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Both authors would like to dedicate this in fond memory of Marvin Knopp. Knop was the most humble
and exemplary teacher and mathematician the second author has known.

Abstract. In this paper we investigate a continuous version of the hypergeometric zeta functions for any
positive rational number ”a” and demonstrate the analytic continuation. The fractional hypergeometric
zeta functions is shown to exhibit many properties analogous to its hypergeometric counter part, including
its intimate connection to Bernoulli numbers.

1. Introduction

In [1] Abdul Hassen and Heiu D. Nguyen introduced and investigated a generalization of the Riemann
zeta function by replacing ex − 1 the denominator in the integral representation with arbitrary Taylor
difference ex − TN−1(x) where N is a positive integer and TN−1(x) is the Taylor polynomial of ex at the
origin having degree N − 1. This defines a family of what Hassen and Nguyen called hypergeometric zeta
functions denoted by ζN (s) defined by:

ζN (s) =
1

Γ(s + N − 1)

∫ ∞

0

xs+N−2

ex − TN−1(x)
dx.

Observe that ζ1(s) = ζ(s) , i.e.; when N = 1, we get the classical zeta function. In the same paper, ([1]) they
developed the analytic continuation of ζN (s) to the entire complex plane, except for N simple poles at
s = 1, 0,−1, · · · , 2−N. and established many of the properties of the classical zeta function were established
for the hypergeometric zeta functions including generalized Bernoulli numbers. The same authors also
investigated a continuous version of the hypergeometric zeta function called the error zeta function in ([2])
by generalizing the definition involving a positive integer N to all real positive N but focused only on N = 1

2 .
Regarding the continuous version they developed the analytic continuation to the entire complex plane except
for infinite number of poles and discovered that, the error zeta function shares many of the same properties
found in hypergeometric zeta functions of integer order.
In this paper we introduce what we call fractional hypergeometric zeta functions of order ”a” where a is a
positive real number. This can be done allowing the natural number N to be any positive real number a.
The authors of [1]defined ζN (s) for <(s) > 1 as,

ζN (s) =
Γ(N + 1)

Γ(s + N − 1)

∫ ∞

0

xs−2

1F1(1, N + 1, x)
dx

where 1F1(b, c, x) is the confluent hypergeometric function.
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We now take this as our definition of ζN (s) and replace N by a to reserve N for integer. We begin with
the observation that

1F1(1, a + 1, x) = exx−a(Γ(a + 1)− aΓ(a, x))
= aexx−a(Γ(a)− Γ(a, x))
= aexx−aγ(a, x) (1.1)

where

γ(a, x) =
∫ x

0

ta−1e−tdt

is the lower incomplete gamma function and

Γ(a, x) =
∫ ∞

x

ta−1e−tdt

is the upper incomplete gamma function. Therefore, the fractional hypergeometric zeta function of order a
is given by

ζa(s) =
Γ(a + 1)

Γ(s + a− 1)

∫ ∞

0

xs+a−2e−x

aγ(a, x)
dx

It is discovered that this fractional hypergeometric zeta function of order ”a” shares many of the same
properties found in hypergeometric zeta functions of integer order. Observe that, if a is a positive integer
we have the hypergeometric zeta function. In section 2, we formally define fractional hypergeometric zeta
functions, establish its convergence in a right half of the complex plane, and develop its series representation.
In section 3, we reveal its analytic continuation to all complex plane except at infinite number of poles. We
show this in two approaches: in the first approach we require strip-by-strip continuation to the left half of
the complex plane for any positive real number a, and in the second approach we use contour integral for
half odd integers ”a” and express ζa(s) as a contour integral. In section 4 we demonstrate a pre-functional
equation satisfied by this function.

2. Preliminaries

We begin this section with the following definition:

Definition 2.1. The fractional hypergeometric zeta function is defined for all positive real number a as,

ζa(s) =
Γ(a + 1)

Γ(s + a− 1)

∫ ∞

0

xs+a−2e−x

aγ(a, x)
dx.

Observe that when a = N, a natural number we get the classical hypergeometric zeta function.

Lemma 2.2. aexγ(a, x) ≥ xa for any positive real numbers a and x

Proof. The proof follows from the relation aexx−aγ(a, x) =1 F1(1, a+1, x) and the fact that 1F1(1, a+1, x) >
1 for positive real number x. �

Lemma 2.3. For any real number x in [1,∞) and any positive real number a there is a constant δ > 0 such
that γ(a, x) ≥ δ.

