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NOTE: This translation is done by Kathryn Robertson who is an undergraduate student at 
Rowan University. Abdul Hassen is a professor of mathematics at Rowan and helped with 
mathematical aspect of the paper. It is a pleasant experience for both of us to have worked on 
this project. We have tried to keep Euler’s notations in as much as possible. The few exceptions 
where we differed from his notations are in expressing decimals. For example, Euler uses 2,34 
while we used 2.34. At the end of translation, we added notes by sections in which we 
summarized the main ideas of the sections and indicated what Euler has assumed the reader 
should know. 
 

1.  Let be four numbers, arranged in the order of size, in particular, we 
assume that .  The six conditions that need to be satisfied are: 
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Then , and the four numbers can be expressed as ssqqttpprr +=+=2 DCBA ,,,
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If the number A  is positive, then rrqqpp >+ . Note then that the numbers are also 
positive.  From the condition

,,, DCB
ssqqttpprr +=+=2 , we conclude that tp < and .  sq <

 
2. Furthermore, from , we conclude that 2rr pp tt= + r  is equal to the sum of two 

squares: yyxxr += . From this we get  and hence 2( ) (2rr xx yy xy= − + 2)
.)2)(()2)((2 22 xyyyxxxyyyxxrr +−±+−−±=  
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Here and throughout the rest of this paper, the signs±  are determined so that yyxx − is positive. 
From the above equation, we see that ttpprr +=2  and the condition tp <  will be satisfied if 
we take 

xyyyxxp 2)( −−±=  and ( ) 2t xx yy x .y= ± − +  
 
Similarly the equation 2  implies that rr qq ss= + r  has another decomposition as a sum of two 
squares: . As before we see that the conditions 2r x x y y′ ′ ′ ′= + rr qq ss= +  and will be 
satisfied if we let  

sq <

yxyyxxq ′′−′′−′′±= 2)(  and yxyyxxs ′′+′′−′′±= 2)( . 
From  and xyyyxxp 2)( −−±= yyxxr += , we get  

2 2( ) 4 ( ) 4 ( ) 4 ( ) 4 ( ).pp xx yy xy xx yy xxyy xx yy xy xx yy rr xy xx y= − − + = + − = −m m ym

y
 

Similarly, from the equations ( ) 2q x x y y x′ ′ ′ ′ ′= ± − − ′ and yyxxr ′′+′′= , we get 
).(4 yyxxyxrrqq ′′−′′′′= m  

Using the last two expressions for and , we note that the condition pp qq pp qq rr+ > becomes  
4 ( ) 4 ( )rr xy xx yy x y x x y y .′ ′ ′ ′ ′ ′> ± − ± −  

The two double signs  are determined so that± yyxx − and yyxx ′′−′′  are positive. 
 

3. Since r  must be the sum of two squares of in two different ways, r  must be the 
product of two factors of this same form. In other words, ))(( ddccbbaar ++= , where we may 

suppose . For reducing the number of letters in our investigation, we let ,ba > dc > a f
b
= and 

.c z
d
= Note that 1f >  and Thus 1.z > ( 1)( 1r bbdd ff zz ).= + +  Since the square factor is 

common to all of the terms of the inequality 

bbdd

4 ( ) 4 ( )rr xy xx yy x y x x y y′ ′ ′ ′ ′ ′> ± − ± −  that we will 
be considering, we cancel this factor from both sides. Thus we may assume that  

( 1)( 1r ff zz ).= + +  
From this and the equations yyxxr +=  and yyxxr ′′+′′= , the values of  can be 
given by 

yxyx ′′,,,

fzyfzyfzxfzx +=′−=−=′+= ,,1,1 . 
But then 

 
( ) ( 1)( )(( 1) 1)(( 1) 1) ,
( ) ( 1)( )(( 1) 1)(( 1) 1) .

xy xx yy fz z f f z f f z f M
x y x x y y fz z f f z f f z f N

− = + − + − + − + + =
′ ′ ′ ′ ′ ′− = − + + + − − − − =

 

The inequality 4 ( ) 4 ( )rr xy xx yy x y x x y y′ ′ ′ ′ ′ ′> ± − ± −  becomes 
4 4 . rr M N> ± ±

As before, one chooses signs  so that ± M± and N± are positive. 
 
