Numerical Analysis

Chapter 3 Root Finding

An Ideal Goal: Find the roots of the equation

$$
f(x)=0 .
$$

Example 1. Solve the following equations.
a) $x^{2}-3 x+2=0$
b) $x^{3}-3 x+2=0$
c) $x^{6}-x-1=0$

Example 2. Given $P_{\text {in }}, P_{\text {out }}, N_{\text {in }}, N_{\text {out }}$, find r in the equation

$$
f(r) \equiv P_{\text {in }}\left[(1+r)^{N_{\text {in }}}-1\right]-P_{\text {out }}\left[1-(1+r)^{N_{o u t}}\right]=0 .
$$

Read the text on pages 71 and 72 for the application and derivation of this equation.

Practical Goal: Approximate the roots of the equation

$$
f(x)=0
$$

3.1 The Bisection Method

Remark. Assume f is continuous on $[a, b]$ and

$$
f(a) f(b)<0 .
$$

Then f changes sign on $[a, b]$ and $f(x)=0$ has at least a root in the interval. (This is the Intermediate Value Theorem of Calculus.)
The simplest numerical procedure for finding a root is repeatedly halving the interval for which $f(x)$ changes sign. This is called the bisection method.

Here are the steps. Fix a positive $\epsilon>0$. This is to decide the accuracy of the approximation.

B1 Define $c=\frac{a+b}{2}$
B2 If $b-c<\epsilon$, then accept c as a root and stop.
B3 If $\operatorname{sign}[f(b)] \cdot \operatorname{sign}[f(c)]<0$, then set $c=a$.
Otherwise, set $b=c$ and return to B1
Example 3. Find the largest root of

$$
f(x)=x^{6}-x-1=0
$$

accurate to within $\epsilon=0.001$.

Solution: First note that $f(1)=-1$ and $f(2)=61$. Thus $a=1$ and $b=2$. The first value of c will be $c=1.5$. We compute $b-c$ to find that $b-c=.5$. Next we evaluate $f(c)=f(1.5)=8.8906>0$, and hence let $b=c=1.5$ and go to B1. The new c is $c=1.25$ and $b-c=.25$ and so we compute $f(c)=f(1.25)=1.5647>0$. We set $b=c=1.25$ and go to B1 again. Keep repeating this while at the same time keeping track of the difference $b-c$. When this difference becomes less than ϵ we stop. For details, see the table on page 73 of the text.

Error Bounds Given a, b, and ϵ, how many steps do we need to approximate the roo of $f(x)=0$?
To answer this question, we let a_{n}, b_{n}, and c_{n} denote the nth computed values of a, b, and c respectively. Then

$$
b_{n+1}-a_{n+1}=\frac{1}{2}\left(b_{n}-a_{n}\right)
$$

and hence (by induction)

$$
b_{n}-a_{n}=\frac{1}{2^{n-1}}(b-a) \quad(n \geq 1)
$$

Since the root α is in either $\left[a_{n}, c_{n}\right]$ or $\left[c_{n}, b_{n}\right]$, we know that

$$
\left|\alpha-c_{n}\right| \leq c_{n}-a_{n}=b_{n}-c_{n}=\frac{1}{2^{n}}\left(b_{n}-a_{n}\right)
$$

and so (again by induction) we have

$$
\left|\alpha-c_{n}\right|<\frac{1}{2^{n}}(b-a) .
$$

It follows that

$$
\lim _{n \rightarrow \infty} c_{n}=\alpha
$$

If we require $\left|\alpha-c_{n}\right| \leq \epsilon$, then it suffices to have

$$
\frac{1}{2}(b-a) \leq \epsilon
$$

or

$$
n \geq \frac{1}{\log 2} \log \left(\frac{b-a}{\epsilon}\right)
$$

3.2 Newton's Method

Remark. Newton's method use tangent line approximation. More precisely, let x_{0} a point near a solution α of $f(x)=0$. We will discussed a condition on the selection of x_{0} later. For the moment assume that $f^{\prime}\left(x_{0}\right) \neq 0$. The equation of the tangent line at x_{0} is given by

$$
y-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

Let x_{1} be the x-intercept of the tangent line. Then we can solve for x_{1} to get

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

We will show later that for suitably chosen x_{0}, x_{1} will be closer to the root α of $f(x)=0$. Replace x_{0} by x_{1} and repeat the above to get a better approximation x_{2} given by

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}
$$

Continue this process to obtain

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

This is called the iteration formula of Newton's Method. Newton's method is sometimes called Newton - Raphson Method

Example 4 Find the iteration formula for Newton's method and use it to approximate the root of $f(x)=x^{6}-x-1$.

