
ON GENERALIZATIONS OF LAMBERTS SERIES

TOM OSLER AND ABDUL HASSEN

Abstract. The classical Lamberts series makes it possible to generate many remarkable transformations of
series. These Lamberts series are all constructed from the function z/(1− z). In this paper we show how to

generalize these series by using an arbitrary function in place of z/(1−z). Series transformations exhibiting
beautiful symmetry are obtained. In addition, a double contour integral is found which represents these

series. Our method is compared to a general procedure introduced by MacMahon. Keywords.

1. INTRODUCTION

Let

B(z) =

∞
∑

n=1

bnzn,

then the series

L(z) =

∞
∑

n=1

bn

1 − zn
(1.1)

is called a Lamberts series. These series are mentioned briefly in the classical texts by Abramowitz and
Stegun [1], Bromwich [13], Crystal [16], Hardy and Wright [28], Knopp [36], MacMahon [39], Polya and
Szego [42], and Titchmarsch [48]. With all the bn = 1, the series is an example of an analytic function
defined inside the unit circle, which cannot be continued to a larger domain (see Titchmarsch [48]).

Starting with the classical paper by Knopp [35] in 1913 and continuing to the present day, these series
have entered into the theory of numbers, the theory of Weierstrasss elliptic functions, and the theory of basic
hypergeometric series. Much of this research was motivated by the ideas of Ramanujan. Lambert Series also
occur in the expansion of Eisenstein series, a particular kind of modular form. Agarwal [2] gives an excellent
survey of these results. The series (1.1) can be transformed into another series

L(z) =

∞
∑

n=1

bn

1 − zn
=

∞
∑

n=1

B (zn) (1.2)

and can be expanded in a Taylors series

L(z) =
∞
∑

n=1





∑

d|n

bd



 zn (1.3)

where the inner sum is over all divisors d of n. The series transformation (1.2) ) and the Taylors series (1.3)
are discussed by Knopp in [35] and [36].
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In [36], Knopp lists several examples of (1.2) which he calls ”remarkable”. Two of these identities are

∞
∑

n=1

(−1)n−1 zn

1 − zn
=

∞
∑

n=1

zn

1 + zn

and
∞
∑

n=1

1

n

zn

1− zn
=

∞
∑

n=1

log

(

zn

1 + zn

)

.

In this paper we will discuss several generalizations of the Lamberts series. One generalization is the
following: Suppose

A(z) =

∞
∑

n=1

anzn and B(z) =

∞
∑

n=1

bnzn.

Then the series transformation (1.2) generalizes to

L(z) =

∞
∑

n=1

bnA (zn) =

∞
∑

n=1

anB (zn) (1.4)

and the Taylors series (1.3) now becomes

L(z) =
∞
∑

n=1





∑

d|n

adbn/d



 zn. (1.5)

The series (1.4) and (1.5) first appeared in a paper by I. I. Zogin [52] in 1958. In 1981, Audinarayana
Moorthy [11] studied the same series, and may not have been aware of Zogins earlier paper. The paper by
Spira [47] also contains related information. We see that these generalizations involve replacing the specific
function z/(1 − z) in (1.2) and (1.3) by the arbitrary function A(z) in (1.4) and (1.5). We should also note
that Julia [31], in 1913, studied the possibility of expanding a general function in a series of the form shown
in (1.4).

In this paper we give a double contour integral representation of all these series

L(z) =
1

(2πi)2

∫∫

C

G(s, t; z)A(s)B(t)dtds, (1.6)

where the kernel is given by

G(s, t; z) =

∞
∑

m,n=0

zmn

sm+1tn+1
. (1.7)

The contour integral (1.6) and the importance of the function G(s, t; z) in (1.7) may be presented here
for the first time. All the technical details concerning the convergence of the above series, the nature of the
contours of integration and the analyticity of the functions is discussed in detail in section 3.

Two examples of our series transformations include

∞
∑

n=0

an

n!
exp (bzn) =

∞
∑

n=0

bn

n!
exp (azn) (1.8)

and

∞
∑

n=0

an (czn + d)
n

n!
exp (bczn) =

∞
∑

n=0

cn (azn + b)
n

n!
exp (adzn) . (1.9)
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The symmetry of these examples is surprising. More examples along with the necessary conditions for con-
vergence are discussed in section 4.