 4. To simplify the expressions for M  and , we introduce a new variableN ρ : 

1.
1

f
f

ρ +
=

−
 Note that  1f > and 1.ρ > We now express 2( 1)

M
f −

and 2( 1)
N

f −
 in terms of 

, ,  and z f ρ : 
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2

2

( 1)( )( 1)( )
( 1)

( 1)( )( 1)( ) .
( 1)

M ,fz z f z z
f

N

P

fz z f z z
f

ρ ρ

ρ ρ Q

= + − − + =
−

= − + + − =
−

 

Our inequality now becomes 

),(4
)1( 2 QP

f
rr

±±>
−

 

where we must always take the signs ±  to make QP ±±  positive. 
 

5. When considering this formula, we first note that andf ρ  are permutable with each 
other, since when substituting one for the other, the value P changes to and vice versa. Also 

from

Q

),1(
)1(

−
+

=
f
fρ , we can solve for f to get

)1(
)1(

−
+

=
ρ
ρf . Note then that we have ,1=−− ff ρρ  

or .2)1)(1( =−− ρf  
 Observe here that, in the case when ρ=f , we then have 211 =−=− ρf , and 
consequently, 1 2f ρ= = + .  In all the other cases, one of the numbers is smaller and the other 
is greater than the number1 2+ .  Thus, if we suppose ,fρ >  then we have 1 2f < + . 
When the value of ,1=f ρ  becomes infinitely large. 
 

6. From  we have  and hence  ),1)(1( ++= zzffr 22 )1()1( ++= zzffrr
2 2

2 2

( 1) ( 1) .
( 1) ( 1)

rr ff zz
f f

+ +
=

− −
 

However, we also have ( 1) ( 1
( 1) ( 1)
ff
f

)ρρ
ρ

+
=

− −
+ and from this we obtain 

2 2
2

2 2

( 1) ( 1) ( 1)( 1) ( 1)
( 1) ( 1) ( 1)( 1)

rr ff zz ff zz
f f f

ρρ
ρ

+ + + +
= =

− − − −
.+  

But the value of the product )1)(1( −− ρf  is equal to 2, as we have shown above. Thus the 
above reduces to   

2
2

1 ( 1)( 1)( 1)
( 1) 2

rr ff zz
f

ρρ= + + +
−

.  

Substituting this expression of 2)1( −f
rr into the preceding inequality, we find that the our 

inequality becomes  
).(8)1)(1)(1( 2 QPzzff ±±>+++ ρρ  

 
7. Expanding the expressions for P andQ , we have  

( )
( )

4 3 2

4 3 2

( 1)( ) ( 1) ( ) ( 1)( )

( 1)( ) 1 ( ) ( 1)( ) .

P f z f f z ff f zz f f z f

Q f z f f z ff f zz f f z f

,ρ ρ ρ ρρ ρ ρ ρ ρ

ρ ρ ρ ρρ ρ ρ ρ ρ

= + + − − + − − − + − +

= − + − − + − − + + − +
 

The coefficient of can be reduced to a very simple form. Since zz
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,4)()( 22 ρρρ fff −+=−  
the coefficient can be written as But we have seen (5) that  .)(41 2ffff +−++ ρρρρ

1f fρ ρ+ = − and hence Consequently, the coefficient of  
reduces to 

2( ) 2f ff fρ ρρ+ = − +1.ρ zz
.6 ρf  Thus we have 

.))(1(6))(1(
,))(1(6))(1(

34

34

ρρρρρρρ

ρρρρρρρ

fzffzzfzffzfQ
fzffzzfzffzfP

+−++−−+−=

+−+−−−++=
 

 
8. The values of P  and Q  given by the above equations must satisfy the inequality 

 2( 1)( 1)( 1) 8 ( ).ff zz Pρρ+ + + > ± ±Q  
Thus we need to study the following problem: 
 

