
Numerical Analysis

Chapter 4 Interpolation and Approximation

4.1 Polynomial Interpolation

Goal Given n + 1 data points

(x0, y0), (x1, y1), · · · (xn, yn),

to find the polynomial of degree less than or equal to n that passes through these points.

Remark There is a unique polynomial of degree less than or equal to n passing through n + 1 given
points. (Give a proof for n = 2.)

Linear Interpolation Given two points (x0, y0) and (x1, y1), the linear polynomial passing through the
two points is the equation of the line passing through the points. One way to write its formula is

P1(x) = y0
x1 − x

x1 − x0
+ y1

x−x0

x1 − x0
.

Example For the data points (2, 3) and (5, 7) find P1(x).

Solution:

P1(x) = 3
5 − x

5 − 2
+ 7

x− 2

5 − 2
= (5 − x) +

5

3
(x − 2)

Example For the data points (0.82, 2.270500) and (0.83, 2.293319), find P1(x) and evaluate P1(0.826).

Solution:

P1(x) = 2.270500
.83 − x

.83 − .82
+ 2.293319

x − .82

.83 − .82
= 227.0500 (.83 − x) + 229.3319(x − .82)

and hence
P1(.826) = 2.2841914.

Remark. If f(x) = ex, then f(.82) ≈ 2.270500, f(.83) ≈ 2.293319, and f(.826) ≈ 2.2841638. Note then
that P1(x) is an approximation of f(x) = ex for x ∈ [.82, .83].

In general, if y0 = f(x0) and y1 = f(x1) for some function f , then P1(x) is a linear approximation of f(x)
for all x ∈ [x0, x1].



Quadratic Interpolation If (x0, y0), (x1, y1), (x2, y2), are given data points, then the quadratic
polynomial passing through these points can be expressed as

P2(x) = y0 L0(x) + y1 L1(x) + y2 L2(x)

where

L0(x) =
(x − x1)(x − x2)

(x0 − x1)(x0 − x2)

L1(x) =
(x − x0)(x − x2)

(x1 − x0)(x1 − x2)

L2(x) =
(x − x0)(x − x1)

(x2 − x0)(x2 − x1)

The polynomial P(x) given by the above formula is called Lagrange’s interpolating polynomial and
the functions L0, L1, L2 are called Lagrange’s interpolating basis functions.

Remark Note that deg(P2) ≤ 2 and that

Li(xj) = δij =

{
0 i 6= j
1 i = j

δij is called the Kronecker delta function.

Example Construct P2 from the data points (0,−1), (1,−1), (2, 7).

Solution:

P2(x) = (−1)
(x − 1)(x − 2)

2
+ (−1)

x(x − 2)

−1
+ 7

x(x− 1)

2
=

−1

2
(x − 1)(x − 2) + x(x− 2) +

7

2
x(x− 1)

Example See Example 4.1.4 on page 122 of the text.

Higher-Degree Interpolation Given n + 1 data points

(x0, y0), (x1, y1), · · · (xn, yn),

the n Lagrange interpolating polynomial is given by

Pn(x) = y0 L0(x) + y1 L1(x) + y2 L2(x) + yn Ln(x)

where

L0(x) =
(x − x1)(x − x2)(x − x3) · · · (x− xn)

(x0 − x1)(x0 − x2)(x0 − x3) · · · (x0 − xn)

L1(x) =
(x − x0)(x − x2)(x − x3) · · · (x− xn)

(x1 − x0)(x1 − x2)(x1 − x3) · · · (x1 − xn)

L2(x) =
(x − x0)(x − x1)(x − x3) · · · (x− xn)

(x2 − x0)(x2 − x1)(x2 − x3) · · · (x2 − xn)

...

Ln(x) =
(x − x0)(x − x1)(x − x2) · · · (x − xn−1)

(xn − x0)(xn − x1)(xn − x3) · · · (xn − xn−1



Newton’s Divided Difference Given distinct points x0 and x1 in the domain of a function f , we define

f [x0, x1] =
f(x1) − f(x0)

x1 − x0
.

This is called the first-order divided difference of f(x).

