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Let λ > 0. The Hecke group G (λ) is the group generated by

Sλ =
(

1 λ
0 1

)
and T =

(
0 −1
1 0

)
.

G (λ) acts on H by Mz = az+b
cz+d , where M =

(
a b
c d

)
∈ G (λ) and z ∈ H. In this case we identify M with

its negative −M and consider the elements of G (λ) as fractional linear transformations. For this reason,
we will use the convention that the order of a matrix is the order of the linear fractional transformation
associated to it. Thus the order of T is 2.

It is well-known (see [1] and [2]) that the only discrete Hecke groups are those for which

λ ≥ 2 or λ = 2 cos (π/p) , p ∈ Z, p ≥ 3.

When λ = 2 cos (rπ/p) , where r and p are relatively prime integers with 2 ≤ 2r < p, the group G (λ) has
an elliptic element of order p > 2. In fact;

(SλT )p = (−1)RI

To see this let

(SλT )n =
(

an bn

cn dn

)

By induction we can show that

an =
sin

(
(n+1)rπ

p

)

sin( rπ
p ) , bn = − sin(nrπ

p )
sin( rπ

p ) , cn =
sin(nrπ

p )
sin( rπ

p ) , dn = −
sin

(
(n−1)rπ

p

)

sin( rπ
p )

and the assertion follows from this.

The main obejective of this article is to show that when λ = 2 cos(πθ) and 0 < θ < 1/2 is irrational ,
the group G (λ) has no elliptic elements of finite order other than those conjugate to T . For the remainder
of our discussion, we shall assume that m1, . . . , mn are nonzero integers, where n is a positive integer. An

denotes the product

An = Sm1
λ TSm2

λ T · · ·TSmn

λ =
(

an (λ) bn (λ)
cn (λ) dn (λ)

)
.

Note then that an (λ) , bn (λ) , cn (λ) and dn (λ) are polynomials in λ with integer coefficients. We will denote
by an,0, bn,0, cn,0, and dn,0, respectively, the constant terms of these polynomials.

Lemma 1. If n ≥ 2, then (i) deg (an (λ)) = n − 1, deg (bn (λ)) = n, deg (cn (λ)) = n − 2,
and deg (dn (λ)) = n − 1.
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(ii) bn (λ) = (m1m2 · · ·mn) λn + · · · .

(The dots here stand for terms of degree less than n.)

(iii) an,0 = dn,0 =

{
0, if n is even
(−1)

n−1
2 , if n is odd

and bn,0 = −cn,0 =
{

(−1)
n
2 , if n is even

0, if n is odd.

Proof : Induction on n. If n = 2, then

A2 = Sm1
λ TSm2

λ =
(

a2 (λ) b2 (λ)
c2 (λ) d2 (λ)

)
=

(
m1λ m1m2λ

2 − 1
1 m2λ

)
,

and so all statements of the lemma are true. Suppose the assertions are true for some n ≥ 2. Now,

An+1 = AnTS
mn+1
λ

=
(

an (λ) bn (λ)
cn (λ) dn (λ)

) (
0 −1
1 mn+1λ

)

=
(

bn (λ) mn+1λbn (λ) − an (λ)
dn (λ) mn+1λdn (λ) − cn (λ)

)
.

Thus

an+1 (λ) = bn (λ) , bn+1 (λ) = mn+1λbn (λ)−an (λ) , cn+1 (λ) = dn (λ) , dn+1 (λ) = mn+1λdn (λ)−cn (λ) .

From these equations and the induction assumptions we see that the assertions in (i) and (ii) are valid for
n + 1 as well, thereby completing the induction step. To complete the proof of (iii), we observe that a
repeated application of the above procedure gives

an+1 (λ) = mnλbn−1 (λ) − an−1 (λ) , bn+1 (λ) =
(
mnmn+1λ

2 − 1
)
bn−1 (λ) − mn+1λan−1 (λ) ,

cn+1 (λ) = mnλcn−1 (λ) − dn−1 (λ) , dn+1 (λ) =
(
mnmn+1λ

2 − 1
)
dn−1 (λ) − mn+1λcn−1 (λ) .

