot of the corresponding solid situated over D:

In[458]:= fx_, y_  1  x^2  y^2;

plot3  Plot3Dfx, y, x, 0, 1, y, x, 1  x^2, Filling  Bottom,
ViewPoint  1, 1, 1, PlotRange  0, 4, ImageSize  250

Out[459]=

To compute the volume of this solid given by  D
f x, y „A, we describe D as a vertically simple domain where 0 § x § 1 and

x § y § 1 + x2 and apply Fubini's Theorem to evaluate the corresponding iterated integral 0

1x

1+x2

f x, y „ y „ x (remember to use

the correct order of integration):

In[460]:= Integratefx, y, x, 0, 1, y, x, 1  x2

Out[460]=
29

21

Example 15.5.  Evaluate the double integral  D
sin y2 „A, where D is the domain bounded by x = 0, y = 2, and y = x.

Solution: We first plot the graphs of  x = 0, y = 2, and y = x to visualize the domain D:
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In[461]:= plot1  ContourPlotx  0, y  2, y  x,

x, 0.5, 2.5, y, 0.5, 2.5, ImageSize  250

Out[461]=

-0.5 0.0 0.5 1.0 1.5 2.0 2.5

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

It follows that D is the triangular region bounded by these graphs, which we shade in the following plot to make clear:

In[462]:= plot2  Plotx, x, 0, 2, Filling  2;

Showplot1, plot2, ImageSize  250

Out[463]=

To compute the given double integral, we describe D as a horizontally simple domain, where 0 § y § 2 and 0 § x § y and apply

Fubini's Theorem to evaluate the corresponding iterated integral 0

20

y
siny2 „ x „ y (again, remember to use the correct order of

integration):

In[464]:= IntegrateSiny^2, y, 0, 2, x, 0, y
Out[464]= Sin22

In[465]:= N
Out[465]= 0.826822

NOTE: It is also possible to view D as a vertically simple domain, where 0 § x § 2 and x § y § 2.  The corresponding iterated
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integral 0
2x

2
siny2 „ y „ x gives the same answer, as it should by Fubini's Theorem:

In[466]:= IntegrateSiny^2, x, 0, 2, y, x, 2
Out[466]= Sin22

Observe that it is actually impossible to evaluate this iterated integral by hand since there is no elementary formula for the anti-
derivative of  siny2  with respect to  y.   Thus,  if  necessary,  Mathematica  automatically switches the order  of integration by

converting from one type to the other.

ü Exercises 

In Exercises 1 through 4, evaluate the given iterated integrals and plot the solid corresponding to each one.

1. 0

10

x24 - x2 + y2 „ y „ x 2. 0

40

2-y2

x2 y „ x „ y

3. 0
p0

sin q
r2 cosq „ r „q 4. 0

10
x y

1+x y
„ y „ x

In Exercises 5 through 8, evaluate the given double integrals and plot the solid corresponding to each one.

5.  D
x + y „A,  D = x, y : 0 § x § 3, 0 § y § x 

6.  D
x + y „A,  D = x, y : 0 § x § 1 - y2, 0 § y § 1

7.  D
ex+y „A, where D = x, y : x2 + y2 § 4

8.  D

y

x+1
„A, where D is the following shaded diamond region:

In Exercises 9 through 12, calculate the volume of the given solid S:
9. S is bounded under the paraboloid z = 16 - x2 - y2  and above the region bounded between the line y = x and the parabola
y = 6 - x2.

10. S is bounded under the right circular cone z = x2 + y2  and above the disk x2 + y2 § 1.

11. S is bounbed between the plane z = 5 + 2 x + 2 y and the paraboloid z = 12 - x2 - y2.  HINT: Equate the two surfaces to
obtain the equation of the domain.