Remark. Note that if f is differentiable on [x0, x1], then by Mean Value Theorem, there exists a
c ∈ (x0, x1) such that f [x0, x1] = f ′(c). Furthermore, if x)0 and x1 are close to each other, then we have

f [x0, x1] ≈ f ′(d) with d =
x0 + x1

2
.

Example Consider f(x) = cos x, x0 = 0.2, and x1 = 0.3. Compute f [x0, x1].

Solution:

f [x0, x1] =
cos(0.3) − cos(0.2)

0.3 − 0.2
≈ −0.2473009

Note that

f ′
(

x0 + x1

2

)
= − sin(0.25) ≈ −0.247404

Definition Higher order divided differences are defined recursively using the lower-order ones.

Suppose x0, x1, x2 are distinct point in the domain of f . Then the second-order divided difference is
given by

f [x0, x1, x2] =
f [x1, x2] − f [x0, x1]

x2 − x0

Suppose x0, x1, x2, x3 are distinct points in the domain of f . Then the third-order divided difference is
given by

f [x0, x1, x2, x3] =
f [x1, x2, x3]− f [x0, x1, x2]

x3 − x0

In general, if x0, x1, x2 · · ·xn are distinct points in the domain of f , then the nth-order divided difference
is given by

f [x0, x1, x2, · · · xn] =
f [x1, x2, · · ·xn] − f [x0, x1, c . . . , xn−1]

xn − x0

Theorem Suppose x0, x1, x2, . . . , xn are distinct points in [a, b] and suppose f is n times continuously
differentiable. Then there exists a point c between the smallest and largest of x0, x1, · · · , xn such that

f [x0, x1, · · · , xn] =
f (n)(c)

n!
.



Example Let f(x) = cosx, x0 = 0.2, x1 = 0.3, x2 = 0.4. Compute f [x0, x1, x2].

Solution: From the previous example, we have f [x0, x1] ≈ −0.2473009 and

f [x1, x2] =
cos(0.4) − cos(0.3)

0.4 − 0.3
≈ −0.3427550

Thus

f [x0, x1, x2] =
f [x1, x2] − f [x0, x1]

x2 − x0
≈ −0.3427550 − (−0.2473009)

0.4 − 0.2
≈ −0.4772705.

With n = 2 and c = 0.3 ( a point between 0.2 and 0.3) we have

f ′′(c)

2
= −1

2
cos(0.3) ≈ −0.4776682

which is very close to f [x0, x1, x2] as claimed in the theorem.

Basic Properties of Divided differences

1) f [x0, x1] = f [x1, x0] and f [x0, x1, x2] = f [x1, x0, x2] = f [x1, x2, x0] = · · ·. In general if {i0, i2, · · · , in}
is a permutation of {0, 1, 2, · · · n}, then

f [x0, x1, · · · , xn] = f [xi0, xi1, · · · , xin]

2)

f [x0, x1, x2] =
f(x0)

(x0 − x1)(x1 − x2)
+

f(x1)

(x1 − x2)(x1 − x2)
+

f(x2)

(x2 − x0)(x2 − x1)

3) From the definition we have

lim
x1→x0

f [x0, x1] = lim
x1→x0

f(x1) − f(x0)

x1 − x0
= f ′(x0).

The we can define
f [x0, x0] = f ′(x0)

In general, if x0 = x1 = x2 = · · · = xn, then

f [x0, x0, · · · , x0] =
f (n)

n!
.

4) If x0 = x2 6= x1, then

f [x0, x1, x0] = f [x0, x0, x1] =
f [x0, x1] − f [x0, x0]

x1 − x0



Newton’s Divided Difference Interpolating Polynomial Or Newton’s Form

Define

P1(x) = f(x0) + f [x0, x1](x− x0)

P2(x) = f(x0) + f [x0, x1](x− x0) + f [x0, x1, x2](x− x1)

= P1(x) + f [x0, x1, x2](x − x0)(x − x1)

P3(x) = f(x0) + f [x0, x1](x− x0) + f [x0, x1, x2](x− x1) + f [x0, x1, x2, x3](x − x0)(x − x1)(x − x2)

= P2(x) + f [x0, x1, x2, x3](x− x0)(x − x1)(x − x2)

...