Proof. Since limx→∞ γ(a, x) = Γ(a), there is a number M such that γ(a, x) > Γ(a)
2 . Since γ(a, x) is continuous

on [1,M ] it has a minimum value on [1,M ] say m. Then the lemma follows if we let δ to be the minimum
of m and Γ(a)

2 . �

Theorem 2.4. ζa(s) converges absolutely for σ > 1, where s = σ + it and both σ and t are real numbers.
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Proof. Since aexγ(a, x) ≥ xa on [0,∞), it holds on (0, 1]. Let s be a complex number with σ ≥ σ0 > 1, then
on (0, 1], we have ∣∣∣∣ xs+a−2

aexγ(a, x)

∣∣∣∣ ≤ ∣∣∣∣xs+a−2

xa

∣∣∣∣ ≤ xσ0−2

Since σ0 > 1, we have ∫ 1

0

xσ0−2dx =
1

σ0 − 1
Hence, ∣∣∣∣∫ 1

0

xs+a−2

aexγ(a, x)
dx

∣∣∣∣ ≤ ∫ 1

0

∣∣∣∣ xs+a−2

aexγ(a, x)
dx

∣∣∣∣ ≤ 1
σ0 − 1

.

On the other hand, let s be a complex number with σ > 1 and x be a real number in [1,∞), then there
is a constant C such that xσ+a−2 < Ce

x
2 . Thus it follows that∣∣∣∣ xs+a−2

aexγ(a, x)

∣∣∣∣ ≤ Ce
x
2

aexγ(a, x)
≤ Ce

−x
2

aδ

This holds true since from the previous lemma we have,γ(a, x) ≥ δ and,∫ ∞

1

Ce
−x
2

aδ
dx =

2Ce
−1
2

aδ∣∣∣∣∫ ∞

1

xs+a−2

aexγ(a, x)
dx

∣∣∣∣ ≤ ∫ ∞

1

∣∣∣∣ xs+a−2

aexγ(a, x)
dx

∣∣∣∣ ≤ 2Ce
−1
2

aδ
.

Therefore the theorem follows from the following inequality.

ζa(s) =
Γ(a + 1)

Γ(s + a− 1)

[∫ 1

0

xs+a−2e−x

aγ(a, x)
dx +

∫ ∞

1

xs+a−2e−x

aγ(a, x)
dx

]

thus it follows that,

|ζa(s)| ≤
∣∣∣∣ Γ(a + 1)
Γ(s + a− 1)

∣∣∣∣ [∫ 1

0

∣∣∣∣xs+a−2e−x

aγ(a, x)

∣∣∣∣ dx +
∫ ∞

1

∣∣∣∣xs+a−2e−x

aγ(a, x)

∣∣∣∣ dx

]
.

Here the right hand side of the integrals are both finite. �

Thus we have shown that the fractional hypergeometric zeta function converges absolutely for σ > 1
and converges uniformly for σ ≥ σ0 > 1. Therefore, the fractional hypergeometric zeta function is analytic
on {s : σ > 1} where s = σ + it for σ and t real numbers. We now develop series representation using its
expansion as follows:

Lemma 2.5. For <(s) = σ > 1, we have,

ζa(s) =
∞∑

n=1

fn(a, s)

where

fn(a, s) =
∫ ∞

0

xs+a−2e−x

Γ(s + a− 1)

(
Γ(a, x)
Γ(a)

)n

dx.
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Proof. From integral representation of ζa(s), we have,

ζa(s) =
Γ(a + 1)

Γ(s + a− 1)

∫ ∞

0

xs+a−2e−x

aγ(a, x)
dx

=
Γ(a)

Γ(s + a− 1)

∫ ∞

0

xs+a−2e−x

γ(a, x)
dx. (2.1)

Since,γ(a, x) > 0, Γ(a, x) > 0 for x > 0 andγ(a, x) + Γ(a, x) = Γ(a), we have,

γ(a, x) = Γ(a)
(

1− Γ(a, x)
Γ(a)

)
Since, 0 < Γ(a,x)

Γ(a) < 1, using geometric series and reversing the order of summation and integration we have
the required result. �

Lemma 2.6. For each n = 0, 1, 2, · · · , we have,

fn(a, 1) =
1

n + 1
.