12. S is bounded between the cylinders x2 + y2 = 1 and y2 + z2 = 1.

ü 15.3  Triple Integrals

Students should read Section 15.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Once the notion of a double integral is well established, it is straightforward to generalize it to triple (and even higher-order)
integrals for functions of three variables defined over a solid region in space.  Here is the definition of a triple integral in terms of
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triple Riemann sums for a function f x, y, z defined on a box region B = x, y, z : a § x § b, c § y § d, p § z § q (refer to your
calculus text for details):

  
B

f x, y „V = lim
PØ¶

i=1

m


j=1

n


k=1

p

f xijk , yijkDVijk

where the notation is analogous to that used for double integrals in Section 15.1 of this text.  Of course, Fubini's Theorem also
generalizes to triple integrals: 

Fubini's Theorem: (Box Domains) If B = x, y, z : a § x § b, c § y § d, p § z § q, then

  
B

f x, y „V = 
a

b


c

d


p

q

f x, y „ z „ y „ x

The corresponding Mathematica commands are:

Integrate[f[x,y,z],{x,a,c},{y,c,d},{z,e,f}]  analytically  evaluates  the  triple  integral    B
f x, y „V  over  the  box

B = a, bä c, dä e, f .  
NIntegrate[f[x,y],{x,a,c},{y,c,d},{z,e,f}]  numerically  evaluates  the  triple  integral    B

f x, y „V  over  the  rectangle

B = a, bä c, dä e, f .  
NOTE: For box domains, the order of integration does not matter so that it is possible to write five other versions of triple iterated
integrals besides the one given in Fubini's Theorem.

Example 15.6.  Calculate the triple integral    B
x y z „V  over the box B = 0, 1ä 2, 3ä 4, 5.

Solution: We use the Integrate command to calculate the given triple integral.

In[467]:= Integratex y z, x, 0, 1, y, 2, 3, z, 4, 5

Out[467]=
45

8

Volume as Triple Integral: Recall that if a solid region W is bounded between two surfaces yx, y and fx, y, where both are
defined on the same domain D with yx, y § fx, y, then its volume V can be expressed by the triple integral

V =   
W

1 „V =  
D

yx,y

fx,y
1 „ z „A

Example 15.7.  Calculate the volume of the solid bounded between the surfaces z = 4 x2 + 4 y2  and z = 16 - 4 x2 - 4 y2  on the
rectangular domain -1, 1ä -1, 1.
Solution: Here is a plot of the solid:
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In[468]:= Plot3D4 x^2  4 y^2, 16  4 x^2  4 y^2, x, 1, 1, y, 1, 1,

Filling  1  8, 2  8, ImageSize  250, ImagePadding  15, 15, 15, 15

Out[468]=

The volume of the solid is given by the triple iterated integral -1
1 -1

1 4 x2+4 y2

16-4 x2-4 y2

1 „ z „ y „ x:

In[469]:= Integrate1, x, 0, 1, y, 1, 0, z, 4 x^2  4 y^2, 16  4 x^2  y^2

Out[469]=
35

3

ü Exercises 

In Exercises 1 through 4, evaluate the given iterated integrals:

1. 0

10

x0

y2x + y + z „ z „ y „ x 2. 0

30

sin y0

y +z
x y z „ x „ z „ y 

3. 0
p0

q0
r cos q

r z2 „ z „ r „q 4. 0
1 x

1 0
1-y

z log1 + x y „ z „ y „ x

In Exercises 5 through 8, evaluate the given triple integrals:

5.   W
x + y z „V , where W = x, y, z : 0 § x § 1, 0 § y § x , 0 § z § y2.

6.    W
sin y „V ,  where  W  lies under  the plane z = 1 + x + y  and above the triangular region bounded by  x = 0,  x = 2,  and

y = 3 x. 

7.   W
z „V , where W  is bounded by the paraboloid z = 4 - x2 - y2 and z = 0.

8.   W
f x, y, z „V , where f x, y, z = z2 and W  is bounded between the cone z = x2 + y2  and z = 9.

9. The triple integral 0

1x2
1-x20

2-x-2 y
„ z „ y „ x represents the volume of a solid S.  Evaluate this integral.  Then make a plot of S

and describe it.