9. Problem. Given the number ,f  and consequently also ρ , find all the values of  
that satisfy the above inequality. 

z

Observe then that from this we find the complete solution of the principal problem, 

since 
b
af = gives the numbers andb , and a

d
cz =  likewise gives c and , from which we get 

. These in turn lead to the values of 

d

yxyx ′′,,, rqp ,, and finally to those of  .,,, DCBA
 

10. Solution. We begin with the observation that the appropriate values of  are 
comprised in certain limits in accordance with the value of the number  which is always 

bigger than 1 and smaller than 

z
f

,21+  or, in accordance with the values 
)1(
)1(

−
+

=
f
fρ which 

always surpasses .21+  This limitation can be easily be assigned, once we know the case in 
which the first member of our formula becomes equal to the other. In other words, we need to 
know the root of the equation  

2( 1)( 1)( 1) 8 ( ).ff zz Pρρ+ + + = ± ±Q  
We recall that  1.z ≥
 

11. To understand this equation, we use the equation that relates andf ,ρ namely, 
( 1) ( 1 .
( 1) ( 1)
ff
f

)ρρ
ρ

+
=

− −
+ We now introduce a new variable :  n

( 1) ( 1)2 , 2 .
( 1) ( 1)
ff n n
f

ρρ
ρ

+ +
= =

− −
 

When we solve these equations for values of andf ρ , we get  
).12( −−± nnnn  

Or, if f  is smaller than ,ρ  then we have 
( 2 1) and ( 2 1f n nn n n nn nρ= − − − = + − − ).  

From this we get 
)12(2,2 −−=−=+ nnnfnf ρρ and 12 += nfρ . 
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Next we let 2k nn n= − −1  so that .2,, kfknknf =−+=−= ρρ  It is not difficult to 
eliminate and f ρ  from our equation 2( 1)( 1)( 1) 8 ( )ff zz Pρρ Q+ + + = ± ± and express it in 
terms of  and .  n z
 
 12. To this end, we start with the first member (left hand side) of our equation. Observe 
that  

22 )()1()1)(1( ρρρρ ++−=++ ffff  
and that nf 2=+ ρ  and 1 2 .f nρ − = Thus the left hand side becomes  and the 
equation to resolve is  

,2)1(8 +zznn

.)1( 2 QPzznn ±±=+  
We now consider P  and  From the fact that .Q 2 1f n ,ρ = + and 2 ,f kρ − = the expressions for 
P  and  become Q

.12)1(4)12(6)1(4)12(
,12)1(4)12(6)1(4)12(

34

34

+++++−+−+=

+++−+−+++=

nkzmzznkznznQ
nkznzznkznznP

 

 
 13. To find the values of in our equation, we must consider with care of the signs of 

and . First note that when 
z

P Q ρ>z , both expression in (4) defining and  are positive 
(recall that

P Q
fρ > ) ; thus one takes the sign +. But if  is smaller than  then and Q  become 

negative and consequently we must give them the – sign. 
z ,f P

 Finally, if z is between and f ,ρ the will be positive and  is negative. After these 
considerations we see that, in accordance with being much bigger than 

P Q
z ρ or much smaller 

than or finally content between ,f ρ and we have three cases to consider. These are 
numbered as follows. 

,f

 
 

First Case: When the values of bigger than z .ρ  
 

  
 14. In this case and  having the sign + and we have  P Q

2(2 1) 12(2 1) 2(2 1).P Q n z n zz n+ = + − + + +  
Our equation becomes 

)16)(12(2)12( 44 +−+=++ zzznzzznn . 
 

When the left hand side always surpasses the right hand side, and consequently, 
all the values of  from 

),12(2 +> nnn
,z ρ to the infinite, give rise to a solution to our problem and we always 

have  
.rrqqpp >+  

Note that  holds when 2(2 1)nn n> + .62 +>n  In the case when 2 6n = + , we have  
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( )( )
( )( )

2 1 5 2 6 3 2,

3 2 2 1 ;

3 2 2 1 .

k nn n

n k

f n k

ρ

= − − = + = +

= + = + +

= − = + −

 

Thus, 2n > + 6  will take place, when ( )( )3 2 2 1ρ > + +  and ( )(3 2 2 1f )< + − or, in 

decimals, when 59574.7>ρ  and .3032254.1<f  
Therefore, whenever 59574.7>ρ and ,3032254.1<f the quantity can be any number greater 
than

z
ρ until the infinite. 