Proof. Substituting 1 for s in the definition of fn(a, s), we have,

fn(a, 1) =
∫ ∞

0

xa−1e−x

Γ(a)

(
Γ(a, x)
Γ(a)

)n

dx.

Using integration by substitution, u = Γ(a,x)
Γ(a) and integrating we have the required result. �

The lemma reveals that

ζa(1) =
∞∑

n=1

1
n

formally generates the harmonic series.

3. Analytic Continuation

We now consider analytic continuation of the ζa(s). As in the classical case, to do this first we use strip by
strip and then using Cauchy theory. As in the hypergeometric zeta case, both methods have their advantages.

3.1. Method I-Strip-by-Strip. From the definition of fractional hypergeometric zeta function of order a
for <(s) = σ > 1, we have,

Γ(s + a− 1)
Γ(a + 1)

ζa(s) =
∫ ∞

0

xs+a−2e−x

aγ(a, x)
dx.

So using series representation of 1
aγ(a,x) , we can add and subtract each of the terms in the series to the

integrand without violating convergence. This can be shown in the following theorem:

Theorem 3.1. For 0 < <(s) = σ < 1,

ζa(s) =
Γ(a + 1)

Γ(s + a− 1)

[
Γ(s− 1) +

∫ ∞

0

(
1

aγ(a, x)
− 1

xa
)xs+a−2e−xdx

]
.

Proof. For <(s) = σ > 1, we have,

Γ(s + a− 1)
Γ(a + 1)

ζa(s) =
∫ ∞

0

xs+a−2e−x

aγ(a, x)
dx

=
∫ 1

0

[
1

aγ(a, x)
− 1

xa

]
xs+a−2e−xdx +

∫ 1

0

xs−2e−xdx +
∫ ∞

1

xs+a−2e−x

aγ(a, x)
dx (3.1)
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But, ∫ 1

0

xs−2e−xdx = Γ(s− 1)− Γ(s− 1, 1)

= Γ(s− 1)−
∫ ∞

1

xs+a−2e−x

xa
dx. (3.2)

So we have,
Γ(s + a− 1)

Γ(a + 1)
ζa(s) = Γ(s− 1) +

∫ ∞

0

(
1

aγ(a, x)
− 1

xa

)
xs+a−2e−xdx.

Hence the theorem follows. �

From this theorem observe that ζa(s) has a zero at s = 1− a and a pole at s = 1. Moreover, this process
of analytic continuation can be repeated to extend the domain of ζa(s) to <(s) > −1. To this end we write

Γ(s + a− 1)
Γ(a + 1)

ζa(s) = Γ(s− 1) +
∫ 1

0

[
1

aγ(a, x)
− 1

xa
− a

(1 + a)xa−1

]
xs+a−2e−xdx

+
a

1 + a

∫ 1

0

xs−1e−xdx +
∫ ∞

1

[
1

aγ(a, x)
− 1

xa

]
xs+a−2e−xdx. (3.3)

But then,
a

1 + a

∫ 1

0

xs−1e−xdx =
a

1 + a
Γ(s)− a

1 + a

∫ ∞

1

xs−1e−xdx.

Therefore,

Γ(s + a− 1)
Γ(a + 1)

ζa(s) = Γ(s− 1) +
a

1 + a
Γ(s) +

∫ ∞

0

[
1

aγ(a, x)
− 1

xa
− a

(1 + a)xa−1

]
xs+a−2e−xdx.

From this, observe that ζa(s) has a zero at s = −a and a pole at s = 0.
Continuing in this fashion, we observe that:ζa(s) has a zeros at s = 1 − a,−a,−(1 + a),−(2 + a), · · · , and
poles at s = 1, 0,−1,−2,−3, · · · . These zeros are called the trivial zeros of ζa(s). For example, if a = 3

2 , the
trivial zeros of ζ 3

2
(s) are at s = − 1

2 ,− 3
2 ,− 5

2 ,− 7
2 , · · · .

The main advantage of analytic continuation using the method of strip-by-strip is that it reveals the
behavior of ζa(s) near the distinguished pole s = 1. The following theorem is valid for all positive real values
of a and generalizes the corresponding result on hypergeometric zeta functions of positive integer order. This
is the content of the next theorem.