10. Midpoint Rule for Triple Integrals:

a. Develop a subroutine called MTRIPLERSUM to compute the triple Riemann sum of the triple integral   B
f x, y, z „V

over the box domain B = x, y, z : a § x § b, c § y § d, p § z § q for uniform partitions and using the center midpoint of each

sub-box as base point.  HINT: Modify the subroutine MDOUBLERSUM in Section 15.1 of this text.  

b. Use your subroutine MTRIPLESUM in part a) to compute the triple Riemann sum of   B
x2 + y2 + z232 „V  over the box

B = x, y, z : 0 § x § 1, 0 § y § 2, 0 § z § 3 by dividing B into 48 equal sub-boxes, that is, cubes having side length of 1/2.
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c. Repeat part b) by dividing B into cubes having side length of 1/4 and more generally into cubes having side length of 1 2n for
n sufficiently large in order to obtain an approximation accurate to 2 decimal places.

d. Verify your answer in part c) using Mathematica's NIntegrate command.

ü 15.4  Integration in Polar, Cylindrical, and Spherical Coordinates

Students should read Section 15.4 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

ü 15.4.1  Double Integrals in Polar Coordinates

The following Change of Variables Formula converts a double integral in rectangular coordinates to one in polar coordinates:

Change of Variables Formula (Polar Coordinates):

I. Polar Rectangles: If R = r, q : q1 § q § q2, r1 § r § r2, then

 
R

f x, y „A = 
q1

q2


r1

r2

f r cos q, r sin q r „ r „q

II. Polar Regions: If D = r, q : q1 § q § q2, aq § r § bq, then

 
D

f x, y „A = 
q1

q2


aq

bq
f r cos q, r sin q r „ r „q

Example 15.8.  Calculate the volume of the solid region bounded by the paraboloid f x = 4 - x2 - y2  and the xy-plane using
polar coordinates.

Solution: We first plot the paraboloid:

In[470]:= fx_, y_  4  x^2  y^2

Plot3Dfx, y, x, 2, 2, y, 2, 2, PlotRange  0, 4, ImageSize  250
Out[470]= 4  x2  y2

Out[471]=

The circular domain D  can be easily described in polar coordinates by the polar rectangle R = r, q : 0 § r § 2, 0 § q § 2 p.
Thus, the volume of the solid is given by the corresponding double integral 0

2 p0

2
f r cos q, r sin q r „ r „q in polar coordinates:
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In[472]:= Clearr, ;

Integrater  fr  Cos, r  Sin, r, 0, 2, , 0, 2 Pi
Out[473]= 8 

Observe that here f x, y simplifies nicely in polar coordinates:

In[474]:= fr  Cos, r  Sin
Simplify

Out[474]= 4  r2 Cos2  r2 Sin2

Out[475]= 4  r2

NOTE: Evaluating the same double integral in rectangular coordinates by hand would be quite tedious.  This is not a problem
with Mathematica, however:

In[476]:= Integratefx, y, x, 2, 2, y, Sqrt4  x^2, Sqrt4  x^2
Out[476]= 8 

ü 15.4.2  Triple Integrals in Cylindrical Coordinates

The following Change of Variables Formula converts a triple integral in rectangular coordinates to one in cylindrical coordinates:

Change of Variables Formula (Cylindrical Coordinates): If a solid region W is described by q1 § q § q2, aq § r § bq, and
z1r, q § z § z2r, q, then 

  
W

f x, y, z „V = 
q1

q2


aq

bq


z1r,q

z2r,q
f r cos q, r sin q, z r „ z „ r „q

Example 15.9.  Use cylindrical coordinates to calculate the triple integral   W
z „V , where W is the solid region bounded above

by the plane z = 8 - x - y, below by the paraboloid z = 4 - x2 - y2, and inside the cylinder x2 + y2 = 4.

