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1. INTRODUCTION

One of the joys of mathematical study is the discovery of unexpected relations. In

this paper we explore the strange interplay between partitions and pentagonal numbers.

An important function in number theory is p n( ) , the number of unrestricted

partitions of the positive integer n, that is, the number of ways of writing n as a sum of

positive integers. For example,  4+2+2+1 is a partition of the number 9. The order of the

summands is irrelevant here, so 4+2+2+1 is the same partition as 2+2+4+1. In Table 1 we

show all the partitions of the numbers from 1 to 5 along with the values of p n( ) .

Table 1:  Partitions of a natural number n

n Partitions of n p(n)
1 1 1
2 2,  1+1 2
3 3, 2+1, 1+1+1 3
4 4, 3+1, 2+2, 2+1+1, 1+1+1+1 5
5 5, 4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 1+1+1+1+1 7
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While it is simple to determine  p n( )   for very small numbers  n by actually

counting all the partitions, this becomes difficult as the numbers grow. For example,

p( )10 42= , and  p( )20 627= , while p( ) , ,100 190 569 292= .  It is the purpose of this

paper to show how to write a simple program in BASIC to calculate  p n( ) . Along the

way we will encounter several nifty mathematical relations.

The values of the partition function for large values of n  can be obtained from the

following remarkable recursive algorithm: 

(1.1) 
p n p n p n p n p n

p n p n p n p n
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ...
= − + − − − − −
+ − + − − − − − +

1 2 5 7
12 15 22 26 ,

where we define p p p( ) ( ) ( ) ...− = − = − = =1 2 3 0 . We also define p( )0 1= .

 This recursive formula was discovered by Euler. In Section 3, we will outline

how (1.1) can be proved, but will leave the details to the references. The most mysterious

feature in (1.1) is the appearance of the numbers 1, 2, 5, 7, 12, 15,... . These are related to

the pentagonal numbers and will be discussed in the next section. 

In Section 4, we will write a QUICK BASIC program that uses (1.1) to generate a

table of the partition function. We have given one such table at the end of this paper.

Students can use the table and the program to make and test conjectures concerning

partitions.

The notions of pentagonal numbers and partitions are extremely simple and can

be understood by students at the precalculus level. The ideas presented here should work

well in a first course in programming for high school or college students. They could also

be used in courses in discrete mathematics and in number theory. We hope that the
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opportunity to conjecture properties of partitions from the computer program as well as

the intrinsic fascination of the relations like (1.1) will spark student interest.

2.  THE PENTAGONAL NUMBERS

Since pentagonal numbers play a central role in this study, we take a brief

moment to examine their origin.

      k = 1              k =  2                      k = 3                                        k = 4
    f(1) = 1         f(2) = 5                    f(3) = 12                                  f(4) = 22

                             Figure 1: The First Four Pentagonal Numbers
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We can easily verify that the sequence of pentagons defined by dots in Figure 1

have the property that when a pentagon has k dots on a side, it contains  

(2.1) f k k k( ) ( ) /= −3 1 2

dots within the pentagon. Thus the sequence of pentagonal numbers  1, 5, 12, 22, 35, 51,

... emerges from (2.1) by taking k = 1, 2, 3, 4, 5, 6, ... . 

We will also need to use f k( )  when k  is a negative integer. It is easy to see that

(2.2) f k k k( ) ( ) /− = +3 1 2 .

Thus the sequence of numbers  2, 7, 15, 26, 40, 57, ... emerges by placing consecutive

negative integers in (2.1). This same sequence is generated by (2.2) by using the

sequence of positive integers for k. We do not know any geometric figure associated with

the numbers generated by (2.2), but they could be referred to as pentagonal numbers of

negative index.

The following is a short table of pentagonal numbers used in the calculation of

partitions with the recursion relation (1.1):

               Table 2:  Pentagonal Numbers  f(k) = k(3k-1)/ 2
K      f(k)    f(-k)      k     f(k)    f(-k)
    1        1      2 
    2        5      7 
    3      12     15 
    4      22     26 
    5      35     40 
    6      51     57 
    7      70     77 
    8      92    100 
    9    117    126 
  10    145    155

   11    176    187 
   12    210    222 
   13    247    260 
   14    287    301 
   15    330    345 
   16    376    392 
   17    425    442 
   18    477    495 
   19    532    551 
   20    590    610 
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3. SOME IMPORTANT RELATIONS INVOLVING PARTITIONS

We now examine three important relations involving the partition function p n( ) .