Finally, a more general series transformation and associated Taylors series is presented. Let F (s, t) be a
given function, then

∞
∑

n=0

Dn
t F (zn, 0)

n!
=

∞
∑

n=0

Dn
s F (0, zn)

n!
= F (1, 0) + F (0, 1)− F (0, 0)+

∞
∑

n=1

cnzn, (1.10)

where

cn =
∑

d|n

Dd
t D

n/d
s F (0, 0)

d!(n/d)!
.

The previous transformation (1.4) is the special case of (1.10) in which F (s, t) = A(s)B(t). To the best of
our knowledge, (1.10) is new.

The final two sections compare our generalizations with the work of MacMahon.

2. Intuitive insight

Before giving rigorous proofs of our results in the next section, we present a simple formal argument using
power series which will give insight into why our series transformations are valid. Let F (s, t) have a power
series expansion without the constant term (F (0, 0) = 0). Then

F (s, t) =

∞
∑

j=1

∞
∑

k=1

fj,ksjtk (2.1)

= f1,1s
1t + f1,2s

1t2 + f1,3s
1t3 + · · ·

+f2,1s
2t + f2,2s

2t2 + f2,3s
2t3 + · · ·

+f3,1s
3t + f3,2s

3t2 + f3,3s
3t3 + · · ·

...

+fn,1s
nt + fn,2s

nt2 + fn,3s
nt3 + · · ·

...

Next we differentiate n times partially with respect to s, and see that the first n − 1 rows drop out to
obtain

Dn
s F (s, t) = n!fn,1t + n!fn,2t

2 + n!fn,3t
3 + · · ·

+(n + 1)!fn+1,1s
1t + (n + 1)!fn+1,2s

1t2 + (n + 1)!fn+1,3s
1t3 + · · ·

+(n + 2)!fn+2,1s
2t + (n + 2)!fn+2,2s

2t2 + (n + 2)!fn+2,3s
2t3 + · · ·

...

If we set s = 0 all but the first row in the above expression drops out and we get

Dn
s F (0, t) = n!fn,1t + n!fn,2t

2 + n!fn,3t
3 + · · ·

Dividing by n! and letting t = zn we get

Dn
s F (0, zn)

n!
= fn,1z

n + fn,2z
2n + fn,3z

3n + · · · (2.2)
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Summing this last expression on n we get
∞
∑

n=1

Dn
s F (0, zn)

n!
=

∞
∑

n=1

∞
∑

k=1

fn,kzkn. (2.3)

Definition 2.1. We will call the sum
∑∞

n=1

∑∞
k=1 fn,kzkn the Lambert power series derived from the function

F (s, t) .

Notice that (2.2) is the nth row of the sum
∑∞

n=1

∑∞
k=1 fn,kzkn.

Definition 2.2. We call (2.3) the sum by rows, or the R sum of the Lambert power series.

The power series on the right side of (2.3) can be rewritten as

∞
∑

n=1

Dn
s F (0, zn)

n!
=

∞
∑

n=1





∑

d|n

fd,n/d



 zn.

It is not difficult to see that interchanging the roles of s and t in the above argument would have given us

∞
∑

n=1

Dn
t F (zn, 0)

n!
=

∞
∑

n=1





∑

d|n

fd,n/d



 zn. (2.4)

Since the right hand sides of the last two expressions are identical, we have finally our transformation

∞
∑

n=1

Dn
s F (0, zn)

n!
=

∞
∑

n=1

Dn
t F (zn, 0)

n!
=

∞
∑

n=1





∑

d|n

fd,n/d



 zn.

Notice that
Dn

s
F (0,zn)
n! is the n th column of the Lambert power series

∑∞
n=1

∑∞
k=1 fn,kzkn.

Definition 2.3. We call (2.4) the column sum or the C sum of the Lambert power series.