 
 
 15. We now consider the case, when ),12(2 +< nnn which happens when 62 +<n or 

when ( )( )3 2 2 1f > + −  and ( )( )3 2 2 1ρ < + + .  If we subtract left hand side in 

  from the right hand side, we have )16)(12(2)12( 44 +−+=++ zzznzzznn
4(4 2 ) (24 12 2 ) 4 2 2 0.n nn z n nn zz n nn+ − − + + + + − =  

Define Δ by  
12 6 .

4 2
nn n

n nn
+ +

Δ =
+ −

 

If we divide the above equation by ,24 nnn −+ we get 
  

.0124 =+Δ− zzz  
In resolving this equation, one has or finally  ),1( 2 −Δ±Δ=zz

1 1.
2 2

z Δ + Δ −
= ± ±  

Among the four roots of the equation the largest,,0124 =+Δ− zzz 1
2 2

1Δ + Δ −
+ , is the only 

one that surpasses 1, and from that we conclude that all the values, from ρ until the end, 
generate the appropriate values for .z  
 

 16. Suppose 
2
3

=f and consequently 5.ρ =  We have ,52112.12,
4
13

=Δ=n and 

,76056.5
2

1,76056.6
2

1
=

−Δ
=

+Δ  finally ,40.2
2

)1(,60.2
2

)1(
=

−Δ
=

+Δ and hence 

it is to say does not surpass ,5=z z ρ by even an extremely small fraction. 
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Second Case: When values of  that are less than   z .f
 

 17. Here P and Q are negative, and our equation reduces to  
2 4( 1) 2(2 1) 12(2 1) 2(2 1) 2(2 1)( 6 1).nn zz P Q n z n zz n n z zz+ = − − = − + + + − + = − + − +4  

This can be reduced to the preceding if we make change of variables 1 :
1

z σ
σ
+

=
−

 
2 4( 1) 2(2 1)( 6nn nσσ σ σσ 1).+ = + − +  

Observe here that the two letters σ  and  depend on one another in the same manner that 
and 

z
f ρ do.  For example,  1.z zσ σ= + +  

 
 
 18. From the first case considered above, the appropriate values of σ  are from ρ to ∞ , 

when 7.5957541ρ > or  and consequently ,3032254.1>f 1
1

z σ
σ
+

=
−

can be taken between 1 and 

when f 7.5957541ρ > or  1.3032254.f >
 
 19. For abbreviation purposes, we write 7.5 and 1.3 for the numbers  and 

, respectively. We arrive at this important conclusion: every time
5957541.7

3032254.1 ρ  is between the 
limits 7.5 and ∞, or is between 1 and 1.3, one always takes the number to be between the 
limits 

f z
ρ and ∞, or between 1 and . f

 
 
 20. Presently, we examine the case when 7.5,ρ < or  We start with the case 
when 

1.3.f >
.21+== fρ  Since ,ρ=f we see that ,0=k and ,012 =−− nnn or  

Consequently 
2 1nn n= + .

6(2 1) 7 7.
2(2 1)
nn n nn

n nn nn
+ +

Δ = =
+ −

=  

Finally  
7 1 7 1 12 3 3.7320508, 3 1.7320508.

2 2 1
z σσ

σ
+ − +

= + = + = = = =
−

 

For simplicity, we replace the number 3.7320508 and 1.7320503 with 3.73 and 1.73, 
respectively, and we draw this conclusion: in this case, where ,21++= ρf We always take 

to be between the limits z ρ and 3.73, or between that of and 1.73. We cannot debate more 
from research the case where

f
ρ finds itself between the limits of 7.5 and ,21+  or between 

that of 1.3 and 

f

.21+  
 

 21. Let us take 
2
3

=f and hence 5.ρ = If 5σ =  then 1 3 ;
1 2

z σ
σ
+

= =
−

that is to say that, in 

this case, does not differ from by an extremely small fraction. It follows from this that 
when one reduces

z f
ρ to be less than 7.5 by the term 5, the value of decreases more and more 

until it clearly becomes equal to  
z

.f
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Third Case: When values of who find themselves between z f  and ρ .  

