
Chapter 17 Fundamental Theorems of Vector 
Analysis
Useful Tip: If you are reading the electronic version of this publication formatted as a Mathematica Notebook, then it is possible
to view 3-D plots generated by Mathematica from different perspectives.  First, place your screen cursor over the plot.  Then drag
the mouse while pressing down on the left mouse button to rotate the plot.

NOTE: In order to perform the operations of curl and divergence on vector fields discussed in this section using Mathematica, it

is necessary to first load the VectorAnalysis package:

In[641]:= Needs"VectorAnalysis`"
The Fundamental Theorem of Calculus for functions of a single variable states that the integral of a function f x over an interval
a, b (domain) can be calculated as the difference of its anti-derivative Fx at the endpoints (boundary) of the interval:


a

b

f x „ x = Fb - Fa

This integral relationship between domain and boundary can be generalized to vector fields involving the operations of curl and
divergence and is made precise by three theorems that will be discussed in this chapter: Green's Theorem, Stoke's Theorem, and
Divergence Theorem.  

ü 17.1  Green's Theorem

Students should read Section 17.1 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Let  Fx, y = Px, y, Qx, y a vector field continuous on an oriented curve C.  Recall that the line integral of F along C  is
denoted by 

C
Fx, y, z ◊„ s = C

P „ x +Q „ y

If c t = xt, yt, zt is the vector equation of the curve C, then

C
P „ x +Q „ y = a

bPxt, yt d x

d t
+Qxt, yt d y

d t
 d t

The following is a generalization of the Fundamental Theorem of Calculus to two dimensions, which relates a double integral
over a region with a corresponding line integral along its boundary.

Green's Theorem: If C  is a simple closed curve oriented counterclockwise and D is the region enclosed, and if P and Q are
differentiable and have continuous first partial derivatives, then  

C
P „ x +Q „ y =  D

 ∑Q

∑ x
- ∑ P

∑ y
 „A

Refer to your textbook for a detailed discussion and proof of Green's Theorem.

Example 17.1. Compute the line integral C
e2 x+y „ x + e-y „ y, where C is the boundary of the square with vertices 0, 0, 1, 0,

1, 1, 1, 0 oriented counterclockwise.

Solution: We will use Green's Theorem.  Thus, we need to verify that the hypotheses of Green's Theorem hold. To this end, we



define the function P and Q and compute their partial derivatives.   

In[642]:= Clearx, y, P, Q
Px_, y_  E2 xy

Qx_, y_  Ey

Out[643]= 2 xy

Out[644]= y

In[645]:= DPx, y, x
DPx, y, y
DQx, y, x
DQx, y, y

Out[645]= 2 2 xy

Out[646]= 2 xy

Out[647]= 0

Out[648]= y

The partial derivatives are continuous inside the square and the curve is oriented counterclockwise. Thus, the hypotheses of
Green's Theorem are satisfied.  Note that the region D enclosed by C is given by 0 § x § 1 and 0 § y § 1.

In[649]:= 
0

1


0

1

DQx, y, x  DPx, y, y y x

Out[649]= 
1

2
1  2 1  

In[650]:= N
Out[650]= 5.4891

NOTE: If we were to solve this using the definition of line integral as discussed in Chapter 16 of this text, we would then need to
consider four pieces of parametrization of C and then sum the four integrals.   Toward this end, let us use C1 for the lower edge,
C2 for the right edge, C3 for the top edge, and C4 for the left edge of the square.  Here are the parametrizations followed by their
line integrals.
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In[651]:= Clearx1, x2, x3, x4, y1, y2, y3, y4, t, F, c1, c2, c3, c4
Fx_, y_  Px, y, Qx, y 
x1t_  t

y1t_  0

c1t_  x1t, y1t

x2t_  1

y2t_  t

c2t_  x2t, y2t

x3t_  1  t

y3t_  1

c3t_  x3t, y3t

x4t_  0

y4t_  1  t

c4t_  x4t, y4t
Out[652]= 2 xy, y
Out[653]= t

Out[654]= 0

Out[655]= t, 0
Out[656]= 1

Out[657]= t

Out[658]= 1, t
Out[659]= 1  t

Out[660]= 1

Out[661]= 1  t, 1
Out[662]= 0

Out[663]= 1  t

Out[664]= 0, 1  t

In[665]:= 
0

1

Fx1t, y1t.c1't t  
0

1

Fx2t, y2t.c2't t 


0

1

Fx3t, y3t.c3't t  
0

1

Fx4t, y4t.c4't t

Out[665]= 1 
1



1  




1

2
1  2  1

2
 1  2

In[666]:= N
Out[666]= 5.4891
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ü  Exercises 

In Exercises 1 through 4, use Green's Theorem to evaluate the given line integral.

