
Numerical Analysis

Chapter 3 Root Finding

An Ideal Goal: Find the roots of the equation

f(x) = 0.

Example 1. Solve the following equations.

a) x2 − 3x + 2 = 0 b) x3 − 3x + 2 = 0

c) x6 − x − 1 = 0

Example 2. Given Pin, Pout, Nin, Nout, find r in the equation

f(r) ≡ Pin

[
(1 + r)Nin − 1

]
− Pout

[
1 − (1 + r)Nout

]
= 0.

Read the text on pages 71 and 72 for the application and derivation of this equation.

Practical Goal: Approximate the roots of the equation

f(x) = 0.

3.1 The Bisection Method

Remark. Assume f is continuous on [a, b] and

f(a)f(b) < 0.

Then f changes sign on [a, b] and f(x) = 0 has at least a root in the interval. (This is the Intermediate Value
Theorem of Calculus.)
The simplest numerical procedure for finding a root is repeatedly halving the interval for which f(x) changes
sign. This is called the bisection method.

Here are the steps. Fix a positive ε > 0. This is to decide the accuracy of the approximation.

B1 Define c = a+b
2

B2 If b − c < ε, then accept c as a root and stop.

B3 If sign[f(b)]· sign[f(c)] < 0, then set c = a.
Otherwise, set b = c and return to B1

Example 3. Find the largest root of

f(x) = x6 − x − 1 = 0



accurate to within ε = 0.001.

Solution: First note that f(1) = −1 and f(2) = 61. Thus a = 1 and b = 2. The first value of c will be
c = 1.5. We compute b− c to find that b− c = .5. Next we evaluate f(c) = f(1.5) = 8.8906 > 0, and hence let
b = c = 1.5 and go to B1. The new c is c = 1.25 and b−c = .25 and so we compute f(c) = f(1.25) = 1.5647 > 0.
We set b = c = 1.25 and go to B1 again. Keep repeating this while at the same time keeping track of the dif-
ference b−c. When this difference becomes less than ε we stop. For details, see the table on page 73 of the text.

Error Bounds Given a, b, and ε, how many steps do we need to approximate the roo of f(x) = 0?

To answer this question, we let an, bn, and cn denote the nth computed values of a, b, and c respectively.
Then

bn+1 − an+1 =
1

2
(bn − an)

and hence (by induction)

bn − an =
1

2n−1
(b − a) (n ≥ 1).

Since the root α is in either [an, cn] or [cn, bn], we know that

|α − cn| ≤ cn − an = bn − cn =
1

2n
(bn − an)

and so (again by induction) we have

|α − cn| <
1

2n
(b − a) .

It follows that
lim

n→∞
cn = α.

If we require |α − cn| ≤ ε, then it suffices to have

1

2
(b− a) ≤ ε

or

n ≥ 1

log 2
log

(
b − a

ε

)
.



3.2 Newton’s Method

Remark. Newton’s method use tangent line approximation. More precisely, let x0 a point near a
solution α of f(x) = 0. We will discussed a condition on the selection of x0 later. For the moment assume that
f ′(x0) 6= 0. The equation of the tangent line at x0 is given by

y − f(x0) = f ′(x0)(x − x0).

Let x1 be the x−intercept of the tangent line. Then we can solve for x1 to get

x1 = x0 − f(x0)

f ′(x0)
.

We will show later that for suitably chosen x0, x1 will be closer to the root α of f(x) = 0. Replace x0 by x1

and repeat the above to get a better approximation x2 given by

x2 = x1 − f(x1)

f ′(x1)
.

Continue this process to obtain

xn+1 = xn − f(xn)

f ′(xn)
.

This is called the iteration formula of Newton’s Method. Newton’s method is sometimes called New-
ton - Raphson Method

Example 4 Find the iteration formula for Newton’s method and use it to approximate the root of
f(x) = x6 − x − 1.

Solution: Since f ′(x) = 6x5 − 1, we have

xn+1 = xn − x6
n − xn − 1

6x5
n − 1

We can use x0 = 1.5 and obtain x1 = 1.300490088. and so on. (See Table 3.2 on page 81)

Example 5 Do Example 3.2.2 of the text on page 81.