Theorem 3.2.

lim
s→1

[ζa(s)− a

s− 1
] = log(Γ(a + 1))− a

Γ
′
(a)

Γ(a)

Proof.

lim
s→1

[
ζa(s)− a

s− 1

]
=

Γ(a + 1)
Γ(a)

∫ ∞

0

(
1

1F1(1, a + 1;x)
− e−x

)
dx

x

=
Γ(a + 1)

Γ(a)

(
γ +

log(Γ(a + 1))
a

)
= aγ + log(Γ(a + 1))

(3.4)



6 HUNDUMA LEGESSE GELETA, ABDULKADIR HASSEN

where γ is Euler’s constant. But on the other hand we have,

lim
s→1

[
ζa(s)− a

s− 1

]
= lim

s→1

[
ζa(s)− Γ(a + 1)Γ(s− 1)

Γ(s + a− 1)

]
− lim

s→1

[
a

s− 1
− Γ(a + 1)Γ(s− 1)

Γ(s + a− 1)

]
= aγ + log(Γ(a + 1))−

(
aγ + a

Γ
′
(a)

Γ(a)

)

= log(Γ(a + 1))− a
Γ
′
(a)

Γ(a)
(3.3)

as desired. �

Observe that this result is analogous to the classic result for ζ(s)

lim
s→1

[
ζ(s)− 1

s− 1

]
=

Γ
′
(1)

Γ(1)
= γ ≈ 0.577.

3.2. Method II-Contour Integral. We now take a different approach and follow Riemann by using contour
integration to develop the analytic continuation of the fractional hypergeometric zeta function of order a.
This will not only allow us to make precise our earlier statements about ζa(s) having an infinite number of
poles but also make explicit the role of the zeros of incomplete gamma function in determining the values
of ζa(s) at negative integers. To this end we consider the contour integral for half odd integers a. That is
a = 2N+1

2 , where N is a nonnegative integer, so that,

ζ 2N+1
2

(s) =
Γ( 2N+1

2 + 1)
Γ(s + 2N+1

2 − 1)

∫ ∞

0

(
1

2N+1
2 γ( 2N+1

2 , x2)

)
x2(s+ 2N+1

2 −2)e−x2
2xdx

Simplifying this we get,

ζ 2N+1
2

(s) =
(2N + 1)Γ

(
2N+1

2

)
Γ(s + 2N−1

2 )

∫ ∞

0

2x2(s+N−1)+1e−x2

(2N + 1)γ( 2N+1
2 , x2)

dx

x

We now consider the contour integral,

I(s) =
1

2πi

∫
C

2(−w)2(s+N−1)+1e−w2

(2N + 1)γ( 2N+1
2 , w2)

dw

w

where the contour C is given as follows:

C = C− + Cδ + C+

C− is taken along the real axis from ∞ to δ > 0. Cδ is taken counterclockwise around a circle of radius δ > 0.
C+ is taken along the real axis from δ > 0 to ∞. Moreover, we let −w have argument −π backwards along
∞ to δ > 0, and argument π when going from δ > 0 to ∞. Also we choose the radius δ > 0 to be sufficiently
small so that there are no roots of γ( 2N+1

2 , w2) inside the circle of radius δ > 0 besides the trivial zeros at
w0 = 0. This follows from the fact that w0 = 0 is an isolated zero. It is then clear from this assumption that
I(s) must converge for all complex s and therefore defines an entire function. Now we begin by evaluating
I(s) at integer values. To this end we decompose the integral as follows:

I(s) =
1

2πi

∫
C−

2(−x)2(s+N−1)+1e−x2

(2N + 1)γ( 2N+1
2 , x2)

dx

x
+

1
2πi

∫
Cδ

2(−w)2(s+N−1)+1e−w2

(2N + 1)γ( 2N+1
2 , w2)

dw

w

+
1

2πi

∫
C+

2(−x)2(s+N−1)+1e−x2

(2N + 1)γ( 2N+1
2 , x2)

dx

x
(3.4)
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Figure 1. Contour C

Now if 2(s + N − 1) + 1 is an integer the two integrals along C− and C+ cancel each other and we have only