Notice also that

fd,n/d =
Dd

sD
n/d
t F (0, 0)

d!(n/d)!

which is the familiar Taylors series coefficient in two variables.
This completes our intuitive analysis of our main new result. We left out the minor modification needed

to remove the restriction that F (0, 0) = 0 to keep the analysis simple and clear. The above argument could
be made rigorous, but we choose a contour integral approach for that purpose in the next section.

3. Proofs of the main results

Having given a quick intuitive look at why our transformation of series should be valid, we now present
rigorous statements and proofs. We could begin by expanding all functions in Taylors series, but we choose
to go a different route. We will define a function of three complex variables by a geometric like series

G(s, t; z) =

∞
∑

m,n=0

zmn

sm+1tn+1
.

This function will then serve as the Kernel in an integral transform

L(z) =
1

(2πi)2

∫∫

C

G(s, t; z)F (s, t)dtds
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of the function F (s, t). By expanding the kernel G(s, t; z) in various ways, we will obtain our desired results.
This method resembles the way in which the Taylors series is derived from the geometric series using Cauchys
integral formula.

We begin by defining an important region.

Definition of the region R: The region R is the space of the three complex variables s, t and z restricted
to

R = {|z| ≤ 1, |s| ≥ ρ > 1, |t| ≥ ρ > 1}.

Here ρ can be as close to 1 as we please.

Three lemmas regarding the kernel G(s, t; z) will be needed before we can prove our main result.

Lemma 3.1. The series G(s, t; z) =
∑∞

m,n=0
zmn

sm+1tn+1 is absolutely and uniformly convergent in the three

complex variables s, t and z when confined to any compact subset of the region R. Thus G(s, t; z) is analytic
in s, t and z on R.

Proof. For s, t and z on R, we have
∣

∣

∣

∣

zmn

smtn

∣

∣

∣

∣

≤
1

ρm+n
.

Since
∞
∑

m,n=0

1

ρm+n
=

ρ2

(ρ − 1)2
,

the Weierstrass M test tells us that the series for G(s, t; z) converges absolutely and uniformly in every
compact subset of the region R. Thus G(s, t; z) is an analytic function of the three variables on the region
R. �

Lemma 3.2. For s, t and z on R, we have

G(s, t; z) =

∞
∑

m=0

1

tm+1(s − zm)
(3.1)

and

G(s, t; z) =

∞
∑

m=0

1

sm+1(t − zm)
. (3.2)

Both series converge absolutely and uniformly on the region R.

Proof. Since the series defining G is absolutely convergent, we can evaluate the sum using any arrangement
of the terms. Using only the sum of a geometric series we have

G(s, t; z) =

∞
∑

m,n=0

zmn

sm+1tn+1
=

∞
∑

m=0

1

tsm+1

∞
∑

n=0

(

zm

t

)n

=

∞
∑

m=0

1

sm+1(t − zm)
.

This proves (3.2). Since G(s, t; z) = G(t, s; z) we have (3.1) also. Since
∣

∣

∣

∣

1

tm+1(s − zm)

∣

∣

∣

∣

<
1

ρm+1(ρ − 1)
,

we see by the Weierstrass M test that the series (3.1) is absolutely and uniformly convergent. The same is
true for (3.2) . �
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Lemma 3.3. For s, t and z on R, we have

G(s, t; z) =
1

st
+

1

st(s − 1)
+

1

st(t − 1)
+

1

st

∞
∑

k=1

ck(s, t)zk, (3.3)

where

ck(s, t) =
∑

d|k

1

sdtk/d
. (3.4)

(Here the index of summation d is over all divisors of k).

Proof. We will partition this double sum into four parts:

Part 1; m = n = 0
Part 2: n = 0; m = 1, 2, 3, · · ·
Part 3: m = 0; n = 1, 2, 3, · · ·
Part 4: m = 1, 2, 3, ...; n = 1, 2, 3, · · ·

The right hand side of (3.3) consists of four terms, and each term is the result of summing over one of
the respective four parts just listed. The first term is obvious. The second and third terms use only the
sum of a geometric series. The fourth sum is a double sum in which we collect terms in which the product
mn = k. �

With the above three lemmas available, we now derive our main result.