  
 22. In this case, the value of P is positive and that of Q  is negative, and the equation to 
solve is 

2( 1)nn zz P Q+ = −  
Or 

  ).()1(8)1( 52 zzknzznn −+=+
Suppose here 

8 ( 1) 4k n
nn

ϑ+
= or     2 ( 1) .k n

nn
ϑ+

=  

We have the double-squared [quartic] equation 4 34 2 4 1z z zz zϑ ϑ 0,− + + + = which can be 
resolved without resorting to the cubic. 
 
 23. Suppose  

4 34 2 4 1 ( 1)(z z zz z zz z zz zϑ ϑ α β− + + + = − − − −1).

1.

 
Expanding the right hand side we get 

4 3( 1)( 1) ( ) ( 2) ( )zz z zz z z z zz zα β α β αβ α β− − − − = − + + − + + +  
Comparing the coefficient with the left hand side of the previous equation, we get 4α β ϑ+ =  
and 2 2αβ − = . Note that the latter yields 4=αβ . From these we get   

( )2 4 4α β α β αβ ϑϑ− = + − = −1.  

This shows the impossibility of solving the equation in the 
case when 

)()1(8)12( 34 zzknzzznn −+=++
1<ϑ . Thus, for 1<ϑ , we always have , and 

consequently all the values of between and
)()1(8)12( 34 zzknzzznn −+>++

z f ρ  will satisfy the inequality mentioned in (8).  
 

 24. To find the values of for which n ,1<ϑ we take the expression of  2 ( 1) ,k n
nn

ϑ +
=  

where 2 1k nn n= − − .  Thus, for the determination of these values of we have the condition, ,n

2( 1) 2 1 1n nn n
nn

+ − −
<  

Or 

,0
3
4

3
16

3
164 <−−− nnnn  

which reduces to the inequality 4 4 (2 1) .
3

n n< + 2 We rewrite this as 2 2(2 1) 4 2 ,
3 3

n nn +
< < +

3
 

and finally 2 4 2 3 1 3 2.7320508.
3

n + +
< = + =  

 
It follows from this that, as long as is smaller than 2.7320508, n ϑ will be smaller than 1, and 
all the values of from untilz f ρ satisfy our goal. 
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 25. Now we must consider the case when 1.ϑ > From ϑβα 4=+ and 
4α β ϑϑ− = −1, we have 2 2 1, 2 2 1α ϑ ϑϑ β ϑ ϑϑ= + − = − − .Thus the two factors of our 

double-square [quartic] will be 
1))1((2 −−+− zzz ϑϑϑ  and 2( ( 1)) 1.zz zϑ ϑϑ− − − −  

Setting these equal to 0, we get the four roots of our equation: 

( )
( )
( )
( )

1 2 1

1 2 1

1 2 1

1 2 1

ϑ ϑϑ ϑ ϑ ϑϑ

ϑ ϑϑ ϑ ϑ ϑϑ

ϑ ϑϑ ϑ ϑ ϑϑ

ϑ ϑϑ ϑ ϑ ϑϑ

,

,

,

.

+ − + + −

+ − − + −

− − + − −

− − − − −

 

 

But it is not difficult to remark that  
2

1 11
2 2

ϑ ϑϑ ϑϑ
⎛ ⎞+ −

± − = ±⎜⎜
⎝ ⎠

.⎟⎟  Hence, the expressions 

found for the roots of our equation reduce to the following: 
 

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )

1 1

1 1

1 1

1 1

ϑ ϑϑ ϑ ϑϑ ϑ ϑ

ϑ ϑϑ ϑ ϑϑ ϑ ϑ

ϑ ϑϑ ϑ ϑϑ ϑ ϑ

ϑ ϑϑ ϑ ϑϑ ϑ ϑ

+ − + − + −

+ − − − − −

− − + − + −

− − − − − −

1 ,

1 ,

1 ,

1 .

