Numerical Analysis

Chapter 3 Root Finding

An Ideal Goal: Find the roots of the equation

$$f(x) = 0.$$

Example 1. Solve the following equations.

a) $x^2 - 3x + 2 = 0$ b) $x^3 - 3x + 2 = 0$

c) $x^6 - x - 1 = 0$

Example 2. Given P_{in} , P_{out} , N_{in} , N_{out} , find r in the equation

$$f(r) \equiv P_{in} \left[(1+r)^{N_{in}} - 1 \right] - P_{out} \left[1 - (1+r)^{N_{out}} \right] = 0.$$

Read the text on pages 71 and 72 for the application and derivation of this equation.

Practical Goal: Approximate the roots of the equation

f(x) = 0.

3.1 The Bisection Method

Remark. Assume f is continuous on [a, b] and

f(a)f(b) < 0.

Then f changes sign on [a, b] and f(x) = 0 has at least a root in the interval. (This is the Intermediate Value Theorem of Calculus.)

The simplest numerical procedure for finding a root is repeatedly halving the interval for which f(x) changes sign. This is called the **bisection method**.

Here are the steps. Fix a positive $\epsilon > 0$. This is to decide the accuracy of the approximation.

B1 Define $c = \frac{a+b}{2}$ B2 If $b - c < \epsilon$, then accept c as a root and stop. B3 If $\operatorname{sign}[f(b)] \cdot \operatorname{sign}[f(c)] < 0$, then set c = a. Otherwise, set b = c and return to B1

Example 3. Find the largest root of

$$f(x) = x^6 - x - 1 = 0$$

accurate to within $\epsilon = 0.001$.

Solution: First note that f(1) = -1 and f(2) = 61. Thus a = 1 and b = 2. The first value of c will be c = 1.5. We compute b - c to find that b - c = .5. Next we evaluate f(c) = f(1.5) = 8.8906 > 0, and hence let b = c = 1.5 and go to B1. The new c is c = 1.25 and b - c = .25 and so we compute f(c) = f(1.25) = 1.5647 > 0. We set b = c = 1.25 and go to B1 again. Keep repeating this while at the same time keeping track of the difference b - c. When this difference becomes less than ϵ we stop. For details, see the table on page 73 of the text.

<u>Error Bounds</u> Given a, b, and ϵ , how many steps do we need to approximate the roo of f(x) = 0?

To answer this question, we let a_n , b_n , and c_n denote the *n*th computed values of a, b, and c respectively. Then

$$b_{n+1} - a_{n+1} = \frac{1}{2} \left(b_n - a_n \right)$$

and hence (by induction)

$$b_n - a_n = \frac{1}{2^{n-1}} (b - a)$$
 $(n \ge 1).$

Since the root α is in either $[a_n, c_n]$ or $[c_n, b_n]$, we know that

$$|\alpha - c_n| \le c_n - a_n = b_n - c_n = \frac{1}{2^n} (b_n - a_n)$$

and so (again by induction) we have

$$|\alpha - c_n| < \frac{1}{2^n} (b - a).$$

It follows that

$$\lim_{n \to \infty} c_n = \alpha$$

If we require $|\alpha - c_n| \leq \epsilon$, then it suffices to have

$$\frac{1}{2}(b-a) \le \epsilon$$
$$n \ge \frac{1}{\log 2} \log\left(\frac{b-a}{\epsilon}\right)$$

or

3.2 Newton's Method

Remark. Newton's method use tangent line approximation. More precisely, let x_0 a point near a solution α of f(x) = 0. We will discussed a condition on the selection of x_0 later. For the moment assume that $f'(x_0) \neq 0$. The equation of the tangent line at x_0 is given by

$$y - f(x_0) = f'(x_0)(x - x_0).$$

Let x_1 be the x-intercept of the tangent line. Then we can solve for x_1 to get

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}.$$

We will show later that for suitably chosen x_0 , x_1 will be closer to the root α of f(x) = 0. Replace x_0 by x_1 and repeat the above to get a better approximation x_2 given by

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}.$$

Continue this process to obtain

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

This is called the **iteration formula of Newton's Method**. Newton's method is sometimes called **New-ton - Raphson Method**

Example 4 Find the iteration formula for Newton's method and use it to approximate the root of $f(x) = x^6 - x - 1$.

Solution: Since $f'(x) = 6x^5 - 1$, we have

$$x_{n+1} = x_n - \frac{x_n^6 - x_n - 1}{6x_n^5 - 1}$$

We can use $x_0 = 1.5$ and obtain $x_1 = 1.300490088$. and so on. (See Table 3.2 on page 81)

Example 5 Do Example 3.2.2 of the text on page 81.

Error Analysis How do we choose x_0 to ensure convergence of x_n to α ?

Assume f has a continuous derivative, $f(\alpha) = 0$, and $f'(\alpha) \neq 0$. Using Taylor's Thereom, we have

$$f(\alpha) = f(x_n) + f'(x_n)(\alpha - x_n) \frac{f''(c_n)}{2} (\alpha - x_n)^2$$

where c_n is a number between α and x_n .