Theorem 3.1. Let F (s, t) be analytic in the two complex variables s and t for |s| < r and |t| < r , where
r > ρ (ρ is defined in the definition of the region R). Then for |z| ≤ 1,

∞
∑

n=0

Dn
t F (zn, 0)

n!
=

∞
∑

n=0

Dn
s F (0, zn)

n!
(3.5)

= F (1, 0) + F (0, 1)− F (0, 0) +

∞
∑

n=1

cnzn, (3.6)

where

cn =
∑

d|n

Dd
t D

n/d
s F (0, 0)

d!(n/d)!

and the symbol Dn
s F (a, b) means the nth partial derivative of F (s, t) with respect to s evaluated at s = a and

t = b.

Proof. Consider the double contour integral

L(z) =
1

(2πi)2

∫∫

C

G(s, t; z)F (s, t)dtds (3.7)

where the contour C is a circle |s| = r0 in the region of analyticity with 1 < ρ < r0 < r in the complex s-plane,
and the same circle in the complex t-plane. From Lemma 3.1 we know that the integrand F (s, t)G(s, t; z) is
analytic in this double-annulus. Expanding G with (3.1) we get

L(z) =

∞
∑

m=0

1

(2πi)2

∫∫

C

F (s, t)

tm+1(s− zm)
dtds. (3.8)
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Here the interchange of summation and integration is valid because the series converges uniformly in s and
t over C. Using Cauchys integral formula we have

1

2πi

∫

C

F (s, t)

tm+1
dt =

Dm
t F (s, 0)

m!

so our double integral in (3.8) reduces to

L(z) =

∞
∑

m=0

1

2πi

1

m!

∫

C

Dm
t F (s, 0)

s − zm
ds.

Again using Cauchys integral formula we have

L(z) =

∞
∑

m=0

Dm
t F (zm, 0)

m!
.

If we evaluate the original double integral using (3.2) in the same way we get our first result (3.5).

To get (3.6) we start again with the double integral (3.7) for L(z) and now expand G(s, t; z) using (3.3).
We get

L(z) =
1

(2πi)2

∫∫

C

G(s, t; z)F (s, t)dtds

=
1

(2πi)2

∫∫

C

F (s, t)

st
dtds +

1

(2πi)2

∫∫

C

F (s, t)

st(t − 1)
dtds +

1

(2πi)2

∫∫

C

F (s, t)

st(s − 1)
dtds +

∞
∑

n=1

cnzn,

where

cn =
∑

d|n

1

(2πi)2

∫∫

C

F (s, t)

sd+1tn/d+1
dtds.

The first term is F (0, 0) using Cauchys integral formula. The second term is −F (0, 0) + F (0, 1). The
third term is −F (0, 0)+F (1, 0). These three terms sum to F (1, 0)+F (0, 1)−F (0, 0) and thus the first three
terms of (3.6) are verified. Using Cauchys integral formula, the fourth term above is easily seen to be the
fourth term in (3.6). This completes the proof of the theorem. �

Having proved our main result, we next give two corollaries which describe the result for special forms
of F (s, t). These two forms are a product F (s, t) = A(s)B(t) and a composite function F (s, t) = f(as+bt+c).

Corollary 3.1. Let

A(z) =
∞
∑

n=1

anzn and B(z) =
∞
∑

n=1

bnzn,

where both series converge inside the circle |z| < r, (1 < r). Then for |z| ≤ 1, we have

∞
∑

n=0

bnA (zn) =

∞
∑

n=0

anB (zn) (3.9)

= a0B(1) + b0A(1) − a0b0 +
∞
∑

n=1





∑

d|n

adbn/d



 zn. (3.10)
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Proof. Let F (s, t) = A(s)B(t) in Theorem 3.1. This corollary follows immediately from the three relations:

Dn
t F (zn, 0)

n!
= A(zn)

Dn
t B(0)

n!
= A(zn)bn,

Dn
s F (0, zn)

n!
= B(zn)

Dn
s A(0)

n!
= B(zn)an,

and
Dm

s Dn
t F (0, 0)

m!n!
=

Dm
s A(0)Dn

t B(0)

m!n!
= ambn.