1. C
y2 sin x „ x + x y „ y, where C is the boundary of the triangle with vertices 0, 0, 1, 0, 1, 1, oriented counterclockwise.

2. C
2 x2 y „ x + x3 „ y, where C is the circle x2 + y2 = 4, oriented counterclockwise.

3. C
x2 + y2 „ x + y ex „ y, where C is the boundary of the region bounded between the parabola y = 5 - x2 and the line 

y = 2 x - 3, oriented clockwise.

4. C
x

x2+y2
„ x -

y

x2+y2
„ y, where C is the boundary of the quarter-annulus situated between the circles x2 + y2 = 1 and x2 + y2 = 9 

in the first quadrant (see plot below), oriented counterclockwise.

5. Let Fx, y = 2 x y + y3, x2 + 3 x y + 2 y.  Use Green's Theorem to demonstrate that the line integral C
Fx, y, z ◊„ s = 0 for 

every simple closed curve C.  What kind of a vector field do we call F?

ü 17.2  Stokes's Theorem

Students should read Section 17.2 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
section.

Let Fx, y, z = F1, F2, F3 be a vector field.  The curl of F, denoted by curlF or ! μF, is defined by 

curlF =! μF =

i j k
∑

∑x

∑

∑y

∑

∑z

F1 F2 F3

=  ∑F3

∑y
-

∑F2

∑z
,
∑F1

∑z
-

∑F3

∑x
,
∑F2

∑x
-

∑F1

∑y


Here, we are using the del or symbol ! (nabla) to denote the vector operator ! =  ∑

∑x
, ∑

∑y
, ∑

∑z
.

The Mathematica command for computing the curl of a vector field F is Curl[F,coordsys], where coordsys is the coordinate
system of the vector field.  This is demonstrated in the next example.

The following is a generalization of the Fundamental Theorem of Calculus three dimensions, which relates a surface integral
involving curl with a corresponding line integral along its boundary.

Stokes's Theorem: If  Fx, y, z a vector field with continuous partial derivatives and if S is an oriented surface S with boundary
∑S,  then 

∑S
F ÿ„S =  S

curlF ◊„S

If S is closed, then it has no boundary and hence both integrals are equal to 0.

NOTE: Recall that if the surface S  is given by Gu, v = xu, v, yu, v, zu, v, where u, v œ D, then S
curlF ÿ„S is given

by 

 S
curlF ◊„S =  D

curlF Gu, v ◊nu, v „u „v

Refer to your textbook for a detailed discussion and proof of Stokes's Theorem.
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Example 17.2.  Find the curl of the vector field Fx, y, z =  x sin y z, ex y z , y x2.
Solution: We use the Curl command:

In[667]:= ClearF, F1, F2, F3, x, y, z
F1  x Siny z
F2  Exy z

F3  x 2 y

F  F1, F2, F3
Out[668]= x Siny z
Out[669]= xy z

Out[670]= x2 y

Out[671]= x Siny z, xy z, x2 y
In[672]:= CurlF, Cartesianx, y, z

Out[672]= xy  x2, 2 x y  x y Cosy z,
xy z

y
 x z Cosy z

NOTE: We obtain the same answer for the curl of F using the explicit formula:

In[673]:= curl  y F3  z F2, z F1  x F3, x F2  y F1

Out[673]= xy  x2, 2 x y  x y Cosy z,
xy z

y
 x z Cosy z

Or equivalently,

In[674]:= CurlF  DF3, y  DF2, z, DF3, x  DF1, z, DF2, x  DF1, y

Out[674]= xy  x2, 2 x y  x y Cosy z,
xy z

y
 x z Cosy z

Example 17.3.  Let f x, y, z be a function of three variables with continuous first and second partial derivatives and let F =! f

be the gradient of f .  Find the curl of the vector field F.  

Solution: 

In[675]:= Clearf, F1, F2, F3, x, y, z
F1  Dfx, y, z, x
F2  Dfx, y, z, y
F3  Dfx, y, z, z
F  F1, F2, F3

Out[676]= f1,0,0x, y, z
Out[677]= f0,1,0x, y, z
Out[678]= f0,0,1x, y, z
Out[679]= f1,0,0x, y, z, f0,1,0x, y, z, f0,0,1x, y, z
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Then the curl of F is 

In[680]:= CurlF, Cartesianx, y, z
Out[680]= 0, 0, 0
To see why the curl is zero, let us examine each partial derivative used in computing the curl of F.  