In some cases, we will give a heuristic explanation of the properties. In all cases we give

references where systematic and rigorous treatments can be found. 

3.1 The generating function

Euler [4], began the mathematical theory of partitions in 1748 by discovering the

so called “generating function”

(3.1) 1
11 0−

=
=

∞

=

∞

∏ ∑x
p n xn

n

n

n

( ) .

The infinite product on the left side of (3.1) “generates” the p n( )  as coefficients of the

power series on the right side.  

What follows is a brief glimpse at why (3.1) works. A full proof is found in

Andrews’ book [1] on pages 160 to 162. If we expand each of the factors 1 1/ ( )− xn

using the geometric series we get the following:

(3.2)

1
1

1

1
1

1

1
1

1

1
1

1

1
1

1

1
1 1 1 2 1 3 1 4 1 5

2
2 1 2 2 2 3 2 4 2 5

3
3 1 3 2 3 3 3 4 3 5

4
4 1 4 2 4 3 4 4 4 5

5
5 1 5 2 5 3 5 4 5 5

−
= + + + + + +

−
= + + + + + +

−
= + + + + + +

−
= + + + + + +

−
= + + + + + +

• • • • •

• • • • •

• • • • •

• • • • •

• • • • •

x
x x x x x

x
x x x x x

x
x x x x x

x
x x x x x

x
x x x x x

...

...

...

...

...

...
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When we multiply the series on the right side of (3.2) and carefully observe what is

taking place, we see that the partition function is being generated. To see a particular

case, look at the terms that generate x5 . They are

x x x x x x x x x x x x x1 5 1 3 2 1 1 2 3 1 1 1 4 1 1 1 2 2 2 1 3 1 5 1 57• • • • • • • • • • • •+ + + + + + =

(Here we interpret the power of  xa b•  to mean  a a a+ + +...  with b terms). Notice that

each of the exponents is a particular partition of the number 5. These are, respectively,

1+1+1+1+1, 1+1+1+2, 1+1+3, 1+4, 1+2+2, 2+3 and 5. Thus there are 7 partitions of the

number 5. This illustrates how the generating function (3.1) works. 

A computer algebra system, like Mathematica, can use this idea to calculate

p n( ) . However it would not be a good way to find the partitions of a large number. One

of the important implications of (3.1) is that the function defined by the infinite product

can be studied analytically to get asymptotic expressions for p(n),  which we will

describe next.

3.2 The asymptotic formula

A glance at a table of the partition function shows that p(n) grows "very fast".

How fast is "very fast"? Hardy and Ramanujan have given us an asymptotic formula for

p(n). Before we present this formula, we mention one of the most common asymptotic

expression known as Stirling’s formula:

(3.3) n n n en n! /≈ 2π ,

which can be used to estimate large values of the factorial. In a similar spirit we have the

asymptotic formula for the partition function

(3.4) p n n
n

( ) exp( / )
≈

π 2 3
4 3

.
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Hardy and Ramanujan [11] published (3.4) in 1917 and again in 1918 using advanced

methods from the theory of functions of a complex variable. (See Kanigel’s book [6]  for

a  readable description of the collaboration of Hardy and Ramanujan on (3.4).) These

asymptotic formulas contain a marvelous mystery. The left hand sides of both (3.3) and

(3.4) are integers. But the right hand sides contain π , e, and square roots. What does π

have to do with factorials or partitions?  When we leave this world, this is the first

question we would like to ask God!

3.3 The recursion relation

As we mentioned in Section 1, the values of the partition function can be obtained

from the following remarkable recursive algorithm (1.1). We reproduce this formula here

for an easy reference. 

(3.5)  
p n p n p n p n p n

p n p n p n p n
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ...
= − + − − − − −
+ − + − − − − − +

1 2 5 7
12 15 22 26

where we define p p p( ) ( ) ( ) ...− = − = − = =1 2 3 0 . We also define p( )0 1= . We can also

write (3.5) in the following form  

(3.6) p n p n f k p n f kk

k

( ) ( ) ( ( )) ( ( ))= − − + − −+

=

∞

∑ 1 1

1
l q ,

where f k k k( ) ( ) /= −3 1 2  generates the sequence of pentagonal numbers For example

(3.5) tells us that 
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p p p p p p p
p p p p

( ) ( ) ( ) ( ) ( ) ( ) ( ) ...
( ) ( ) ( ) ( ) ...