Pn(x) = Pn−1(x) + f [x0, x1, · · · , xn−1](x − x0)(x − x1) · · · (x− xn−1)

The polynomial Pn is called Newton’s divided deference formula for the interpolating polynomial
or Newton’s form for the interpolating polynomial. Note that Pn(xi) = f(xi).

—Example Determine the Newton form for the interpolating polynomial for the data set {(−1, 5), (0, 1), (1, 1), (2
Then use this polynomial to approximate y if x = 1.5.

Solution

i xi f [xi] = f(xi) f [xi, xi+1] f [xi, xi+1, xi+2] f [x0, x1, x2, x3]

0 -1 5

-4
1 0 1 2

0 1

2 1 1 5

10

3 2 11

Therefore

P3(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x − x0)(x − x1) + f [x0, x1, x2, x3](x− x0)(x− x1)(x− x2)

= 5 − 4(x − (−1)) + 2(x − (−1))(x− 0) + 1(x − (−1))(x − 0)(x − 2)

= 5 − 4(x + 1) + 2x(x + 1) + x(x + 1)(x − 1)

And so P3(1.5) = 4.375.



4.2 Error in Polynomial Interpolation

Theorem Let f be a given function on [a, b] and Pn be the polynomial of degree less than or equal to
n interpolating the f at the n + 1 data points x0, x1, x2, · · · , xn in [a, b]:

Pn(x) = f(x0) · L0(x) + f(x1) · L1(x) + f(x2) · L2(x) + · · · + f(xn) · Ln(x).

If f has n + 1 continuous derivatives and xj are distinct, then

f(x) − Pn(x) =
(x− x0)(x− x1) · · · (x − xn)

(n + 1)!
f (n+1)(cx)

where a ≤ x ≤ b and cx is between the maximum and minimum of x, x0, x1, x2, · · · , xn.

Example Let f(x) = ex on [0, 1] and let 0 ≤ x0 < x1 ≤ 1. Then by the theorem,

f(x) − P1(x) =
(x − x0)(x − x1)

2
ecx

where 0 ≤ x ≤ 1 and cx is between the maximum and minimum of x, x0, and x1. If we assume that x0 ≤ x ≤ x1,
then cx is between x0 and x1, and we have

(x− x0)(x1 − x)

2
ex0 ≤ |f(x) − P1(x)| ≤ (x− x0)(x1 − x)

2
ex1

Note that if h = x1 − x0, then

max
x0≤x≤x1

(x − x0)(x1 − x)

2
=

h2

8
and hence

|f(x)− P1(x)| ≤ (x − x0)(x1 − x)

2
ex1 ≤ h2

8
e.

In particular, if x0 = 0.82, x1 = 0.83 and if x = 0.826, then the above reduces to

|ex − P1(x)| ≤ 0.000340

Note that the actual error is −0.0000276.

Example Let f(x) = ex on [0, 1] and let 0 ≤ x0 < x1 < x2 ≤ 1. Then by the theorem,

f(x) − P2(x) =
(x − x0)(x − x1)(x − x2)

6
ecx

where 0 ≤ x ≤ 1 and cx is between the maximum and minimum of x, x0, x1, and x2. If we assume that
x0 ≤ x ≤ x2 and that h = x1 − x0 = x2 − x1, then cx is between x0 and x2, and we have

|f(x) − P2(x)| ≤
∣∣∣∣∣
(x − x0)(x1 − x)(x − x2)

6
ex2

∣∣∣∣∣ ≤
∣∣∣∣∣
(x − x0)(x1 − x)(x − x2)

6

∣∣∣∣∣ e

Note that for h = x1 − x0 = x2 − x1, we have

max
x0≤x≤x2

∣∣∣∣∣
(x − x0)(x1 − x)

2

∣∣∣∣∣ =
h3

9
√

3
.

Thus,

|f(x) − P2(x)| ≤ h3

9
√

3
e ≈ 0.174h3.

In particular, if h = 0.01 then the above reduces to

|ex − P2(x)| ≤ 1.74 · 10−7



4.3 Interpolation Using Splines

Remark Consider the data points (0, 2.5), (1, 0.5), (2, 0.5), (2.5, 1.5), (3, 1.5), (3.5, 1.125), (4, 0).
The iterating polynomial of Newton and Lagrange are of degree 6. Figure 4.8 on page 148 shows the graph of
P6(x). Such polynomials are not always easy to evaluate and there may be loss of significant digits involved in
their calculations .