In[681]:= DF3, y
DF2, z

Out[681]= f0,1,1x, y, z
Out[682]= f0,1,1x, y, z
NOTE: Here, f 0,1,1x, y, z stands for the second partial derivative fyz. Thus, the two partial derivatives that appear in the x-

component of the curl of F are equal and hence their difference is zero. Similarly, we have 

In[683]:= DF3, x
DF1, z

Out[683]= f1,0,1x, y, z
Out[684]= f1,0,1x, y, z
and 

In[685]:= DF2, x
DF1, y

Out[685]= f1,1,0x, y, z
Out[686]= f1,1,0x, y, z
Example 17.4.  Compute ∑S

F ÿ„S, where Fx, y, z =  x y z, z + 3 x - 3 y , y 2 x and S is the upper hemisphere of radius 4.

Solution:  Note  that  ∑S  is  a  circle  of  radius  4  lying  on  the  xy-plane.  Hence,  ∑S  can  be  parametrized  by  the  curve
ct = xt, yt, zt where

 x = 4 cos t, y = 4 sin t, z = 0, where  0 § t § 2 p

We then use this parametrization to evaluate the line integral ∑S
F ÿ„S =0

2 p
Fxt, yt, zt ÿc ' t „ t:
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In[687]:= ClearF, x, y, z, t, c, curlF
Fx_, y_, z_  x y z, z  3 x  3 y, y2 x
xt_  4 Cost
yt_  4 Sint
zt_  0

ct_  xt, yt, zt
Out[688]= x y z, 3 x  3 y  z, x y2
Out[689]= 4 Cost
Out[690]= 4 Sint
Out[691]= 0

Out[692]= 4 Cost, 4 Sint, 0

In[693]:= 
0

2 Pi

Fxt, yt, zt.c't t

Out[693]= 48 

Next, we use Stokes's Theorem to obtain the same answer via the corresponding surface integral.  The parametrization of the
upper hemisphere of radius 4 is given by Su, v = xu, v, yu, v, zu, v, where

 x = 4 cos u sin v,  y = 4 sin u sin v, and z = 4 cos v,    where    0 § u § 2 p, 0 § v § p 2

We now compute the normal of the upper hemisphere:

In[694]:= ClearS, u, v, Tu, Tv, n
Su_, v_ :  4 Cosu Sinv, 4 Sinu Sinv, 4 Cosv 
Tuu_, v_ : DSu, v, u
Tvu_, v_ : DSu, v, v
nu_, v_  CrossTvu, v, Tuu, v

Out[698]= 16 Cosu Sinv2, 16 Sinu Sinv2,

16 Cosu2 Cosv Sinv  16 Cosv Sinu2 Sinv
The curl of F is 

In[699]:= curlFx_, y_, z_  CurlFx, y, z, Cartesianx, y, z
Out[699]= 1  2 x y, x y  y2, 3  x z
Thus, the surface integral is given by 

In[700]:= 
0

Pi2


0

2 Pi

curlFSu, v1, Su, v2, Su, v3 .nu, v u v

Out[700]= 48 

This answer agrees with the one obtained using the line integral definition.

Example 17.5.  Find the flux of the curl of the vector field Fx, y, z =  x2, z2 , y + x2 across S, where S is the part of the cone

z2 = x2 + y2 for which 1 § z § 4 with outward normal orientation.
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Solution:  First, we will need the following parametric equations to describe the cone S: x = u cos v , y = u sin v, and z = u, where
0 § v § 2 p and 1 § u § 4. 

For the cone to have outward orientation, we set n = TvμTu  (right-hand rule) since Tv  points in the horizontal direction around
the cone and Tu points in the direction along the length of the cone.

In[701]:= ClearF, S, u, v, Tu, Tv, n
Fx_, y_, z_  x2  y2, x  z2, 0
Su_, v_ :  u Cosv , u Sinv , u 
Tuu_, v_ : DSu, v, u
Tvu_, v_ : DSu, v, v
nu_, v_  CrossTvu, v, Tuu, v

Out[702]= x2  y2, x  z2, 0
Out[706]= u Cosv, u Sinv, u Cosv2  u Sinv2
 We now compute the flux of curl F across S through the following steps.

In[707]:= curlFx_, y_, z_  CurlFx, y, z, Cartesianx, y, z
Out[707]= 2 z, 0, 1  2 y

In[708]:= Flux  
1

4


0

2 Pi

curlFSu, v1, Su, v2, Su, v3.nu, v v u

Out[708]= 15 

ü  Exercises 

NOTE: In order to perform the curl operation in Mathematica, it is necessary to first load the VectorAnalysis package.  See
instructions given at the beginning of this chapter.

In Exercises 1 and 2, find the curl of the given vector field.

1. Fx, y, z =  ln x2 + y2 + z2, x  z , ex sin y z
2. Fx, y, z = - x

x2+y2+z232 , -
y

x2+y2+z232 , - z

x2+y2+z232 

In Exercises 3 and 4, verify Stokes's Theorem for the given vector field F and surface S.