�

Corollary 3.2. Let a, b and c be fixed complex numbers and let the real number r > 1. Let the function
f(z) be analytic inside the circle |z − c| < (|a|+ |b|)r. Then for |z| ≤ 1,

∞
∑

n=0

anf(n) (bzn + c)

n!
=

∞
∑

n=0

bnf(n) (azn + c)

n!
(3.11)

= f(a + c) + f(b + c) − f(c) +

∞
∑

n=1





∑

d|n

adbn/df(d+n/d)(c)

d!(n/d)!



 zn. (3.12)

Proof. Let F (s, t) = f(as + bt + c). The circle in which the function f(z) is analytic is large enough for
F (s, t) to be analytic inside the required region R of Theorem 3.1. Since

Dn
s F (s, t) = anf(n)(as + bt + c) and Dn

t F (s, t) = bnf(n)(as + bt + c),

the corollary follows from the result of Theorem 1. �

4. Examples

The following examples of series transformations illustrate specific cases of relation (3.5) in Theorem 3.1
of the previous section. All of the examples were checked on a computer for various numerical values of the
parameters using the software program Math Cad.

Example 4.1. Let F (s, t) = eas+bt. Then for all a and b and |z| ≤ 1, we have

∞
∑

n=0

an

n!
exp (bzn) =

∞
∑

n=0

bn

n!
exp (azn) . (4.1)

Example 4.2. Let F (s, t) = e(as+b)(ct+d). Then for all a, b, c, and d and |z| ≤ 1, we have

∞
∑

n=0

an (czn + d)
n

n!
exp (bczn) =

∞
∑

n=0

cn (azn + b)
n

n!
exp (adzn) . (4.2)

Example 4.3. Let F (s, t) = (1 − as)−1(1 − bt)−1. Then for all |a| < 1 and |b| < 1 and |z| ≤ 1, we have

∞
∑

n=0

bn

1 − azn
=

∞
∑

n=0

an

1 − bzn
. (4.3)

Example 4.4. Let F (s, t) = (as + bt + c)p. Then for all |a + b| < |c| and |z| ≤ 1, we have

∞
∑

n=0

(

p

n

)

an (bzn + c)
p−n

=

∞
∑

n=0

(

p

n

)

bn (azn + c)
p−n

. (4.4)
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Example 4.5. Let F (s, t) = (1 + as)p(1 + bt)q. Then for all |a| < 1 and |b| < 1 and |z| ≤ 1, we have

∞
∑

n=0

(

q

n

)

bn (1 + azn)
p

=

∞
∑

n=0

(

p

n

)

an (1 + bzn)
q
. (4.5)

Example 4.6. Let F (s, t) = (1 + as)pebs. Then for all b and p, and for |a| < 1 and |z| ≤ 1, we have

∞
∑

n=0

bn

n!
(1 + azn)

p
=

∞
∑

n=0

(

p

n

)

an exp (bzn) . (4.6)

5. The R, C, RC and CR sums of MacMahon.

In [39], MacMahon gave an interesting and very general way of deriving Lambert series. MacMahon starts
with the Lambert power series,

∞
∑

m=0

∞
∑

n=0

fm,nzmn.

He does not consider the associated function F (s, t) which we use as a starting point from which to derive
the Lambert power series. He introduces four different ways to sum the series called the R, C, RC and
CR sums. He can always sum by the R and C methods, but the RC and CR sums can only be evaluated
conveniently in a few special cases. In this section we will explain these four sums, and relate our method
to MacMahons. Consider once again the power series expansion

F (s, t) =
∞
∑

m=0

∞
∑

n=0

fm,nsmtn.

We now define the series of partial rows

Rn(s, t) =

∞
∑

k=n

∞
∑

m=0

fm,ksmtk. (5.1)

Notice that Rn(s, t) is the same as the sum for F (s, t) with columns 0, 1, 2, · · · , n − 1 removed. In the
same way we define the series of partial columns

Cm(s, t) =

∞
∑

k=m

∞
∑

n=0

fk,nsktn, (5.2)

where Cm(s, t) is the same as the sum for F (s, t) with rows 0, 1, 2, · · · , m− 1 removed. We observe that

Dm
s Rn(s, t) = m!