 

From these four roots we only need to consider ( ) ( )1 1ϑ ϑϑ ϑ ϑ ϑ ϑ 1+ − + + + −  and 

( ) ( )1 1ϑ ϑϑ ϑ ϑ ϑ ϑ− − + + − −1 , since the other two are smaller than 1. Using these two 

values of z, which give ( )2 3( 1) 8( 1) 0nn zz n k z z+ − + − = ,  it is not difficult to find the solution 

of the inequality ( )2 3( 1) 8( 1)nn zz n k z z+ > + − .  

For this, we remark that the larger value of , which gives   

is 

z ,0)()1(8)1( 32 =−+−+ zzknzznn

( ) ( )1 1ϑ ϑϑ ϑ ϑ ϑ ϑ+ − + + + −1 ;

)3 .

then all the values that surpass this limit give 

 and consequently filling the condition 
  All the values of  that are below that of 

0)()1(8)1( 32 >−+−+ zzknzznn

(2( 1) 8( 1)nn zz n k z z+ > + − z

( ) ( )1 1ϑ ϑϑ ϑ ϑ ϑ ϑ+ − + + + −1 ,

,

and which are not inferior to the other root of the equation 

 which is ( )2 3( 1) 8( 1) 0nn zz n k z z+ − + − = ( ) ( )1 1ϑ ϑϑ ϑ ϑ ϑ ϑ 1− − + + − −  and 

consequently does not verify the condition ( )2( 1) 8( 1)nn zz n k z z3 .+ > + − But, passing this 

limit, all the values of give z ( )2( 1) 8( 1)nn zz n k z z3+ − + −  positive, and consequently satisfy 

the condition ( )2 3( 1) 8( 1)nn zz n k z z+ > + − .  
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 Hence, this condition will not be fulfilled for the values of z comprised between the 
limits ( ) ( )1 1ϑ ϑϑ ϑ ϑ ϑ ϑ+ − + + + −1  and ( ) ( )1 1ϑ ϑϑ ϑ ϑ ϑ ϑ 1 .− − + + − −  
 

26. We are now going to assign, for each proposed value of or of f ,
1
1

−
+

=
f
fρ some 

appropriate values of between and z f .ρ First we compute ,
1
12

−
+

=
f
ffn  or 1,

1
n ρρ

ρ
+

=
−

 and 

then 2 1k nn n= − − .(We could also get k from k n f nρ= − = − .) Finally, we use 
2( 1)n k

nn
ϑ +
= and determine the values of  from the formulas: z

( ) ( )1 1ϑ ϑϑ ϑ ϑ ϑ ϑ+ − + + + −1  and ( ) ( )1 1ϑ ϑϑ ϑ ϑ ϑ ϑ 1 .− − + + − −  
 
27. Having determined, after these formulas, the values of for several numbers or z f

ρ , and having the jointed values of taken out from two previous researches, we have 
constructed a table which gives, for certain numbers of 

z
ρ , the limits of values of , which 

fulfill the condition (8). 
z

This is thusly how we reached the complete solution to the principal problem. If the 

fraction 
b
a  is much bigger than ,21+ we use this value for ρ  it in the first column of the 

table below and determine the limits that yield cz
d

=  from the second column. When 

1 2af
b

= < + , we take ,f
b
a
=  and compute 1.

1
f
f

ρ +
=

−
We then find the value 

of cz
d

= corresponding to ρ . 
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Table 
That represents, for certain numbers ρ , the limits for .z  

  
ρ  Limits of  z

2.41 1.73…3.73 
3.0 1.71…3.81 
3.5 1.66…4.00 
3.75 1.64…2.21 2.65…4.11 
4.0 1.61…1.80 3.49…4.25 
4.5 1.55…1.58 4.40…4.58 
5.0 1.50…1.50 5.00…5.00 
5.5 1.43…1.45 5.44…5.59 
6.0 1.37…1.42 5.78…6.43 
6.5 1.29…1.40 6.04…7.82 
7.0 1.21…1.38 6.25…10.71 
7.5 1.00…1.36 6.50…∞  
8.0 1.00…1.36 6.56…∞  
9.0 1.00…1.35 6.68…∞  
10 1.00…1.34 6.92…∞  
11 1.00…1.33 7.04…∞  
13 1.00…1.32 7.21…∞  
15 1.00…1.32 7.30…∞  
∞  1.00…1.30 7.59…∞  