Since $f(\alpha) = 0$ and $f'(\alpha) \neq 0$ diving the above by $f'(\alpha)$, we get

$$0 = \frac{f(x_n)}{f'(x_n)} + (\alpha - x_n) + \frac{f''(c_n)}{2f'(x_n)}(\alpha - x_n)^2.$$

From Newton's method iteration formula, we note that

$$\frac{f(x_n)}{f'(x_n)} = x_n - x_{n+1}$$

Using this in the above equation, we get

$$0 = (x_n - x_{n+1} + (\alpha - x_n) + \frac{f''(c_n)}{2f'(x_n)}(\alpha - x_n)^2.$$

Solving for $\alpha - x_{n+1}$, we get

$$\alpha - x_{n+1} + \frac{-f''(c_n)}{2f'(x_n)}(\alpha - x_n)^2.$$

If we now assume that

$$\lim_{n \to \infty} x_n = \alpha,$$

then

$$c_n \approx \alpha$$
 and $c_n \approx \alpha$

and hence

$$\frac{-f''(c_n)}{2f'(x_n)} \approx \frac{-f''(\alpha)}{2f'(\alpha)} \equiv M$$

Thus,

$$\alpha - x_{n+1} \approx M(\alpha - x_n)^2$$

and multiply both sides by M, we get

$$M(\alpha - x_{n+1}) \approx (M(\alpha - x_0))^2$$

By induction, we conclude that

$$\alpha - x_n \approx (M(\alpha - x_0))^{2^n}, \quad (n \ge 1).$$

Consequently for $\lim_{n\to\infty} x_n = \alpha$ to hold we must have

$$|\alpha - x_0| < \frac{1}{M}.$$

Remark. While the above condition ensures the convergence of the iteration formula for Newton, the difficulty is that M uses the value of the unknown α . How would you overcome this difficulty?

<u>Error Estimation</u> How many iterations do we need to approximate α by x_n accurate to within a given $\epsilon > 0$?

To answer this question, we use the Mean Value Theorem on the interval $[\alpha, x_n]$ or $[x_n, \alpha]$ to write

$$\frac{f(x_n) - f(\alpha)}{x_n - \alpha} = f'(c_n)$$

for some c_n between x_n and α . But $f(\alpha) = 0$ and so we have

$$f(x_n) = f'(c_n)(x_n - \alpha)$$

or

$$\alpha - x_n = \frac{-f(x_n)}{f'(c_n)}.$$

Now assume $f'(c_n) \approx f'(x_n)$ and use Newton's iteration formula to get

$$x_{n+1} - x_n \approx \frac{-f(x_n)}{f'(x_n)}.$$

Therefore,

$$\alpha - x_n \approx x_{n+1} - x_n.$$

In other words,

$$|x_{n+1} - x_n| < \epsilon$$

can ensure that the error $|\alpha - x_n|$ is less than ϵ . This is the standard error estimate for Newton's Method.

3.3 Secant Method

Newton's Method uses tangent line. However, we can also use other straight line approximations to y = f(x). One such method is called the **secant method**.

Assume that two initial guesses x_0 and x_1 to α are known. Find the equation of the line passing through $(x_0, f(x_0))$ and $(x_1, f(x_1))$ to obtain

$$y = P(x) = f(x_1) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_1).$$

Solve P(x) = 0 to get the solution x_2 :

$$x_2 = x_1 - f(x_1) \frac{x_1 - x_0}{f(x_1) - f(x_0)}$$

It can be shown that x_2 is a better approximation to α than the previous two guesses. Repeat the above argument with x_1 and x_2 to get a new approximation x_3 given by

$$x_3 = x_2 - f(x_2) \frac{x_2 - x_1}{f(x_2) - f(x_1)}$$

We proceed inductively to obtain the iteration formula for the secant method:

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}.$$

Example Find the iteration formula for to approximate the root of $f(x) = x^6 - x - 1$. (See table 3.3 on page 92)

Error Analysis From

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

we can show that

$$\alpha - x_{n+1} = (\alpha - x_n)(\alpha - x_{n-1}) \left[-\frac{f''(d_n)}{2f'(c_d)} \right]$$

where c_n is between x_n and x_{n+1} and d_n is between the smallest and largest of α , x_n and x_{n-1} .

It can be shown that if x_0 and x_1 are chosen to be sufficiently close to α , then

$$\lim_{n \to \infty} \frac{|\alpha - x_{n+1}|}{|\alpha - x_n|^r} = \left| \frac{f''(\alpha)}{2f'(\alpha)} \right|^{r-2} = c$$

where $r = (\sqrt{5} + 1)/2 \approx 1.62$. Thus

$$|\alpha - x_{n+1}| \approx c|\alpha - x_n|^{1.62}.$$

From this we also deduce that

$$\alpha - x_n \approx x_n - x_{n-1}$$

which is the **error estimate** for the iterates of the scant method. Clearly the Newton method is faster than the secant method.