Solution: Since W lies inside the cylinder x2 + y2 = 4, this implies that it has a circular base on the xy-plane given by the same
equation, which can be described in polar coordinates by 0 § q § 2 p and 0 § r § 2.  Here is a plot of all three surfaces (plane,
paraboloid, and cylinder):
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In[477]:= plotplane  Plot3D8  x  y, x, 2, 2, y, 2, 2;

plotparaboloid  Plot3D4  x^2  y^2, x, 2, 2, y, 2, 2;
plotcylinder  ParametricPlot3D2  Cos, 2  Sin, z, , 0, 2 , z, 0, 12;
Showplotplane, plotparaboloid, plotcylinder, PlotRange  All, ImageSize  250

Out[480]=

Since W is bounded in z by 4 - x2 - y2 § z § 8 - x - y, or in cylindrical coordinates,  4 - r cos q - r sin q § z § 4 - r2, it follows
that the given triple integral transforms to

0
2 p0

24-r2

4-r cos q-r sin q
z r „ z „ r „q

Evaluating this integral in Mathematica yields the answer

In[481]:= Integratez  r, , 0, 2 , r, 0, 2,
z, 4  r  Cos  r  Sin, 8  r  Cos  r  Sin

Out[481]= 96 

ü 15.4.3  Triple Integrals in Spherical Coordinates

The following Change of Variables Formula converts a triple integral in rectangular coordinates to one in spherical coordinates:

Change of  Variables  Formula (Spherical  Coordinates):  If  a  solid region W  is  described by  q1 § q § q2,  f1 § f § f2,  and
r1q, f § r § r2q, f, then 

  
W

f x, y, z „V = 
q1

q2


f1

f2


r1q,f

r2q,f
f r cos q sin f, r sin q sin f, r cos f r2 sinf „ r „f „q

Example 15.10.  Use spherical coordinates to calculate the volume of the solid W lying inside the sphere x2 + y2 + z2 = z and

above the cone z = x2 + y2 .

Solution: In spherical coordinates, the equation of the sphere is given by

r 2 = r cos f

or equivalently, r = cos f.  Similarly, the equation of the cone transforms to

r cos f = r cos q sin f2 + r sin q sin f2 = r sin f
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It follows that cos f = sin f, or f = p 4.  Therefore, the cone makes an angle of 45 degrees with respect to the z-axis, as shown in
the following plot along with the top half of the sphere:

In[482]:= Clear
plotcone  ParametricPlot3D Cos SinPi  4,  Sin SinPi  4,  CosPi  4,

, 0, 2 Pi, , 0, Sqrt2  2;
plotsphere  ParametricPlot3DCos Cos Sin,

Cos Sin Sin, Cos Cos, , 0, 2 Pi, , 0, Pi  4;

Showplotcone, plotsphere, PlotRange  All, ViewPoint  1, 1, 1  4,
ImageSize  250

Out[485]=

It is now clear that the solid W is described by 0 § q § 2 p, 0 § f § p 4, and 0 § r § cos f.  Thus, its volume is given by the triple
integral


0

2 p


0

p4


0

cos f

r2 sin f „ r „f „q

which in Mathematica evaluates to

In[486]:= Integrate^2  Sin, , 0, 2 Pi, , 0, Pi  4, , 0, Cos

Out[486]=


8

ü Exercises 

In Exercises 1 through 4, evaluate the given double integral by converting to polar coordinates:

1. -1
1 

- 1-x2

1-x2 1 - x2 - y2 „ y „ x 2. 0
20

4-x2

e-x2+y2 „ y „ x

3.  D
x log y „A, where D is the annulus (donut-shaped region) with inner radius 1 and outer radius 3.

4.  D
arctan

y

x
„A, where D is the region inside the cardioid r = 1 + cos t.

5. Use polar coordinates to calculate the volume of the solid that lies below the paraboloid z = x2 + y2  and inside the cylinder
x2 + y2 = 2 y.
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6. Evaluate the triple integral 0

20

4-x2 0

4-x2-y2 x2 + y2 „ z „ y „ x by converting to cylindrical coordinates.