11 10 9 6 4 1 4
10 9 6 4 0 0

= + − − + − + − −
= + − − + + +

.

The remaining terms all have negative arguments and are thus zero. In this way we can

calculate the number of partitions of 11 if we know the partitions of 10, 9, 6 and 4. Using

Table 3 we have

p(11) = 42 + 30 - 11 - 5  =  56

The full proof of the recursion relation (3.6) is beyond the scope of this paper.

This proof can be found in Hardy and Wright [5] and in Andrews [1]. However, since the

proof is itself very interesting, we give here a brief outline of the main steps.

The proof of (3.6) begins with Euler’s remarkable discovery known as “Euler’s

pentagonal number theorem”:

(3.7)
( ) ( )

( )

( )/

( )/ ( )/

1 1

1 1

1

3 1 2

3 1 2 3 1 2

1

− = −

= + − +

=

∞
−

=−∞

∞

− +

=

∞

∏ ∑

∑

x x

x x

n

n

n n n

n

n n n n n

n
m r

.

Writing out the terms in (3.7) explicitly we get

(3.8)
( )( )( )( )...

...
1 1 1 1

1

2 3 4

2 5 7 12 15

− − − − =

− − + + − − +

x x x x
x x x x x x

The reader can multiply out a few of the factors on the left side of (3.8) to see that the

terms involving pentagonal numbers as exponents appear on the right side.

Notice that the left side of (3.1) is the reciprocal of the left side of (3.8). From this

it follows that 

p n x x x x x x xn

n

( ) ...= − − + + − − +
=

∞ −

∑ 1 2 5 7 12 15

0

1

c h ,

and therefore
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p n x x x x x x xn

n

( ) ...
=

∞

∑FHG
I
KJ − − + + − − + =

0

2 5 7 12 151 1c h .

Multiplying out the product of series above we get 

(3.9)
1 1 1 0 2 1 0

3 2 1 4 3 2
4 3 0

2

3 4

5

= + − + − − +

− − + − − +

− − + +

( ( ) ( )) ( ( ) ( ) ( ))
( ( ) ( ) ( )) ( ( ) ( ) ( ))
( (5) ( ) ( ) ( )) ...

p p x p p p x
p p p x p p p x
p p p p x

.

Since the left side of (3.9) is 1, all the coefficients of the powers of x  on the right side are

zero. Thus we get

p p
p p p
p p p
p p p
p p p p

( ) ( ),
( ) ( ) ( ),
( ) ( ) ( ),
( ) ( ) ( ),
(5) ( ) ( ) ( ),

...

1 0
2 1 0
3 2 1
4 3 2

4 3 0

=
= +
= +
= +
= + −

This last list of relations is the first five values of our recursion relation (3.6). This

completes our brief look at how this important recursion relation emerges.

4. A BASIC PROGRAM TO GENERATE PARTITIONS

In this section we examine a simple program written in QUICK BASIC( also

QBASIC) to calculate a list of the values of the partition function p n( )  for n = 1 2 3, , ,...  .

The program can be easily modified to work in any version of BASIC or any computer

language.

The lines that begin with an “apostrophe” are merely remarks and can be omitted.
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Line 100 sets all variables to double precision mode. This allows 16 digits for

integers (but only 15 digits of certain accuracy) in the computations. The BASIC

interpreter used by the author gave accurate exact values of  p n( )  for n from 1 to 293.

Line  100 dimensions the array  P, and line 120 defines the value of p( )0 .

Each time the FOR - NEXT loop from lines 200 to 500 is executed, we calculate

another value of the partition function p n( ) .Each time the FOR - NEXT loop in lines

220 to 300 is performed we find another value of the term

(4.1) ( ) ( ( )) ( ( ))− − + − −+1 1k p n f k p n f kl q

from the recursion relation (3.4). The variable SIGN in lines 210, 250, 280  and 290

contains the value of  ( )− +1 1k  from (4.1).  We exit this loop in line 240 or 270 where we

check to see if  n f k− ( )  or  n f k− −( )  is negative. (Recall from the previous section

that p m( ) = 0  when  m  is a negative integer.) 

In line 230 we calculate the pentagonal number f k k k( ) ( ) /= −3 1 2 . In line 250

we add the term ( ) ( ( ))− −+1 1k p n f k  to the present value of the sum for  p n( ) . Again in

line 260 we calculate the value of f k k k( ) ( ) /− = +3 1 2  needed in (4.1),  and in line 280

we add the term ( ) ( ( ))− − −+1 1k p n f k  to the sum for  p n( ).