I(s) =
1

2πi

∫
Cδ

2(−w)2(s+N−1)+1e−w2

(2N + 1)γ( 2N+1
2 , w2)

dw

w

But the function defined by,

f(w) =
2w2N+1e−w2

(2N + 1)γ( 2N+1
2 , w2)

in the integrand inside Cδ has a removable singularity at the origin, hence by Cauchy’s theorem we have
I(s) = 0 for integer values 2s − 3 ≥ 0; that is for s = 3

2 , 2, 5
2 , 3, 7

2 , · · · . For integers 2s − 3 ≤ −1; that is for
s = 1, 1

2 , 0, −1
2 ,−1, −3

2 , · · · , we consider power series expansion at the origin for f(w),

f(w) =
2w2N+1e−w2

(2N + 1)γ( 2N+1
2 , w2)

=
∞∑

m=0

B 2N+1
2 ,m

wm

m!

From Cauchy integral formula we have,

B 2N+1
2 ,m =

m!
2πi

∫
Cδ

f(w)
wm+1

dw

So we have,

I(s) = (−1)2(s+N−1)+1 1
2πi

∫
Cδ

(
2(−w)2N+1e−w2

(2N + 1)γ( 2N+1
2 , w2)

)
dw

w2(1−s)+1

= (−1)2(s+N−1)+1 1
2πi

∫
Cδ

f(w)
w2(1−s)+1

dw

= (−1)2(s+N−1)+1
B 2N+1

2 ,2(1−s)

(2(1− s))!
(3.5)

But at s = 1
2 , −1

2 , −3
2 , · · · , it can be easily shown that

B 2N+1
2 ,2(1−s)

(2(1− s))!
= 0
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Thus I(s) = 0 for s = 1
2 , −1

2 , −3
2 , · · · , .

Therefore, the zeros of I(s) can be summarized as follows:
s = n

2 , n is an integer and n ≥ 3 , or s = 2n+1
2 , n is an integer and n ≤ 0.

3.3. Relations Between I(s) and ζ 2N+1
2

(s). We now express ζ 2N+1
2

(s) in terms of I(s). For <(s) > 1, the
integral over Cδ goes to zero as δ goes to zero. Hence the integral over C+ and C− yields that,

I(s) =
1

2πi

[
e2s+2N−1)πi − e−(2s+2N−1)πi

] ∫
C−

(
2(x)2(s+N−1)e−x2

(2N + 1)γ( 2N+1
2 , x2)

)
dx

=
sin((2s + 2N − 1)π)

π

Γ(s + 2N−1
2 )

(2N + 1)Γ( 2N+1
2 )

ζ 2N+1
2

(s)

(3.6)

Thus we have,

ζ 2N+1
2

(s) =
(2N + 1)Γ

(
2N+1

2

)
Γ
(
s + 2N−1

2

) π

sin(2(s + N)− 1)π)
I(s)

Now using trigonometric identity, the double angle formula,

sin(2(s + N)− 1)π = 2 cos(s + N − 1
2
)π sin(s + N − 1

2
)π

ζ 2N+1
2

(s) =
2N + 1

2
Γ
(

2N+1
2

)
Γ
(
s + 2N−1

2

) π

2 cos(s + N − 1
2 )π sin(s + N − 1

2 )π
I(s)

By using the functional equation of the gamma function,

π

sin((s + 1
2 )π)Γ(s + 1

2 )
= Γ(

1
2
− s)

Therefore, for <(s) > 1, we have the relation,

ζ 2N+1
2

(s) =
2N + 1

2
Γ
(

2N + 1
2

)
Γ
(

1
2 − (s + N − 1)

)
cos(s + N − 1

2 )
I(s)

From this relation we observe that the zeros of I(s) at n
2 for n ≥ 3 are simple, since we know by definition

that ζ 2N+1
2

(n) > 0 for n > 1. We have also the following results as a consequence of the above relations:

Theorem 3.3. ζ 2N+1
2

(s) is analytic on the entire complex plane except for simple poles at s = n + 1 − N

where n = N,N − 1, N − 2, N − 3, · · · , with residue,

Res(ζ 2N+1
2

(s), s = n) =
2N + 1

2
Γ
(

2N+1
2

)
Γ
(

1
2 − n

)
π sin

(
n + 1

2

) B 2N+1
2 ,(2(N−n))

(2N − 2n)!