3.4 Fixed Point Iteration

An other method of solving f(x) = 0 is to rewrite it as

$$x = g(x)$$

We then begin with an initial guess x_0 and define the fixed point iteration formula

$$x_{n+1} = g(x_n).$$

Under what condition(s) does the statement 'if $\alpha = g(\alpha)$, then $f(\alpha) = 0$ ' hold? Note that

$$\lim_{n \to \infty} x_n = \alpha \qquad \text{implies} \qquad \alpha = g(\alpha)$$

and x_n gives an approximation to α . Since $\alpha = g(\alpha)$, we say that α is a fixed point of g and hence the name of the method.

Example Consider the equation

$$f(x) = x^2 - 5 = 0$$

Each of the following iterations can be considered a fixed point iteration.

- I1 $x_{n+1} = 5 + x_n x_n^2$
- I2 $x_{n+1} = 5/x_n$
- I3 $x_{n+1} = 1 + x_n \frac{1}{5}x^2$
- I4 $x_{n+1} = \frac{1}{2} \left(x_n + \frac{5}{x_n} \right)$

Construct a table to see which of the above iterations gives the desired result of approximate the positive root $\alpha = \sqrt{5}$?

Lemma Let g be continuous on [a, b] and suppose $a \le g(x) \le b$ for all $x \in [a, b]$. The the equation x = g(x) has at least one solution α in [a, b].

Proof: Apply IVT to f(x) = x - g(x).

Theorem (Contraction Mapping Theorem) Assume that g and g' are continuous on [a, b] and that $a \le g(x) \le b$ for all $x \in [a, b]$. Suppose

$$\lambda = \max_{a \le x \le b} |g'(x)| < 1.$$

Then

S1 There is a unique solution of x = g(x) in [a, b]

S2 For any initial estimate x_0 in [a, b], the iterate x_n converges to α .

S3

$$|\alpha - x_n| = \frac{\lambda^n}{1 - \lambda} |x_0 - x_1| \qquad (n \ge 1)$$

S4

$$\lim_{n \to \infty} \frac{\alpha - x_{n+1}}{\alpha - x_n} = g'(\alpha)$$

Thus

$$\alpha - x_{n+1} \approx g'(\alpha)(\alpha - x_n)$$

Corollary If g and g' are continuous on [c, d] with a fixed point α and if $|g'(\alpha)| < 1$, then there exists an in interval [a, b] around α for which the hypothesis of the theorem holds.

Example Redo I1 to I4 of the previous example.

Aitken Error Estimation and Extrapolation

Let $\lambda = q'(\alpha)$ and assume that

$$\alpha - x_n \approx g'(\alpha)(\alpha - x_{n-1})$$

as in the above theorem. Solving this equation for α , we get

$$\alpha \approx x_n + \frac{\lambda}{1-\lambda}(x_n - x_{n-1}).$$

Since we do not yet know α , we do not know the exact value of λ . We now make an estimate on λ

Define

$$\lambda_n = \frac{x_n - x_{n-1}}{x_{n-1} - x_{n-2}} = \frac{g(x_{n-1}) - g(x_{n-2})}{x_{n-1} - x_{n-2}}$$

My the Mean Value Theorem, there exists c_n between x_{n-1} and x_{n-2} such that $\lambda_n = g'(c_n)$. Since $x_n \to \alpha$, we have $c_n \to \alpha$. By continuity of g', we conclude that $g(c_n) \to g'(\alpha) = \lambda$. Thus

$$\lambda = \lim_{n \to \infty} \lambda_n$$

and therefore

$$\lambda \approx x_n + \frac{\lambda_n}{1 - \lambda_n} (x_n - x_{n-1}).$$

The approximation

$$\alpha - x_n \approx \frac{\lambda_n}{1 - \lambda_n} (x_n - x_{n-1}) \qquad \qquad \lambda_n = \frac{x_n - x_{n-1}}{x_{n-1} - x_{n-2}}$$

is called **Aitken error estimate**.

Remark If $g'(\alpha) = 0$, then we use Taylor's Theorem and write

$$g(x_n) = g(\alpha) + g'(\alpha)(x_n - \alpha) + \frac{g''(c_n)}{2}(x_n - \alpha)^2$$

where c_n is between x_n and α . Using $x_{n+1} = g(x_n)$, $\alpha = g(\alpha)$, and $g'(\alpha) = 0$, we get

$$x_{n+1} = \alpha + \frac{1}{2}g''(c_n)(x_n - \alpha)^2$$

or

$$\alpha - x_{n+1} = \frac{-g''(c_n)}{2}(\alpha - x_n)^2$$

Taking limit and noting that $c_n \to \alpha$, we obtain

$$\lim_{n \to \infty} \frac{\alpha - x_{n+1}}{(\alpha - x_n)^2} = \frac{-g''(\alpha)}{2} = N.$$

From this limit we conclude

$$\alpha - x_{n+1} \approx N(\alpha - x_n)^2.$$

For this reason the iterate $x_{n+1} = g(x_n)$ is said be of order 2 or quadratically convergent.