In line 400 we print the value just calculated for  n  and for p n( )  on the screen.

Line 450 causes the screen calculations to pause after 20 lines are printed so that they can

be examined before they scroll out of view.

This completes our explanation of the program that calculates the partition 

function.
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       Program 1: Calculate Partitions
        'Calculate partitions of N,  P(N)
        'exactly up to P(301).        
        'Set double precision, dimension array P, initialize P
90      CLS
100     DEFDBL A-Z
110     DIM P(400)
120     P(0) = 1

        'Main loop, for each N find P(N)
200     FOR N = 1 TO 293
210       SIGN = 1
215       P(N) = 0
         
220       FOR K = 1 TO 100
             'Calculate two terms in recursion relation for P(N)
230          F = K * (3 * K - 1) / 2
             'Exit loop if argument negative
240          IF N - F < 0 THEN GOTO 400
250          P(N) = P(N) + SIGN * P(N - F)
260          F = K * (3 * K + 1) / 2
             'Exit loop if argument negative
270          IF N - F < 0 THEN GOTO 400
280          P(N) = P(N) + SIGN * P(N - F)
290          SIGN = -SIGN
300       NEXT K
          'Print results
400       PRINT N, P(N)
          'Pause after printing 20 lines on the screen
450       IF 20 * INT(N / 20) = N THEN INPUT A$: CLS
500    NEXT N
     

5. USING THE PROGRAM TO CHECK CONJECTURES

Now that we can easily generate many values of the partition function, we

examine the results to see if any observable patterns are emerging. 

Ramanujan examined a table of the first 200 values of p n( ) calculated by Major

Mac Mahon and conjectured and proved the following in 1921, (see [11] on pages 233 to

238).

(5.1) p m(5 ) (mod )+ ≡4 0 5 ,
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(5.2) p m( ) (mod )7 5 0 7+ ≡ ,

(5.3) p m( ) (mod )11 6 0 11+ ≡ .

Evidence of the validity of  (5.1) is easily seen in Table 3. We look at the values of n  that

end in the digit  4 or 9. These are the numbers of the form n m= +5 4  with m = 0 1 2, , ,...  .

Notice that the values of  p m(5 )+ 4  all end in the digit 0 or 5, thereby supporting (5.1).

(See Kanigel’s book [6], page 250, for a brief description of Major Mac Mahon and his

work with Ramanujan.)

We can also check these relations with the computer. If we add the following

lines to our program:

1000 M = 5 :  R = 4
1010     FOR N = R TO 293 STEP M
1020     IF P(N) = M *  INT( P(N)/M) THEN PRINT N; “TRUE”,

 ELSE PRINT N; “FALSE”,
1030     NEXT N

This FOR - NEXT  loop  runs through the values  N = M, M+R, M+2R, M+3R, ..., where

M (modulus) and R (residue) are defined in line 1000. Line 1020 checks to see if   P(N)

is divisible by the modulus M. It then prints N and the word  TRUE  if the division was

successful, otherwise it prints FALSE. By changing line 1000 to  M = 7: R = 5, we can

check (5.2). We can check (5.3) by changing line  1000 to  M = 11 : R = 6.

These “arithmetic properties” of the partition function have been the subject of

recent research. Ken Ono [7], [8] and [9] proved new results regarding these

congruences. In particular he showed that if m ≥ 5  is prime, then there are positive

integers  a and b  for which p an b m( ) (mod )+ ≡ 0 , for every non-negative integer  n.

When is p n( )  even or odd?  This question remains unanswered. You can use the above
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program to check for even p n( )  by changing line 1000 to  M = 2 : R = 0. Few results are

known for modulus  M = 3. Perhaps the reader can find the answer.

A proof of (5.1) is given in Hardy and Wright [5] on pages 287 to 290,  along

with a few more arithmetical results.

We can also use the program to verify the asymptotic relation (3.4) for some

values of n. Replace line 400 with the lines

400 A = EXP(3.14159*(2 * N/3)^.5)/(4 * (3)^.5 * N)
410  E = A - P(N) : PCT = 100*E/P(N)
420  U$ = “ ###  #################  #################  ##.## “
430  PRINT USING U$; N,P(N), A, PCT

In line 400 we use (3.10) to find  A which is the asymptotic estimate of P(N). In line 410

we find the error E and the percentage error PCT. Lines 420 and 430 print out the results

in four columns. We see that there is almost a 10 percent error for small N. Gradually this

error diminishes to about 2 percent when N = 300.