7. Use cylindrical coordinates to calculate the triple integral   W
x2 + y 2 „V , where W is the solid bounded between the two

paraboloids z = x2 + y2 and z = 8 - x2 - y2.

8. Evaluate the triple integral -2

2 
- 4-x2

4-x2 
x2+y2

4-x2-y2 x2 + y2 + z2 „ z „ y „ x by converting to spherical coordinates.

9. The solid defined by the spherical equation r = sin f is called the torus.
a. Plot the torus.
b. Calculate the volume of the torus.

10. Ice-Cream Cone: A solid W in the shape of an ice-cream cone is bounded below by the cylinder z = x2 + y2  and above by

the sphere x2 + y2 + z2 = 8.  Plot W and determine its volume.

ü 15.5  Applications of Multiple Integrals

Students should read Section 15.5 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Mass as Double Integral: Consider a lamina (thin plate) D in  R2 with continous mass density rx, y.  Then the mass of D is
given by the double integral

M =  
D
rx, y „A

where the domain of integration is given by the region that describes the lamina D.

Example 15.11.  Calculate the mass of the lamina D bounded between the parabola y = x2 and y = 4 with density rx, y = y.

Solution: Here is a plot of the lamina D (shaded):

In[487]:= Plotx^2, 4, x, 2, 2, ImageSize  250, Filling  2  1

Out[487]=

We can view D as a Type I region described by -2 § x § 2 and x2 § y § 4.  Thus. the mass of the lamina is given by the double
integral: 

In[488]:= Integratey, x, 2, 2, y, x^2, 4

Out[488]=
128

5
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NOTE: Mass of a lamina can also be interpreted as the volune of the solid bounded by its density function over D as shown in the
following plot:

In[489]:= Plot3Dy, x, 2, 2, y, 0, 4, RegionFunction  1^2  2  4 &,

Filling  Bottom, Mesh  None, ImageSize  250

Out[489]=

Example  15.12.   Suppose  a  circular  metal  plate  D,  bounded  by   x2 + y2 = 9,  has  electrical  charge  density

rx, y = 9 - x2 - y2 .  Calculate the total charge of the plate.

Solution: Here is a plot of the metal plate D (shaded):

In[490]:= Integratey, x, 2, 2, y, x^2, 4

Out[490]=
128

5

In[491]:= PlotSqrt9  x^2, Sqrt9  x^2, x, 3, 3,

ImageSize  250, Filling  2  1, AspectRatio  1

Out[491]=

We shall calculate the total charge of the plate using polar coordinates, which will simplify the corresponding double integral.

Since rr, q = 9 - r2 and D is a simple polar region described by r = 3, the total charge is
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In[492]:= IntegrateSqrt9  r^2  r, r, 0, 3, theta, 0, 2 Pi
Out[492]= 18 

Mass as Triple Integral: We can extend the notion of mass to a solid region W in R3.  Suppose W is bounded between two
surfaces  z = yx, y  and z = fx, y,  where  both  are  defined  on the  same domain D  with  yx, y § fx, y,  and  has  density
rx, y, z.  Then the mass of W can be expressed by the triple integral

M =   
W
rx, y, z „V =  

D

yx,y

fx,y
rx, y, z „ z „A

Example 15.13.   Calculate the mass of the solid region W  bounded between the planes z = 1 - x - y  and z = 1 + x + y  and
situated  over  the  triangular  domain  D  bounded  by  x = 0,  y = 0,  and  y = 1 - x.   Assume  the  density  of  W  is  given  by
rx, y, z = 1 + x2 + y2.