Upon comparing coefficients, we see from these equations that (iii) holds for n + 1 whenever it holds for n.
This completes the proof of the lemma.

In what follows we shall assume that λ = 2 cos (πθ) is transcendental. Note that this is the case, for
example, if θ is an irrational algebraic number. For in that case, by the Hilbert-Gelfond-Schneider Theo-
rem (See [3], Chapter III), ρ = eπiθ is transcendental and from the relation λ = ρ+ 1

ρ , we have ρ2−λρ+1 = 0.

Lemma 2. Suppose B ∈ G (λ) is an elliptic element of finite order. Then its order is either 2 or 3 and
tr (B) = −1, 0, 1, where tr (B) is the trace of B.

Proof : Let B =
(

a (λ) b (λ)
c (λ) d (λ)

)
. Note then that a (λ) , b (λ) , c (λ) , and d (λ) are polynomials in λ

with coefficients in Z. We let a0 and d0 denote the constant terms of a (λ) and d (λ), respectively. Clearly
B is diagonalizable. Let C be a matrix such that

A = CBC−1 =
(

f (λ) 0
0 g (λ)

)
.

Now if Bn = I , then An = I and hence f (λ)n = 1 and g (λ)n = 1. Since det (A) = 1, we see that
f (λ) = e2πim/n and g (λ) = e−2πim/n for some integers m and n. On the other hand, tr(B) = tr(A) implies
that a (λ)+d (λ) = e2πim/n +e−2πim/n = 2 cos (2πm/n). Since 2 cos (2πm/n) is algebraic and by assumption
λ is transcendental, we see that a (λ) + d (λ) = a0 + d0 and hence 2 cos (2πm/n) is an integer. Since B is



A REMARK ON NONDISCRETE HECKE GROUPS 3

elliptic, we conclude that 2 cos (2πm/n) = −1, 0, or 1. Consequently, n = 2 or 3.

Corollary 1. If An is elliptic of finite order, then an,0 = 0 and so n is even and tr (An) = 0.

Proof : By Lemma 2 tr (An) = −1, 0, or 1. Thus an (λ) + dn (λ) = −1, 0, or 1 and since λ is transcen-
dental, we have a0 +d0 = −1, 0, or 1. But by Lemma 1(iii), a0 = d0. Since these are integers, we must have
a0 = 0. The remaining assertions of the corollary now follow from Lemma 1(iii).

Lemma 3. If B ∈ G (λ) is elliptic of finite order, then tr (B) = 0 and hence B is of order 2.

Proof : There are four possibilities:
Case I: B = An. In this case, the first statement follows from Corollary 1 and the second follows from the
proof of Lemma 1.
Case II: B = TAnT. In this case tr (B) = −tr (An) = 0, where we have used Corollary 4.1
Case III: B = TAn. Then

B =
(

−cn (λ) −dn (λ)
an (λ) bn (λ)

)
,

and so tr (B) = bn (λ)−cn (λ). But then by Lemma 2(i), tr (B) is not an integer and we have a contradiction
to Lemma 1.
Case IV: B = AnT. This is similar to Case III.

Remark 1: It follows from these lemmas that if B ∈ G (λ) is elliptic of finite order, then it is conjugate to
An. We are now in a position to prove that an elliptic element of finite order is conjugate of T .

Theorem 1. If B ∈ G (λ) is elliptic of finite order, then it is conjugate to T .

Proof : By Remark 1 it suffices to show that if An is elliptic of finite order, then it is conjugate to T .
First observe that n is even. We write

A2
n = Sm1

λ TSm2
λ T · · ·Smn+m1

λ TSm2
λ T · · ·Smn

λ =
(

en (λ) fn (λ)
gn (λ) hn (λ)

)
.

Then by Lemma 4.2(ii), we have fn (λ) = (m1m2 · · · (mn + m1)m2 · · ·mn)λ2n−1 + · · · (where the dots are
terms of degree less than 2n − 1). Since λ is transcendental, it must be that the leading term of fn is zero.
Since each mj is nonzero, we must have m1 + mn = 0, that is, mn = −m1. Hence An is conjugate to
Sm2

λ TSm3
λ T · · ·Smn−1

λ and the stage for induction has been set.
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