6. FINAL REMARKS

In addition to pentagonal numbers discussed in Section 2, there are triangular

numbers, square numbers, hexagonal numbers, etc. The initial study of these numbers is

attributed to the Pythagoreans, as early as 500 BC. They are called  figurative numbers

and many interesting relations exist among them. The Pythagoreans believed that

“everything is number”, and therefore took great interest in this study. For a lively

discussion of figurative numbers and the Pythagoreans see Burton [3]. 

Two major branches of the theory of numbers are the multiplicative theory and

the additive theory.  In the multiplicative theory we decompose a natural number n into

prime factors n p p p pk= 1 2 3...   and consider the consequences. In the additive theory we

decompose our natural number into a sum of elements from some set. For example we
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could try to express n as a sum of squares. Our study of partitions is part of this additive

theory. Most textbooks on number theory ignore partitions. Exceptions are the excellent

text by Andrews [1] and the bible of number theory Hardy and Wright [5].

In the multiplicative theory we examine many functions, one of which is the sum

of the divisors of n, σ ( )n .  For example the divisors of 6 are 1, 2, 3, and 6. Thus the sum

of the divisors of 6 is σ ( )6 1 2 3 6 12= + + + = . Now divisors of numbers are related to

primes, and primes seem unrelated to partitions. We are not surprised that partitions

satisfy a recursion relation, although the appearance of pentagonal numbers in the

relation is a wonder. We do not expect σ ( )n to satisfy a recursion relation. What do the

divisors of n  have to do with the divisors of n n− −1 2, ,... ?  Yet Euler showed that

σ ( )n satisfies the same recursion relation (3.4) as does p n( ) . Only  σ ( )0  is different

from p(0). Euler was astonished at this result, and you can read a translation of his own

words in Polya [10] and in Young [14]. (Every lover of mathematical analysis should

own Young’s book [14]). There are even relations “marrying” the two functions such as

(Schroeder [12])

n p n k p n k
k

n

( ) ( ) ( )= −
=
∑σ

1

.

We plan to explore these items in a sequel to this paper called The unlikely marriage of

partitions and divisors.

For additional programs in number theory in the spirit of this paper see the fun

book by Spencer [13].
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Table 3:  Values of the partition function

 n  p(n)  n      p(n)  n          p(n)    n        p(n)

 1  1
 2  2 
 3  3 
 4  5 
 5  7 
 6  11 
 7  15 
 8  22 
 9  30 
 10  42 
 11  56 
 12  77 
 13  101 
 14  135 
 15  176 
 16  231 
 17  297 
 18  385 
 19  490 
 20  627 
 21  792 
 22  1002 
 23  1255 
 24  1575 
 25  1958 
 26  2436 
 27  3010 
 28  3718 
 29  4565 
 30  5604 
 31  6842 
 32  8349 
 33  10143 
 34  12310 
 35  14883 
 36  17977 
 37  21637 
 38  26015 
 39  31185 
 40  37338

 41  44583 
 42  53174 
 43  63261 
 44  75175 
 45  89134 
 46  105558 
 47  124754 
 48  147273 
 49  173525 
 50  204226 
 51  239943 
 52  281589 
 53  329931 
 54  386155 
 55  451276 
 56  526823 
 57  614154 
 58  715220 
 59  831820 
 60  966467 
 61  1121505 
 62  1300156 
 63  1505499 
 64  1741630 
 65  2012558 
 66  2323520 
 67  2679689 
 68  3087735 
 69  3554345 
 70  4087968 
 71  4697205 
 72  5392783 
 73  6185689 
 74  7089500 
 75  8118264 
 76  9289091 
 77  10619863 
 78  12132164 
 79  13848650 
 80  15796476 

 81  18004327 
 82  20506255 
 83  23338469 
 84  26543660 
 85  30167357 
 86  34262962 
 87  38887673 
 88  44108109 
 89  49995925 
 90  56634173 
 91  64112359 
 92  72533807 
 93  82010177 
 94  92669720 
 95  104651419 
 96  118114304 
 97  133230930 
 98  150198136 
 99  169229875 
 100  190569292 
 101  214481126 
 102  241265379 
 103  271248950 
 104  304801365 
 105  342325709 
 106  384276336 
 107  431149389 
 108  483502844 
 109  541946240 
 110  607163746 
 111  679903203 
 112  761002156 
 113  851376628 
 114  952050665 
 115  1064144451 
 116  1188908248 
 117  1327710076 
 118  1482074143 
 119  1653668665 
 120  1844349560