Error Analysis How do we choose x0 to ensure convergence of xn to α?

Assume f has a continuous derivative, f(α) = 0, and f ′(α) 6= 0. Using Taylor’s Thereom, we have

f(α) = f(xn) + f ′(xn)(α − xn)
f ′′(cn)

2
(α − xn)

2

where cn is a number between α and xn.

Since f(α) = 0 and f ′(α) 6= 0 diving the above by f ′(α), we get

0 =
f(xn)

f ′(xn)
+ (α − xn) +

f ′′(cn)

2f ′(xn)
(α − xn)

2.

From Newton’s method iteration formula, we note that

f(xn)

f ′(xn)
= xn − xn+1



Using this in the above equation, we get

0 = (xn − xn+1 + (α − xn) +
f ′′(cn)

2f ′(xn)
(α − xn)

2.

Solving for α − xn+1, we get

α − xn+1 +
−f ′′(cn)

2f ′(xn)
(α − xn)

2.

If we now assume that
lim

n→∞
xn = α,

then
cn ≈ α and cn ≈ α

and hence
−f ′′(cn)

2f ′(xn)
≈ −f ′′(α)

2f ′(α)
≡ M.

Thus,
α − xn+1 ≈ M(α − xn)2

and multiply both sides by M , we get

M(α − xn+1) ≈ (M(α − x0))
2

By induction, we conclude that
α − xn ≈ (M(α − x0))

2n

, (n ≥ 1).

Consequently for limn→∞ xn = α to hold we must have

|α − x0| <
1

M
.

Remark. While the above condition ensures the convergence of the iteration formula for Newton, the
difficulty is that M uses the value of the unknown α. How would you overcome this difficulty?

Error Estimation How many iterations do we need to approximate α by xn accurate to within a given
ε > 0?

To answer this question, we use the Mean Value Theorem on the interval [α, xn] or [xn, α] to write

f(xn) − f(α)

xn − α
= f ′(cn)



for some cn between xn and α. But f(α) = 0 and so we have

f(xn) = f ′(cn)(xn − α)

or

α − xn =
−f(xn)

f ′(cn)
.

Now assume f ′(cn) ≈ f ′(xn) and use Newton’s iteration formula to get

xn+1 − xn ≈ −f(xn)

f ′(xn)
.

Therefore,
α − xn ≈ xn+1 − xn.

In other words,
|xn+1 − xn| < ε

can ensure that the error |α − xn| is less than ε. This is the standard error estimate for Newton’s Method.



3.3 Secant Method

Newton’s Method uses tangent line. However, we can also use other straight line approximations to
y = f(x). One such method is called the secant method.

Assume that two initial guesses x0 and x1 to α are known. Find the equation of the line passing through
(x0, f(x0)) and (x1, f(x1)) to obtain

y = P (x) = f(x1) +
f(x1) − f(x0)

x1 − x0
(x − x1).

Solve P (x) = 0 to get the solution x2:

x2 = x1 − f(x1)
x1 − x0

f(x1) − f(x0)
.

It can be shown that x2 is a better approximation to α than the previous two guesses. Repeat the above
arguement with x1 and x2 to get a new approximation x3 given by

x3 = x2 − f(x2)
x2 − x1

f(x2) − f(x1)
.

We proceed inductively to obtain the iteration formula for the secant method:

xn+1 = xn − f(xn)
xn − xn−1

f(xn) − f(xn−1)
.

Example Find the iteration formula for to approximate the root of f(x) = x6 − x − 1. (See table 3.3
on page 92)

Error Analysis From

xn+1 = xn − f(xn)
xn − xn−1

f(xn) − f(xn−1)

we can show that

α − xn+1 = (α − xn)(α − xn−1)

[
− f ′′(dn)

2f ′(cd)

]

where cn is between xn and xn+1 and dn is between the smallest and largest of α, xn and xn−1.