∞
∑

k=n

∞
∑

h=0

fm+h,kshtk

and hence

Dm
s Rn(0, zm)

m!
=

∞
∑

k=n

fm,kzkm (5.3)

is the partial sum of the Lambert power series
∞
∑

m=0

∞
∑

n=0

fm,nzmn

consisting of the mth row starting at the nth column.
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Figure 1. The Four Methods of Sums

In a similar way

Dn
t Cm(zn, 0)

n!
=

∞
∑

k=m

fk,nzkn (5.4)

is the partial sum of the Lambert power series consisting of the nth column starting at the mth row.

In section 2 we showed why
∑∞

m=0
Dm

s
Rn(0,zm)

m! is the sum of the Lambert power series
∑∞

m=0

∑∞
n=0 fm,nzmn

by rows (R sum), and why
∑∞

n=0
Dn

s
Rm(zn,0)

n! is the sum of the Lambert power series by columns (C sum).
With the definitions (5.1) and (5.2) and the series (5.3) and (5.4) we can now sum the Lambert power series
in many other ways besides simply rows, or simply columns. In particular, following MacMahon, we can
define the RC and CR sums explained by the diagram in Figure 1. The diagram shows how the sums are
taken over the matrix of indices of the Lambert power series.

Using (5.3) and (5.4) we can write the RC sum as

D0
sR0

(

0, z0
)

0!
+

D0
t C1

(

z0, 0
)

0!
+

D1
sR1

(

0, z1
)

1!
+

D1
t C2

(

z1, 0
)

1!
+ · · · ,

which is

∞
∑

n=0

(

Dn
s Rn(0, zn)

n!
+

Dn
t Cn+1(z

n, 0)

n!

)

(5.5)

The CR sum is , which is

D0
t C1

(

z0, 0
)

0!
+

D0
sR1

(

0, z0
)

0!
+

D1
t C1

(

z1, 0
)

0!
+

D1
sR2

(

0, z1
)

1!
· · · ,

which is

∞
∑

n=0

(

Dn
t Cn (zn, 0)

n!
+

Dn
s Rn+1 (0, zn)

n!

)

(5.6)

Thus (5.5) and (5.6) give us two additional ways to write the Lambert power series, and obtain new general-
izations of Lambert series. Unfortunately, there are very few functions for which the partial rows and partial
columns, (5.1) and (5.2), can be conveniently evaluated. This makes the RC and CR sums impossible to
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calculate in most examples. However, MacMahon has shown in [39] that in the examples in which these
sums are possible, some very interesting results are obtained. We explore some of these in the next section.

6. Examples using RC, CR, RRC and CCR sums

Consider the function

F (s, t) =
satd

(1 − αsa) (1 − βtc)
, (6.1)

where a, b, c, and d are positive integers and |α| ≤ 1 and |β| ≤ 1. It is clear that the series expansion

F (s, t) =

∞
∑

m=0

∞
∑

n=0

αmβnsam+btcn+d (6.2)

is absolutely convergent for |s| < 1 and |t| < 1. In this case we can easily calculate the partial rows (5.1)
and partial columns (5.2). We have

Rcn+d(s, t) =

∞
∑

m=0

∞
∑

k=n

αmβksam+btck+d

=
βnsbtcn+d

1 − αsa

∞
∑

k=0

βktck

=
βnsbtcn+d

(1 − αsa) (1 − βtc)
.

In a similar way we have

Cam+b(s, t) =
αmsam+btd

(1 − αsa) (1 − βtc)
.

From (5.3) and (5.4) we can calculate the partial row and column sums

Dam+b
s Rcn+d

(

0, zam+b
)

(am + b)!
=

αmβnz(am+b)(cn+d)

1 − βzc(am+b)
(6.3)

and

Dcn+d
t Cam+b

(

zam+b, 0
)

(cn + d)!
=

αmβnz(am+b)(cn+d)

1 − αza(cn+d)
. (6.4)

The R, C, RC, and CR sums of the Lambert power series derived from the function F (s, t) are given
respectively by the four series

∞
∑

n=0

Dan+b
s F

(

0, zan+b
)

(an + b)!