For these reasons it is desirable to consider piecewise polynomial interpolation. This involves finding
a continuous function g on [0, 4] and that is a polynomial of ’small’ degree in each of the intervals [0, 1], [1, 2],
[2, 2.5], [2.5, 3], [3, 3.5, and [3.5, 4]. Clearly we need g to interpolate the data set.

Such a function g is called a piecewise linear interpolation if each of the polynomials on the subintervals
are of degree less than or equal to 1.

We say g is a piecewise quadratic interpolation if each of the polynomials on the subintervals are of
degree less than or equal to 2.

Example For a piecewise linear interpolation of the above data points, see Figure 4.7 on page 147
of your text. Figure 4.9 at the bottom of page 148 shows a piecewise quadratic interpolation.

Remark Both the linear and the quadratic interpolating functions are inadequate in that the function
g is not differentiable at the node points. Thus if smoothness at the node points is required we need the
degree of the polynomials to be at least less than or equal to three. As the following theorem states this is all
we need.

Theorem If a = x1 < x2 < · · · xn−1 < xn = b, then there is a unique interpolating function s(x) of the
data points (x1, y1), (x2, y2), · · · , (xn, yn) such that

S1 s(x) is a polynomial of degree ≤ 3 on each of the subintervals [xi−1, xi] for i = 2, 3, · · · n.

S2 s(x), s′(x), and s′′(x) are all continuous on [a, b]

S3 s′′(x1) = s′′(xn) = 0

The function s satisfying the above theorem is called the natural cubic spline

Construction of the natural cubic spline s(x)

To simplify notation, we assume that

h = x2 − x1 = x3 − x2 = · · · = xn − xn−1 =
b− a

n
.

Note that s′′(x) is at most linear (why?). Define

Mj = s′′(xj).

Then, since s′′(xj−1) = Mj−1 and s′′(xj) = Mj are points on the linear function s′′(x) and since s′′(x) is the
equation of the line passing through the points (xj−1,Mj−1) and (xj,Mj), we can write its equation as

s′′(x) =
Mj−1

h
(xj − x) +

Mj

h
(x − xj−1)



We now integrate s′′(x) twice and use the continuity of s′ and s, and the fact that s(xi) = yi to obtain

s(x) =
Mj−1

6h
(xj − x)3 +

Mj

6h
(x − xj−1)

3 +
yj−1

h
(xj − x) +

yj

h
(x − xj−1) −

hMj−1

6
(xj − x) − hMj

6
(x − xj−1)

For a general formula we can replace h by xj − xj−1. (See text on page 150.)

The Mj are obtained from the following n − 2 equation

h

6
Mj−1 +

2h

3
Mj +

h

6
=

yj+1 − yj

h
− yj − yj−1

h
and the two conditions form S3 of the theorem, which in this case translate to

M1 = 0, Mn = 0

.

Example For the data points (1, 1), (2, 1/2), (3, 1/3), (4, 1/4), find the natural cubic spline.

Solution: Here n = 4 and h = 1. The last system of equation is then

1
6
M1 + 2

3
M2 + 1

6
M3 = 1

3

1
6
M2 + 2

6
M3 + 1

6
M4 = 1

12

Since M1 = M =4= 0, the above reduces to

2
3
M2 + 1

6
M3 = 1

3

1
6
M2 + 2

6
M3 = 1

12

Solving this we get M2 = 1/2 and M3 = 0

Substituting M1 = M3 = M4 = 0, M2 = 1/2 and y1 = 1, ; y2 = 1/2, y3 = 1/3, y4 = 1/4 in the formula for
s(x) and simplifying we get

s(x) =





1
12

x3 − 1
4
x2 − 1

3
x + 1

3
, 1 ≤ x ≤ 2

− 1
12

x3 − 3
4
x2 − 7

3
x + 17

6
, 2 ≤ x ≤ 3

− 1
12

x + 7
12

, 3 ≤ x ≤ 4.