It can be shown that if x0 and x1 are chosen to be sufficiently close to α, then

lim
n→∞

|α − xn+1|
|α − xn|r

=

∣∣∣∣∣
f ′′(α)

2f ′(α)

∣∣∣∣∣

r−2

= c

where r = (
√

5 + 1)/2 ≈ 1.62. Thus
|α − xn+1| ≈ c|α − xn|1.62.

From this we also deduce that
α − xn ≈ xn − xn−1

which is the error estimate for the iterates of the scant method. Clearly the Newton method is faster than
the secant method.



3.4 Fixed Point Iteration

An other method of solving f(x) = 0 is to rewrite it as

x = g(x).

We then begin with an initial guess x0 and define the fixed point iteration formula

xn+1 = g(xn).

Under what condition(s) does the statement ’if α = g(α), then f(α) = 0’ hold? Note that

lim
n→∞

xn = α implies α = g(α)

and xn gives an approximation to α. Since α = g(α), we say that α is a fixed point of g and hence the name
of the method.

Example Consider the equation
f(x) = x2 − 5 = 0.

Each of the following iterations can be considered a fixed point iteration.

I1 xn+1 = 5 + xn − x2
n

I2 xn+1 = 5/xn

I3 xn+1 = 1 + xn − 1
5
x2

I4 xn+1 = 1
2

(
xn + 5

xn

)

Construct a table to see which of the above iterations gives the desired result of approximate the positive
root α =

√
5?

Lemma Let g be continuous on [a, b] and suppose a ≤ g(x) ≤ b for all x ∈ [a, b].
The the equation x = g(x) has at least one solution α in [a, b].

Proof: Apply IVT to f(x) = x − g(x).

Theorem (Contraction Mapping Theorem) Assume that g and g′ are continuous on [a, b]and that
a ≤ g(x) ≤ b for all x ∈ [a, b]. Suppose

λ = max
a≤x≤b

|g′(x)| < 1.

Then

S1 There is a unique solution of x = g(x) in [a, b]

S2 For any initial estimate x0 in [a, b], the iterate xn converges to α.

S3

|α − xn| =
λn

1 − λ
|x0 − x1| (n ≥ 1

S4

lim
n→

α − xn+1

α − xn
= g′(α)



Thus
α − xn+1 ≈ g′(α)(α − xn).

Corollary If g and g′ are continuous on [c, d] with a fixed point α and if |g′(α)| < 1, then there exists
an in interval [a, b] around α for which the hypothesis of the theorem holds.

Example Redo I1 to I4 of the previous example.

Aitken Error Estimation and Extrapolation

Let λ = g′(α) and assume that
α − xn ≈ g′(α)(α − xn−1)

as in the above theorem. Solving this equation for α, we get

α ≈ xn +
λ

1 − λ
(xn − xn−1).

Since we do not yet know α, we do not know the exact value of λ. We now make an estimate on λ

Define

λn =
xn − xn−1

xn−1 − xn−2
=

g(xn−1) − g(xn−2)

xn−1 − xn−2

My the Mean Value Theorem, there exists cn between xn−1 and xn−2 such that λn = g′(cn). Since xn → α,
we have cn → α. By continuity of g′, we conclude that g(cn) → g′(α) = λ. Thus

λ = lim
n→∞

λn

and therefore

λ ≈ xn +
λn

1 − λn
(xn − xn−1).

The approximation

α − xn ≈ λn

1 − λn
(xn − xn−1) λn =

xn − xn−1

xn−1 − xn−2

is called Aitken error estimate.

Remark If g′(α) = 0, then we use Taylor’s Theorem and write

g(xn) = g(α) + g′(α)(xn − α) +
g′′(cn)

2
(xn − α)2

where cn is between xn and α. Using xn+1 = g(xn), α = g(α), and g′(α) = 0, we get

xn+1 = α +
1

2
g′′(cn)(xn − α)2

or

α − xn+1 =
−g′′(cn)

2
(α − xn)2

Taking limit and noting that cn → α, we obtain

lim
n→∞

α − xn+1

(α − xn)2
=

−g′′(α)

2
= N.

From this limit we conclude
α − xn+1 ≈ N(α − xn)2.

For this reason the iterate xn+1 = g(xn) is said be of order 2 or quadratically convergent.