Furthermore,ζ 2N+1
2

(s) = 0 at s = −(2n+1)
2 for n = 0, 1, 2, 3, · · · .

Proof. Since Γ( 1
2 − (s+N − 1) has only simple poles at s = 2(n−N)+1

2 for n = 1, 2, 3, · · · , which are canceled
by the zeros of I(s) at s = n

2 for integer n ≥ 3, and cos((s + N − 1
2 )π) has simple zeros at the integers, it

follows that ζ 2N+1
2

(s) is analytic on the entire complex plane except for simple poles at s = n + N − 1 where
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n = N,N − 1, N − 2, N − 3, · · · . The residue at these simple poles is given by

Res(ζ 2N+1
2

(s), s = n + N − 1) = lim
s→n+N−1

(s− (n + N − 1))ζ 2N+1
2

(s)

=
2N + 1

2
Γ
(

2N + 1
2

)
Γ
(

1
2
− n

)
I(n + 1−N) lim

s→n+1−N

s− n− 1 + N

cos((s + N − 1
2 )π)

=
2N + 1

2
Γ
(

2N + 1
2

)
Γ
(

1
2
− n

)
I(n + 1−N)

−1
π sin(n + 1

2π

=
2N + 1

2
Γ
(

2N + 1
2

)
Γ
(

1
2
− n

) B 2N+1
2 ,2(N−1)

(2N − 2n)!π sin(n + 1
2π

(3.7)

Since, I(s) = 0 for s = −(2n+1)
2 for n = 0, 1, 2, 3, · · · , we have that ζ 2N+1

2
(s) = 0 at s = −(2n+1)

2 for
n = 0, 1, 2, 3, · · · . �

4. Pre-Functional Equation

In this section we discuss on a pre-functional equation satisfied by ζ 2N+1
2

(s). For this we need some
properties of the lower incomplete gamma function. From the definition of the lower incomplete gamma
function:

γ(a, x) =
∫ x

0

ta−1e−tdt

it follows that γ(a, x) tends to Γ(a) as x tends to infinity for real parameter x. This also holds true if we
replace x by a complex parameter z and let the modulus of z tends to infinity for the positive real part of
z. This can be shown as follows:

Theorem 4.1. Let z be a complex number such that its real part is positive, then

lim
|z|→∞

γ(a, z) = γ(a, |z|)

Proof. Let |argz| < δ < π
2 with fixed δ and γ(a, z) be in the principal branch of this sector and u be any

complex number from the sector. Then

|γ(a, u)− γ(a, |u|)| =

∣∣∣∣∣
∫ |u|

u

za−1e−zdz

∣∣∣∣∣
Now if we integrate along the arc with radius R = |u| around zero connecting u and |u|, then we have

|γ(a, u)− γ(a, |u|)| ≤
∫ |u|

u

∣∣za−1e−zdz
∣∣

Since |argz| < δ and hence cos δ ≤ cos |argu| the integrand has a maximum value in this sector. Thus
considering the length of the arc connecting u and |u|, we have

|γ(a, u)− γ(a, |u|)| ≤ Raδe−R cos δ

Thus letting R tends to infinity we have the required result. �

Corollary 4.2. Let z be a complex number such that its real part is positive, then

lim
|z|→∞

γ(a, z) = Γ(a)
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Figure 2. Contour CR,δ

Proof.
|Γ(a)− γ(a, z)| = |Γ(a)− γ(a, |z|) + γ(a, |z|)− γ(a, z)|

Thus we have,
|Γ(a)− γ(a, z)| ≤ |Γ(a)− γ(a, |z|)|+ |γ(a, |z|)− γ(a, z)|

Hence using the theorem and letting the modulus of u tends to infinity we have the required result. �

From this theorem and its corollary it follows that γ(a, z) has only a finite number of simple zeros to the
right half of the complex plane. Moreover these zeros are symmetric with respect to the Real-axis. Thus all
these zeros can be arranged in a sequence of increasing modulus. Let for each n = 1, 2, 3, · · · , zn

1 , zn
2 , · · · , zn

kn

be the non-zero roots in the first quadrant of the lower incomplete gamma function having the same distance
rn from the origin with different arguments θn

1 , θn
2 , · · · , θn

kn
, respectively. Since the lower incomplete gamma

function is symmetric about the real axis, the conjugates of these roots are also its roots in the fourth
quadrant.