Solution: Here is a plot of the solid region W:

In[493]:= Plot3D1  x  y, 1  x  y, x, 0, 1, y, 0, 1  x, ViewPoint  1, 1, 1,

Filling  1  1, 2  1, Ticks  Automatic, Automatic, 1, 2,
ImageSize  250, ImagePadding  15, 15, 15, 15

Out[493]=

The mass of the solid is given by the triple iterated integral 0
10

1-x1-x-y
1+x+y1 + x2 + y2 „ z „ y „ x:

In[494]:= Integrate1  x^2  y^2, x, 0, 1, y, 0, 1  x, z, 1  x  y, 1  x  y

Out[494]=
14

15

Center of Mass: Given a lamina D in R2, its center of mass xCM, yCM (or balance point) is defined as the ratio of its moments
(with respect to the coordinate axes) to its mass:

xCM =
My

M
, yCM =

Mx

M

where the moments My and Mx are defined by

My =
1

A
 

D
x rx, y „A, Mx =

1

A
 

D
y rx, y „A
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NOTE: In case the lamina has uniform density, that is, rx, y = 1, then the center of mass is the same as the centroid whose
coordinates represent averages of the coordinates over the lamina.

Center of mass (and centroid) can be naturally extended to solid objects in R3.  Refer to your textbook for further details.

Example 15.14.   Calculate the mass of the solid region W  bounded between the planes z = 1 - x - y  and z = 1 + x + y  and
situated  over  the  triangular  domain  D  bounded  by  x = 0,  y = 0,  and  y = 1 - x.   Assume  the  density  of  W  is  given  by
rx, y, z = 1 + x2 + y2.

ü Exercises 

In Exercises 1 and 2, find the mass of the given lamina D.
1. D is bounded between y = sin p x and y = 0 along the interval 0, 1 and has density rx, y = x1 - x .
2. D is bounded by the lines y = x + 1, y = -2 x - 2, and x = 1 and has density rx, y = 1 + y2 .

3. Find the center of mass of the lamina D in Exercises 1 and 2.

4. Find the centroid of the lamina in Exercises 1 and 2.  Compare the centroid of each lamina with its center of mass.

In Exercises 5 and 6, find the mass of the given solidi object W.
5.  W  is  the  interior  of  the  tetrahedron  enclosed  by  the  planes  x = 0,  y = 0,  z = 0,  and  z = 1 - x - y  and  has  density
rx, y, z = 1 - z.

6.  W  is the ice-cream cone bounded below by the cylinder z = x2 + y2  and above by the sphere x2 + y2 + z2 = 8 and has

density rx, y, z = z2.

7. Find the center of mass of the tetrahedron in Exercises 5 and 6.  Refer to your textbook for appropriate formulas.

8. Find the centroid of the tetrahedron in Exercises 5 and 6.  Compare this with its center of mass.  Refer to your textbook for
appropriate formulas.

ü 15.6  Change of Variables

Students should read Section 15.6 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

A change of variables is often useful for simplifying integrals of a single variable (commonly referred to as u-substitution):


a

b

f x „ x = 
c

d

f gu g ' u „u

where x = gu, a = gc, and b = gd.  This substitution formula allows one to transformation an integral in the variable x to one
in a new variable u.  Observe that the interval c, d is mapped to interval a, b under the function g.

This technique can be extended to double integrals of the form  D
f x, y „ x „ y, where a change of variables is described by a

transformation Gu, v = x, y, which maps a region D0 in the uv-coordinate plane to the region D in the xy-coordinate plane.

The following Change of Variables Formula converts a double integral from the xy-coordinate system to a new coordinate system
defined by u and v:

Change of Variables Formula (Coordinate Transformation): If Gu, v = xu, v, yu, v is a C1-mapping from D0 to D, then

 
D

f x, y „ x „ y =  
D0

f xu, v, yu, v ∑ x, y
∑ u, v „u „v
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where 
∑x,y
∑u,v , referred to as the Jacobian of G and also denoted by Jac(G), is given by

JacG = ∑ x, y
∑ u, v =

∑x

∑u

∑x

∑v
∑y

∑u

∑y

∑v

=
∑ x

∑u

∑ y

∑v
-
∑ x

∑v

∑ y

∑u

The Jacobian relates the area of any infinitesimal region inside D0 with the corresponding region inside D =GD0.  In fact, if G
is a linear map, then Jac(G) is constant and is equal in magnitude to the ratio of the areas of D to that of D0:

Jacobian of a Linear Map: If Gu, v = A u + C v, B u + D v is a linear mapping from D0  to D, then Jac(G) is constant with
value

JacG = A C

B D
= A D - B C

Moreover,

AreaD = JacG AreaD0
Refer to your textbook for a detailed discussion of transformations of plane regions.