Solution: Since $f^{\prime}(x)=6 x^{5}-1$, we have

$$
x_{n+1}=x_{n}-\frac{x_{n}^{6}-x_{n}-1}{6 x_{n}^{5}-1}
$$

We can use $x_{0}=1.5$ and obtain $x_{1}=1.300490088$. and so on. (See Table 3.2 on page 81)
Example 5 Do Example 3.2.2 of the text on page 81.
$\underline{\text { Error Analysis }}$ How do we choose x_{0} to ensure convergence of x_{n} to α ?
Assume f has a continuous derivative, $f(\alpha)=0$, and $f^{\prime}(\alpha) \neq 0$. Using Taylor's Thereom, we have

$$
f(\alpha)=f\left(x_{n}\right)+f^{\prime}\left(x_{n}\right)\left(\alpha-x_{n}\right) \frac{f^{\prime \prime}\left(c_{n}\right)}{2}\left(\alpha-x_{n}\right)^{2}
$$

where c_{n} is a number between α and x_{n}.
Since $f(\alpha)=0$ and $f^{\prime}(\alpha) \neq 0$ diving the above by $f^{\prime}(\alpha)$, we get

$$
0=\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}+\left(\alpha-x_{n}\right)+\frac{f^{\prime \prime}\left(c_{n}\right)}{2 f^{\prime}\left(x_{n}\right)}\left(\alpha-x_{n}\right)^{2}
$$

From Newton's method iteration formula, we note that

$$
\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}=x_{n}-x_{n+1}
$$

Using this in the above equation, we get

$$
0=\left(x_{n}-x_{n+1}+\left(\alpha-x_{n}\right)+\frac{f^{\prime \prime}\left(c_{n}\right)}{2 f^{\prime}\left(x_{n}\right)}\left(\alpha-x_{n}\right)^{2} .\right.
$$

Solving for $\alpha-x_{n+1}$, we get

$$
\alpha-x_{n+1}+\frac{-f^{\prime \prime}\left(c_{n}\right)}{2 f^{\prime}\left(x_{n}\right)}\left(\alpha-x_{n}\right)^{2} .
$$

If we now assume that

$$
\lim _{n \rightarrow \infty} x_{n}=\alpha,
$$

then

$$
c_{n} \approx \alpha \quad \text { and } \quad c_{n} \approx \alpha
$$

and hence

$$
\frac{-f^{\prime \prime}\left(c_{n}\right)}{2 f^{\prime}\left(x_{n}\right)} \approx \frac{-f^{\prime \prime}(\alpha)}{2 f^{\prime}(\alpha)} \equiv M
$$

Thus,

$$
\alpha-x_{n+1} \approx M\left(\alpha-x_{n}\right)^{2}
$$

and multiply both sides by M, we get

$$
M\left(\alpha-x_{n+1}\right) \approx\left(M\left(\alpha-x_{0}\right)\right)^{2}
$$

By induction, we conclude that

$$
\alpha-x_{n} \approx\left(M\left(\alpha-x_{0}\right)\right)^{2^{n}}, \quad(n \geq 1)
$$

Consequently for $\lim _{n \rightarrow \infty} x_{n}=\alpha$ to hold we must have

$$
\left|\alpha-x_{0}\right|<\frac{1}{M}
$$

Remark. While the above condition ensures the convergence of the iteration formula for Newton, the difficulty is that M uses the value of the unknown α. How would you overcome this difficulty?

Error Estimation How many iterations do we need to approximate α by x_{n} accurate to within a given $\epsilon>0$?

To answer this question, we use the Mean Value Theorem on the interval $\left[\alpha, x_{n}\right]$ or $\left[x_{n}, \alpha\right]$ to write

$$
\frac{f\left(x_{n}\right)-f(\alpha)}{x_{n}-\alpha}=f^{\prime}\left(c_{n}\right)
$$

for some c_{n} between x_{n} and α. But $f(\alpha)=0$ and so we have

$$
f\left(x_{n}\right)=f^{\prime}\left(c_{n}\right)\left(x_{n}-\alpha\right)
$$

or

$$
\alpha-x_{n}=\frac{-f\left(x_{n}\right)}{f^{\prime}\left(c_{n}\right)} .
$$

Now assume $f^{\prime}\left(c_{n}\right) \approx f^{\prime}\left(x_{n}\right)$ and use Newton's iteration formula to get

$$
x_{n+1}-x_{n} \approx \frac{-f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

Therefore,

$$
\alpha-x_{n} \approx x_{n+1}-x_{n} .
$$

In other words,

$$
\left|x_{n+1}-x_{n}\right|<\epsilon
$$

can ensure that the error $\left|\alpha-x_{n}\right|$ is less than ϵ. This is the standard error estimate for Newton's Method.