Let CR,δ be the annulus-shaped contour consisting of two concentric circles centered at the origin. The
outer wedge CR having radius R, the outer circle centered at the origin having radius δ

R , and the inner circle
Cδ having radius δ

2R . Here δ > 0 is chosen so that no other zeros of the lower incomplete gamma function
included besides the root zero inside the circle. This is possible since zero is an isolated zero of the lower
incomplete gamma function. R is chosen so that all the zeros to the right half of the complex plane are
included in the wedge. This is possible , since there are only finite number of zeros of the lower incomplete
gamma function occurred in the right half of the complex plane. The outer circle and the wedge traversed
clockwise, the inner circle counterclockwise and the radial segment along the positive real axis is traversed
in both directions. We define

ICR,δ
(s) =

1
2πi

∫
CR,δ

(
2(−w)2(s+N−1)e−w2

(2N + 1)γ( 2N+1
2 , w2)

)
dw

w

We claim that ICR,δ
(s) converges to I(s) as R tends to infinity, for <(s) < 1−N. Where

I(s) =
1

2πi

∫
C

2(−w)2(s+N−1)e−w2

(2N + 1)γ( 3
2 , w2)

)
dw

w

where the contour C is given as follows:
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C = C− + Cδ + C+

C− is taken along the real axis from ∞ to δ > 0. Cδ is taken counterclockwise around a circle of radius δ > 0.
C+ is taken along the real axis from δ > 0 to ∞. Moreover, we let −w have argument −π backwards along
∞ to δ > 0, and argument π when going from δ > 0 to ∞. as defined in the previous section.

Since out side the wedge with radius R, γ( 2N+1
2 , w2) 6= 0 we have |γ( 2N+1

2 , w2)| > M > 0.
Thus if |w| = R, we have∣∣∣∣∣w2(s+N−1)e−w2

γ( 2N+1
2 , w2)

∣∣∣∣∣ ≤
∣∣∣∣R2(s+N−1)

M

∣∣∣∣ = R2<(s+N−1)

M
→ 0

as R tends to infinity, since <(s) < 1−N .
Therefore,

I(s) = lim
R→∞

ICR,δ
(s)

On the other hand, we have by residue theory that,

ICR,δ
(s) =

kn∑
j=1

Res

[
2(−z)2(s+N−1)e−z2

(2N + 1)γ( 2N+1
2 , z2)

, z = zn
j , z = zn

j

]

But Res

[
2(−z)2(s+N−1)e−z2

(2N+1)γ( 2N+1
2 ,z2)

, z = w

]
= w2s−2

2N+1

Hence,

ICR,δ
(s) =

2
2N + 1

n∑
j=1

kjr
2s−2
j

kj∑
i=1

cos(2(s− 1)θj
i )

Now taking limit as n tends to infinity we have the required result. Thus,

I(s) =
2

2N + 1

∞∑
j=1

kjr
2s−2
j

kj∑
i=1

cos(2(s− 1)θj
i )

Since

ζ 2N+1
2

(s) =
2N + 1

2
Γ
(

2N + 1
2

)
Γ
(

1
2 − (s + N − 1)

)
cos(s + N − 1

2 )
I(s)

Then we have,

ζ 2N+1
2

(s) =
2N + 1

2
Γ
(

2N + 1
2

)
Γ
(

1
2 − (s + N − 1)

)
cos(s + N − 1

2 )
2

2N + 1

∞∑
j=1

kjr
2s−2
j

kj∑
i=1

cos(2(s− 1)θj
i )

In particular, if kj = 1 for all j = 1, 2, 3, · · · we put θj
i = θj so that the above relation becomes,

ζ 2N+1
2

(s) =
2N + 1

2
Γ
(

2N + 1
2

)
Γ
(

1
2 − (s + N − 1)

)
cos(s + N − 1

2 )
2

2N + 1

∞∑
j=1

r2s−2
j cos(2(s− 1)θj)

We will explore some other properties of the fractional hypergeometric zeta functions in the future work.
One trivial problem with non-trivial answer is whether or not the pre-functional equation can be made
functional equation.
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