3. Fx, y, z =  x3 e - 3 x y + z3, 2 z3 - x z2 + y4, 6 y + 2 z3 x2 and S is the part of the paraboloid z = x2 + y2 for which z § 9 and 

with outward normal orientation.
4. Fx, y, z =  x y z, x y, x + y + z and S is the elliptical region in the plane y + z = 2 whose boundary is the intersection of the 
plane with the cylinder x2 + y2 = 1 and with upward normal orientation.

In Exercises 5 and 6, use Stokes's Theorem to compute the flux of the curl of the vector field F across the surface S.

5. Fx, y, z =  tanx y z, ey-x z, secy2 x and S is the upper hemisphere of radius 4.

6. Fx, y, z =  x2 z, x y2, z2 and S consists of the top and four sides of the cube (excluding the bottom) with vertices at 0, 0, 0, 
1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1.

ü 17.3  Divergence Theorem

Students should read Section 17.3 of Rogawski's Calculus [1] for a detailed discussion of the material presented in this
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g p
section.

Let Fx, y, z = F1, F2, F3 be a vector field.  The divergence of F, denoted by divF or ! ◊ F, is defined by 

divF = ! ◊ F =
∑F1

∑x
+

∑F2

∑ y
+

∑F3

∑z

where ! =  ∑

∑x
, ∑

∑y
, ∑

∑z
.

The Mathematica command for computing the divergence of a vector field F is Div[F,coordsys], where coordsys is the coordi-
nate system of the vector field.  This is demonstrated in the next example.

The following is another generalization of the Fundamental Theorem of Calculus three dimensions, which relates a triple integral
of a solid object involving divergence with a corresponding surface integral along its boundary.

Divergence Theorem: Let W  be a region in R3 whose boundary ∑W  is a piecewise smooth surface, oriented so that the normal
vectors to ∑W  point outside of W , and Fx, y, z be a vector field with continuous partial derivatives whose domain contains W .
Then

 ∑W
F ◊„S =   W

divF „V

Refer to your textbook for a detailed discussion and proof of the Divergence Theorem.

Example 17.8.  Find the divergence of the vector field Fx, y, z =  x sin yz, ex y z , yx2.
Solution: 

In[709]:= ClearF1, F2, F3, x, y, z
F1  x Siny z
F2  Exy z

F3  x 2 y

F  F1, F2, F3
Out[710]= x Siny z
Out[711]= xy z

Out[712]= x2 y

Out[713]= x Siny z, xy z, x2 y
Then the divergence of F is 

In[714]:= DivF, Cartesianx, y, z

Out[714]= 
xy x z

y2
 Siny z

NOTE: Again we obtain the same answer for the divergence of F using the explicit formula:

In[715]:= DF1, x  DF2, y  DF3, z

Out[715]= 
xy x z

y2
 Siny z

Example 17.9.  Find  S
F ◊„S, where Fx, y, z =  x , y2, y + z and S = ∑W  is the boundary of the region W contained in the
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cylinder  x2 + y2 = 4 between the plane z = x and z = 8.

Solution: If S is the boundary of the solid W , then W  is given by

W = x, y, z : -2 § x § 2, - 4 - x2 § y § 4 - x2 , x § z § 8
In[716]:= ClearF, divF, x, y, z

Fx_, y_, z_  x, y2, y  z
divF  DivFx, y, z, Cartesianx, y, z

Out[717]= x, y2, y  z
Out[718]= 2  2 y

By the Divergence Theorem, we see that  S
F ÿ„S is given by 

In[719]:= 
2

2


 4x2

4x2


x

8

divF z y x

Out[719]= 64 

ü  Exercises 

NOTE: In order to perform the divergence operation in Mathematica, it is necessary to first load the VectorAnalysis package.
See instructions given at the beginning of this chapter.

In Exercises 1 and 2, find the divergence of the given vector field F.

1. Fx, y, z =  x y z, x2 + y2 + z2, x y + y z + x z
2. Fx, y, z =  ex y cos z, ey z sin z, z2
In Exercises 3 and 4, verify the Divergence Theorem for the given vector field F and solid region W.

3. Fx, y, z = x2 y, y2 z, z2 x  and W = x, y, z : x2 + y2 + z2 < 1 is the unit ball. 

4. Fx, y, z = ex cos y, ex sin y, x y z  and W is the region bounded by the paraboloid z = x2 + y2 and z = 4.

In Exercises 5 and 6, use the Divergence Theorem to calculate the flux of the vector field F across the surface S.

5. Fx, y, z =  x ez , y2, y + z x and S is tetrahedron bounded by the plane 3 x + 4 y + 5 z = 15 and the coordinate planes in the 

first octant.

6. Fx, y, z =  x y z, x2 + y2 + z2, x y + y z + x z  and S is the unit cube with vertices at 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 
0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1.
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