 121  2056148051 
 122  2291320912 
 123  2552338241 
 124  2841940500 
 125  3163127352 
 126  3519222692 
 127  3913864295 
 128  4351078600 
 129  4835271870 
 130  5371315400 
 131  5964539504 
 132  6620830889 
 133  7346629512 
 134  8149040695 
 135  9035836076 
 136  10015581680 
 137  11097645016 
 138  12292341831 
 139  13610949895 
 140  15065878135 
 141  16670689208 
 142  18440293320 
 143  20390982757 
 144  22540654445 
 145  24908858009 
 146  27517052599 
 147  30388671978 
 148  33549419497 
 149  37027355200 
 150  40853235313 
 151  45060624582 
 152  49686288421 
 153  54770336324 
 154  60356673280 
 155  66493182097 
 156  73232243759 
 157  80630964769 
 158  88751778802 
 159  97662728555 
 160  107438159466 
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Table 3:  Values of the partition function  (continued)
    n             p(n)    n              p(n)   n               p(n)

 161  118159068427
 162  129913904637
 163  142798995930 
 164  156919475295 
 165  172389800255 
 166  189334822579 
 167  207890420102 
 168  228204732751 
 169  250438925115 
 170  274768617130 
 171  301384802048 
 172  330495499613 
 173  362326859895 
 174  397125074750 
 175  435157697830 
 176  476715857290 
 177  522115831195 
 178  571701605655 
 179  625846753120 
 180  684957390936 
 181  749474411781 
 182  819876908323 
 183  896684817527 
 184  980462880430 
 185  1071823774337 
 186  1171432692373 
 187  1280011042268 
 188  1398341745571 
 189  1527273599625 
 190  1667727404093 
 191  1820701100652 
 192  1987276856363 
 193  2168627105469 
 194  2366022741845 
 195  2580840212973 
 196  2814570987591 
 197  3068829878530 
 198  3345365983698 
 199  3646072432125 
 200  3972999029388 

 201  4328363658647 
 202  4714566886083 
 203  5134205287973 
 204  5590088317495 
 205  6085253859260 
 206  6622987708040 
 207  7206841706490 
 208  7840656226137 
 209  8528581302375 
 210  9275102575355 
 211  10085065885767 
 212  10963707205259 
 213  11916681236278 
 214  12950095925895 
 215  14070545699287 
 216  15285151248481 
 217  16601598107914 
 218  18028182516671 
 219  19573856161145 
 220  21248279009367 
 221  23061871173849 
 222  25025873760111 
 223  27152408925615 
 224  29454549941750 
 225  31946390696157 
 226  34643126322519 
 227  37561133582570 
 228  40718063627362 
 229  44132934884255 
 230  47826239745920 
 231  51820051838712 
 232  56138148670947 
 233  60806135438329 
 234  65851585970275 
 235  71304185514919 
 236  77195892663512 
 237  83561103925871 
 238  90436839668817 
 239  97862933703585 
 240  105882246722733 
 

 241  114540884553038 
 242  123888443077259 
 243  133978259344888 
 244  144867692496445 
 245  156618412527946 
 246  169296722391554 
 247  182973889854026 
 248  197726516681672 
 249  213636919820625 
 250  230793554364681 
 251  249291451168559 
 252  269232701252579 
 253  290726957916112 
 254  313891991306665 
 255  338854264248680 
 256  365749566870782 
 257  394723676655357 
 258  425933084409356 
 259  459545750448675 
 260  495741934760846 
 261  534715062908609 
 262  576672674947168 
 263  621837416509615 
 264  670448123060170 
 265  722760953690372 
 266  779050629562167 
 267  839611730366814 
 268  904760108316360 
 269  974834369944625 
 270  1050197489931117 
 271  1131238503938606 
 272  1218374349844333 
 273  1312051800816215 
 274  1412749565173450 
 275  1520980492851175 
 276  1637293969337171 
 277  1762278433057269 
 278  1896564103591584 
 279  2040825852575075 
 280  2195786311682516 
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