3.3 Secant Method

Newton's Method uses tangent line. However, we can also use other straight line approximations to $y=f(x)$. One such method is called the secant method.

Assume that two initial guesses x_{0} and x_{1} to α are known. Find the equation of the line passing through $\left(x_{0}, f\left(x_{0}\right)\right)$ and $\left(x_{1}, f\left(x_{1}\right)\right)$ to obtain

$$
y=P(x)=f\left(x_{1}\right)+\frac{f\left(x_{1}\right)-f\left(x_{0}\right)}{x_{1}-x_{0}}\left(x-x_{1}\right) .
$$

Solve $P(x)=0$ to get the solution x_{2} :

$$
x_{2}=x_{1}-f\left(x_{1}\right) \frac{x_{1}-x_{0}}{f\left(x_{1}\right)-f\left(x_{0}\right)} .
$$

It can be shown that x_{2} is a better approximation to α than the previous two guesses. Repeat the above arguement with x_{1} and x_{2} to get a new approximation x_{3} given by

$$
x_{3}=x_{2}-f\left(x_{2}\right) \frac{x_{2}-x_{1}}{f\left(x_{2}\right)-f\left(x_{1}\right)} .
$$

We proceed inductively to obtain the iteration formula for the secant method:

$$
x_{n+1}=x_{n}-f\left(x_{n}\right) \frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)} .
$$

Example Find the iteration formula for to approximate the root of $f(x)=x^{6}-x-1$. (See table 3.3 on page 92)

Error Analysis From

$$
x_{n+1}=x_{n}-f\left(x_{n}\right) \frac{x_{n}-x_{n-1}}{f\left(x_{n}\right)-f\left(x_{n-1}\right)}
$$

we can show that

$$
\alpha-x_{n+1}=\left(\alpha-x_{n}\right)\left(\alpha-x_{n-1}\right)\left[-\frac{f^{\prime \prime}\left(d_{n}\right)}{2 f^{\prime}\left(c_{d}\right)}\right]
$$

where c_{n} is between x_{n} and x_{n+1} and d_{n} is between the smallest and largest of α, x_{n} and x_{n-1}.
It can be shown that if x_{0} and x_{1} are chosen to be sufficiently close to α, then

$$
\lim _{n \rightarrow \infty} \frac{\left|\alpha-x_{n+1}\right|}{\left|\alpha-x_{n}\right|^{r}}=\left|\frac{f^{\prime \prime}(\alpha)}{2 f^{\prime}(\alpha)}\right|^{r-2}=c
$$

where $r=(\sqrt{5}+1) / 2 \approx 1.62$. Thus

$$
\left|\alpha-x_{n+1}\right| \approx c\left|\alpha-x_{n}\right|^{1.62}
$$

From this we also deduce that

$$
\alpha-x_{n} \approx x_{n}-x_{n-1}
$$

which is the error estimate for the iterates of the scant method. Clearly the Newton method is faster than the secant method.

3.4 Fixed Point Iteration

An other method of solving $f(x)=0$ is to rewrite it as

$$
x=g(x) .
$$

We then begin with an initial guess x_{0} and define the fixed point iteration formula

$$
x_{n+1}=g\left(x_{n}\right)
$$

Under what condition(s) does the statement 'if $\alpha=g(\alpha)$, then $f(\alpha)=0$ ' hold? Note that

$$
\lim _{n \rightarrow \infty} x_{n}=\alpha \quad \text { implies } \quad \alpha=g(\alpha)
$$

and x_{n} gives an approximation to α. Since $\alpha=g(\alpha)$, we say that α is a fixed point of g and hence the name of the method.

Example Consider the equation

$$
f(x)=x^{2}-5=0
$$

Each of the following iterations can be considered a fixed point iteration.

$$
\begin{aligned}
& \mathrm{I} 1 \quad x_{n+1}=5+x_{n}-x_{n}^{2} \\
& \mathrm{I} 2 \quad x_{n+1}=5 / x_{n} \\
& \mathrm{I} 3 \quad x_{n+1}=1+x_{n}-\frac{1}{5} x^{2} \\
& \mathrm{I} 4 \quad x_{n+1}=\frac{1}{2}\left(x_{n}+\frac{5}{x_{n}}\right)
\end{aligned}
$$

Construct a table to see which of the above iterations gives the desired result of approximate the positive root $\alpha=\sqrt{5}$?

Lemma Let g be continuous on $[a, b]$ and suppose $a \leq g(x) \leq b$ for all $x \in[a, b]$. The the equation $x=g(x)$ has at least one solution α in $[a, b]$.