Example 15.12.  Make an appropriate changes of variables to calculate the double integral  D
x y „A, where D is the region

bounded by the curves x y = 1, x y = 2, x y2 = 1, and x y2 = 2.

Solution: Here is a plot of the shaded region D bounded by the four given curves: 

In[495]:= plot1  ContourPlotx  y  1, x  y  2, x  y^2  1, x  y^2  2,
x, 0, 5, y, 0, 5, AspectRatio  Automatic, ImageSize  250;

plot2  ContourPlot1, x, 0, 5, y, 0, 5, AspectRatio  Automatic,
RegionFunction  Functionx, y, 1  x y  2 && 1  x y^2  2,
ImageSize  250, PlotPoints  100;

Show
plot1,
plot2

Out[497]=

0 1 2 3 4 5

0

1

2

3

4

5

Observe that D is rather complicated.  Since D can be described by the inequalities 1 < x y < 2 and 1 < x y2 < 2, we make the
natural change of variables u = x y and v = x y2, which transforms D to a simple square region D0  in the uv-plane bounded by
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u = 1, u = 2, v = 1, and v = 2:

In[498]:= ContourPlot1, u, 0, 3, v, 0, 3, ImageSize  250,
RegionFunction  Functionu, v, 1  u  2 && 1  v  2

Out[498]=

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

To find the formula for our transformation Gu, v = xu, v, yu, v that maps D0 to D, we solve for x and y in terms of u and v:

In[499]:= Clearsol, x, y, u, v
sol  Solveu  x  y, v  x  y^2, x, y

Out[500]= x 
u2

v
, y 

v

u


It follows that Gu, v = u2 v, v u and the corresponding Jacobian is

In[501]:= x  sol1, 1, 2
y  sol1, 2, 2
Jac  Dx, u  Dy, v  Dx, v  Dy, u

Out[501]=
u2

v

Out[502]=
v

u

Out[503]=
1

v

Thus, the given integral transforms to  D
x y „A =  D0

u

v
„A = 1

21

2 u

v
„v „u with value

In[504]:= Integrateu  v, u, 1, 2, v, 1, 2

Out[504]=
3 Log2

2

ü Exercises 

1. Consider the transformation Gu, v = 2 u + v, u - 3 v.
a. Set D =GD0 where D0 = 0 § u § 1, 0 § v § 2.  Make a plot of D and describe its shape.
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b. Compute JacG.
c. Compare the area of D with that of D0.  How does this relate to JacG?

2. Compute the area of the ellipse x2

4
+

y2

9
= 1 by viewing it as a transformation of the unit circle u2 + v2 = 1 under a linear map

Gu, v = xu, v, yu, v and using the area relationship described by Jac(G).

3. Evaluate the integral  D
x y „A, where D is the region in the first quadrant bounded by the equations y = x, y = 4 x, x y = 1,

and x y = 4.  HINT: Consider the change of variables u = x y and v = y.

4.  Evaluate  the  integral   D
x + y  x - y „A,  where  D  is  the  parallelogram  bounded  by  the  lines  x - y = 1,  x - y = 3,

2 x + y = 0, and 2 x + y = 2.  HINT: Consider the change of variables u = x - y and v = 2 x + y.

5. Evaluate the integral  D

y

x
„A, where D is the region bounded by the circles x2 + y2 = 1, x2 + y2 = 4 and lines y = x, y = 3 x.

HINT: Consider the change of variables u = x2 + y2 and v = y  x.
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