 
 28. Reviewing this table, we cannot at all assign the appropriate value of 

,
d
cz = when 5.a

b
ρ = =  In the case when ,5=ρ the limits of , to a near hundredth, combine 

the one with the other. But, moreover, when we remove from this singular case, we can intend 

the limits to be between that which the fraction 

z

d
c can be well-proportioned. 

For clarifying our method for an example, if we take ,4=
b
a or ;

3
5

=
b
a  the other fraction 

d
c can be taken to be between the limits 1.61 and 1.80, or between 3.49 and 4.25. Thus if we 

take 4  and ,
1 2

a c
b d
=

7
= we have 

 

7
4

=
=

c
a

 
2
1

=
=

d
b

 

4 7 1 2 30
4 2 7 1 1

x
y
= ⋅ + ⋅ =
= ⋅ − ⋅ =

 
4 7 1 2 26
4 2 7 1 15

x
y
′ = ⋅ − ⋅ =
′ = ⋅ + ⋅ =

 

602
899

=
=−

xy
yyxx

 
7802

451
=′′

=′′−′′

yx
yyxx

 

8392 =−− xyyyxx  3292 −=′′−′′−′′ yxyyxx  
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Thus  and ,839,329 == qp r will be  With these values of 2 2 2 230 1 26 15 901.= + = + =

,, qp and r the numbers  can be expressed thusly: DC,BA ,,
 

361 216121,   ,
2 2 2 2

1407481 3 1623241,   .
2 2 2 2

pp qq rr pp rr qqA B

qq rr pp rr pp qqC D

+ − + −
= = = =

+ − − −
= = = =

 

These numbers when multiplied by 4, given as the solution to our problem of four whole 
numbers, follows: 
 

722,   432242,   2814962,   3246482.A B C D= = = = . 
 
Notes: 
 
Sections 1 to 3 Here Euler states the problem of finding four positive integers   

 12

, with B C D A D B C< < < + = +
.

 such that  A
, , , ,A B pp A C qq A D rr B C B D ss C D tt+ = + = + = = + + = + =  

He then expresses the numbers in terms of the squares and observes that the solution of the 
original problem reduces to finding  such that . He observes that 

and hence is the sum of two squares in two different ways. Here we 
note that this follows from the fact that must be of the same party and multiplying the 

first of the equations by 2 we obtain and hence, after 

dividing by 4, we have 

,  ,  and p q r 2 2r p q> + 2

2

t

)2

2 2 2 22r p t q s= + = + r
and p

( ) (22 2 24 2 2r p t t p t p= + = − + +
2 2

2 .
2 2

t p t pr − +⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Thus the numbers , ,
2 2

t p t p r− +⎛ ⎞
⎜ ⎟
⎝ ⎠

is a 

Pythagorean triple and hence there exist integers  x y≥ such that, after solving for   and ,  p t
2 2 2 2 2 2,  2 ,  2r x y p x y xy t x y xy= + = − − = − +  

Using the second equation in 2 2 2 22r p t q s2= + = + , he gets another representation for as a 
sum of two squares: 

r

2 2 2 2 2 2' ' ,  ' ' 2 ' ',  ' ' 2 'r x y q x y x y t x y x y= + = − − = − + ' . 
In section 3, Euler uses a fact that he was aware of (known today as Euler’s Factorization 
Method): Any number that can be written as sum of two squares in two different ways is a 
product of numbers each of which is a sum of two squares.  Thus ( )( )2 2 2 2r a b c d= + + where 

he assumes   Next he expresses the inequality in terms of 
as 
 and .a b c d≥ ≥ 22 2r p q> +

, , , ',  and 'r x y x y 2 2 2 24 4 ' ' 'r xy x y x y x y> − + − 2' , since he did not made no assumption 
about , , ', 'x y x y , he needs the absolute value.  