Proof: Apply IVT to $f(x)=x-g(x)$.
Theorem (Contraction Mapping Theorem) Assume that g and g^{\prime} are continuous on $[a, b]$ and that $a \leq g(x) \leq b$ for all $x \in[a, b]$. Suppose

$$
\lambda=\max _{a \leq x \leq b}\left|g^{\prime}(x)\right|<1
$$

Then
S1 There is a unique solution of $x=g(x)$ in $[a, b]$
S2 For any initial estimate x_{0} in $[a, b]$, the iterate x_{n} converges to α.
S3

$$
\left|\alpha-x_{n}\right|=\frac{\lambda^{n}}{1-\lambda}\left|x_{0}-x_{1}\right| \quad(n \geq 1
$$

S4

$$
\lim _{n \rightarrow} \frac{\alpha-x_{n+1}}{\alpha-x_{n}}=g^{\prime}(\alpha)
$$

Thus

$$
\alpha-x_{n+1} \approx g^{\prime}(\alpha)\left(\alpha-x_{n}\right)
$$

Corollary If g and g^{\prime} are continuous on $[c, d]$ with a fixed point α and if $\left|g^{\prime}(\alpha)\right|<1$, then there exists an in interval $[a, b]$ around α for which the hypothesis of the theorem holds.

Example Redo I1 to I4 of the previous example.

Aitken Error Estimation and Extrapolation

Let $\lambda=g^{\prime}(\alpha)$ and assume that

$$
\alpha-x_{n} \approx g^{\prime}(\alpha)\left(\alpha-x_{n-1}\right)
$$

as in the above theorem. Solving this equation for α, we get

$$
\alpha \approx x_{n}+\frac{\lambda}{1-\lambda}\left(x_{n}-x_{n-1}\right) .
$$

Since we do not yet know α, we do not know the exact value of λ. We now make an estimate on λ
Define

$$
\lambda_{n}=\frac{x_{n}-x_{n-1}}{x_{n-1}-x_{n-2}}=\frac{g\left(x_{n-1}\right)-g\left(x_{n-2}\right)}{x_{n-1}-x_{n-2}}
$$

My the Mean Value Theorem, there exists c_{n} between x_{n-1} and x_{n-2} such that $\lambda_{n}=g^{\prime}\left(c_{n}\right)$. Since $x_{n} \rightarrow \alpha$, we have $c_{n} \rightarrow \alpha$. By continuity of g^{\prime}, we conclude that $g\left(c_{n}\right) \rightarrow g^{\prime}(\alpha)=\lambda$. Thus

$$
\lambda=\lim _{n \rightarrow \infty} \lambda_{n}
$$

and therefore

$$
\lambda \approx x_{n}+\frac{\lambda_{n}}{1-\lambda_{n}}\left(x_{n}-x_{n-1}\right) .
$$

The approximation

$$
\alpha-x_{n} \approx \frac{\lambda_{n}}{1-\lambda_{n}}\left(x_{n}-x_{n-1}\right) \quad \lambda_{n}=\frac{x_{n}-x_{n-1}}{x_{n-1}-x_{n-2}}
$$

is called Aitken error estimate.
Remark If $g^{\prime}(\alpha)=0$, then we use Taylor's Theorem and write

$$
g\left(x_{n}\right)=g(\alpha)+g^{\prime}(\alpha)\left(x_{n}-\alpha\right)+\frac{g^{\prime \prime}\left(c_{n}\right)}{2}\left(x_{n}-\alpha\right)^{2}
$$

where c_{n} is between x_{n} and α. Using $x_{n+1}=g\left(x_{n}\right), \alpha=g(\alpha)$, and $g^{\prime}(\alpha)=0$, we get

$$
\begin{aligned}
& x_{n+1}=\alpha+\frac{1}{2} g^{\prime \prime}\left(c_{n}\right)\left(x_{n}-\alpha\right)^{2} \\
& \alpha-x_{n+1}=\frac{-g^{\prime \prime}\left(c_{n}\right)}{2}\left(\alpha-x_{n}\right)^{2}
\end{aligned}
$$

or

Taking limit and noting that $c_{n} \rightarrow \alpha$, we obtain

$$
\lim _{n \rightarrow \infty} \frac{\alpha-x_{n+1}}{\left(\alpha-x_{n}\right)^{2}}=\frac{-g^{\prime \prime}(\alpha)}{2}=N
$$

From this limit we conclude

$$
\alpha-x_{n+1} \approx N\left(\alpha-x_{n}\right)^{2}
$$

For this reason the iterate $x_{n+1}=g\left(x_{n}\right)$ is said be of order 2 or quadratically convergent.