=

∞
∑

n=0

Dcn+d
t F

(

zcn+d, 0
)

(cn + d)!

=

∞
∑

n=0

(

Dan+b
s Rcn+d

(

0, zan+b
)

(an + b)!
+

D
a(n+1)+b
t Ca(n+1)+b

(

zcn+d, 0
)

(cn + d)!

)

=

∞
∑

n=0

(

Dan+b
s Rcn+d

(

0, zan+b
)

(an + b)!
+

D
a(n+1)+b
t Ca(n+1)+b

(

zcn+d, 0
)

(cn + d)!

)
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Using (6.3) and (6.4) these simplify to the following generalized Lambert series respectively:

∞
∑

n=0

αnzd(an+b)

1 − βzc(an+b)
(6.5)

=
∞
∑

n=0

βnzb(cn+d)

1 − αza(cn+d)
(6.6)

=

∞
∑

n=0

(

αnβnz(an+b)(cn+d)

1 − βzc(an+b)
+

αn+1βnz(a(n+1)+b)(cn+d)

1 − αza(cn+d)

)

(6.7)

=

∞
∑

n=0

(

αnβn+1z(an+b)(c(n+1)+d)

1 − βzc(an+b)
+

αnβnz(an+b)(cn+d)

1 − αza(cn+d)

)

. (6.8)

In a similar way we find the RRC and CRR sums associated with the function (6.1) and get respectively

∞
∑

n=0

(

α2nβnz(2an+b)(cn+d)

1 − βzc(2an+b)
+

α2n+1βnz(a(2n+1)+b)(cn+d)

1 − βzc(a(2n+1)+b)
+

α2n+2βnz(a(2n+2)+b)(cn+d)

1 − αza(cn+d)

)

(6.9)

and
∞
∑

n=0

(

αnβ2nz(an+b)(2cn+d)

1 − αza(2cn+d)
+

αnβ2n+1z(an+b)(c(2n+1)+d)

1 − αza(c(2n+1)+d)
+

αnβ2n+2z(an+b)(c(2n+2)+d)

1 − βzc(an+b)

)

. (6.10)

Of course, the six series (6.5) to (6.10) are all equal. MacMahon in [39] finds (6.5) to (6.8) for the two
special cases α = β = 1 and α = β = −1.

We checked these series ((6.5) to (6.10) ) on a computer for various values of the parameters. We found
that our restriction of a, b, c and d to positive integers seems to be unnecessary. The series appear to be valid
when these parameters are any positive numbers. This suggests using appropriate fractional derivatives to
prove our theorems.

If we let α = β = −1, a = 2, and b = c = d = 1, the above six series become respectively

z

1 + z
−

z3

1 + z3
+

z5

1 + z5
−

z7

1 + z7
+

z9

1 + z9
−

z11

1 + z11
+ · · ·

=
z

1 + z
−

z2

1 + z4
+

z3

1 + z6
−

z4

1 + z8
+

z5

1 + z10
−

z6

1 + z12
+ · · ·

=
z

1 + z2
−

z3

1 + z2
+

z6

1 + z3
−

z10

1 + z4
+

z15

1 + z5
−

z21

1 + z6
+ · · ·

=
z

1 + z2
−

z2

1 + z
+

z6

1 + z4
−

z9

1 + z3
+

z15

1 + z6
−

z20

1 + z5
+ · · ·

=
z

1 + z
−

z3

1 + z3
+

z5

1 + z2
−

z10

1 + z5
+

z14

1 + z7
−

z18

1 + z4
+ · · ·

=
z

1 + z2
−

z2

1 + z4
+

z3

1 + z
−

z9

1 + z6
+

z12

1 + z8
−

z15

1 + z3
+ · · · .

MacMahon points out that the identity between the first and third of the above series is a celebrated
relation of Jacobi. We could continue and find RCR, CRC, RCC and CRR sums and more, but we choose
to end the paper here.
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