He now uses  and 

factors out bd and lets 

( )( ) ( ) ( ) ( ) (2 2 22 2 2 2r a b c d ac bd ad bc ac bd ad bc= + + = + + − = − + + )2

,a cf z
b d

= = . 

 



Sections 4 to 8  In section 4, Euler introduces a new variable 1
1

f
f

ρ +
=

−
and expresses the 

inequality 2 2 2 24 4 ' ' 'r xy x y x y x y> − + − 2'  in terms of , ,  and f z ρ . He makes use of the 

symmetry between  and f ρ , namely that 1
1

f ρ
ρ
+

=
−

and obtains identities that are useful for the 

inequality to be considered.  
 Sections 9 to 13 Here Euler reviews what he has achieved and where he is going in his research 
for the solution of the original problem. In particular, he emphasizes the relationship 

between  and f ρ : 
2 21

1 1
f
f

ρ
ρ

+ +
=

− −
1  He assumes then that f ρ≤ and introduces a new variable 

 by setting 2n
2 21 1 2

1 1
f n
f

ρ
ρ

+ +
= =

− −
 Form this he gets f n k= − and n kρ = + , where 

2 2k n n= − −1 2. He then expresses  as 2 2r p q> + ( )22 2 1 ,n z P Q+ ≥ +  where  
4 3 2

4 3 2

(2 1) 4( 1) 6(2 1) 4( 1) 2 1,
(2 1) 4( 1) 6(2 1) 4( 1) 2 1.

P n z n kz n z n kz n
Q n z n kz n z m kz n
= + + + − + − + + +

= + − + − + + + + +
 

  
Sections 14 to 16 Euler now considers three different cases for the values of given the value 
of 

z
f and ρ  . (Note that f determines ρ .) In these sections he considers the case when z ρ≥ . He 

notes that both are positive and solves the inequality. His conclusion is that all values 
of 

and QP
z ρ≥  is the solution of where 2 2 2( 1)n z P Q+ ≥ + , ( )4 22(2 1) 6 1P Q n z z+ = + − +  are as 

given above. In section 16 he gives an example. 
 
Sections 17to 21  Here Euler considers the case when z f≤ and use the symmetry between 

 and f ρ  to deduce any between 1 and z f is a solution of the inequality. Note that  
are both negative in this case.  

and QP

 
Sections 12to 26 The last case Euler considers is f z ρ≤ ≤ . In this case and 
hence the inequality becomes 

0 and 0P Q> <
2 2 2( 1)n z P Q,+ ≥ −  But ( )38( 1)P Q n k z z− = + − and Euler has to 

deal with an inequality that involves a cubic term.  
 
Sections 27and 28  In section 27, Euler gives a table of values in which he uses ρ  as a free 
variable and determines the possible range of values of . Note however that if the value of z

f is larger than 1+ 2 , then we use f itself instead of 1
1

f
f

ρ +
=

−
. But if 1 1f< < + 2 , then 

we compute 1
1

f
f

ρ +
=

−
and then find the corresponding value of .  z
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 In the last section Euler gives an example: Take 44
1

af
b

= = = and then use the table to find the 

possible range for , in this case between 1.61 and 1.80 or between 3.49 and 4.25. Thus we can 

choose 

z
7
2

cz
d

= = and gets four numbers  



361 216121 1407481 1623241, , ,
2 2 2 2

A B C D= = = = .  

all of which are rational numbers. (It is interesting to note that these rational numbers do satisfy 
the required property: The sum of any two is a perfect square.) Euler remarks that multiplying 
each by 4, the smallest perfect square, yields four integers with the required property.   Note 

also that if we take 5 1.667
3

a
b
= =  (which Euler indicates as a possible value for a

b
), which is 

less than 1+ 2 , then we need to compute ρ , which will be 5 / 3 1 4
5 / 3 1

ρ +
= =

−
, and pick  form 

the same interval. In this case, if we pick

z

7
2

cz
d

= =  the table of section 28 will give the 

numbers 722, 432242, 2814962, and 3246482 but in different order.   
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