A REMARK ON NONDISCRETE HECKE GROUPS

ABDULKADIR HASSEN

Let A > 0. The Hecke group G ()) is the group generated by

1 A 0 -1
S’\_<01> and T—(1 O)'

G (N actson H by Mz = ‘clzzidb, where M = < ch Z > € G (\) and z € H. In this case we identify M with

its negative —M and consider the elements of G (\) as fractional linear transformations. For this reason,
we will use the convention that the order of a matrix is the order of the linear fractional transformation
associated to it. Thus the order of T is 2.

It is well-known (see [1] and [2]) that the only discrete Hecke groups are those for which

A>2 or A=2cos(n/p),pEZ, p>3.

When A = 2cos (rw/p), where r and p are relatively prime integers with 2 < 2r < p, the group G (\) has
an elliptic element of order p > 2. In fact;

(SAT)" = (-1)"1

To see this let
n __ Gnp, bn
(S:T)" = ( en dn )

By induction we can show that
sin( (n+p1)T7r )

sin(ﬂ) !
P

and the assertion follows from this.

bn:_'.

Ay =

The main obejective of this article is to show that when A = 2cos(7f) and 0 < 6 < 1/2 is irrational ,
the group G (\) has no elliptic elements of finite order other than those conjugate to T'. For the remainder
of our discussion, we shall assume that mq, ... ,m, are nonzero integers, where n is a positive integer. A,
denotes the product

_ gmiqigma ma _ [ @n(A) b (A)
A, =S\"TS\?T - TS\ = < en (N dy (A >
Note then that a, (A), by, (A), ¢ (A) and dy, () are polynomials in A with integer coefficients. We will denote
by an,0,bn,0,Cn,0, and dy o, respectively, the constant terms of these polynomials.

Lemma 1. Ifn > 2, then (i) deg(an () =n—1, deg (b, (X)) =n, deg(c, () =n—2,
and deg (d, (\)) =n—1.
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(44) bp (A) = (maima -+ my) A" +

(The dots here stand for terms of degree less than n.)

0 if n is even _1\% ; ;
(”7’) An,0 = dn,O - { , f bn,O = —Cp,0 = { ( 1) | an is odd.

n- d
(—1)*T, ifn is odd o 0, if n is odd.

Proof : Induction on n. If n =2, then

my mz _ aQ()‘) b2(/\) _ miA 7711"”2/\2—1
Az = SIS, (cm e )= maA )

and so all statements of the lemma are true. Suppose the assertions are true for some n > 2. Now,

Apr = A, TSP
. an (A) bn (N) 0 -1
B dyn ()‘) 1 anrl)\

cn (
_ by ( Mpt1Aby, (A) — an (N) '
Thus ( " )

M1 Adn (V) — en (M)
an+1 (A) =bn (A), bng1 (A) = M1 b (N)—=an (A) s cap1 (A) =dn (A), dns1 (A) = mpgaddy (A)—cn (A).

1) and (24) are valid for
iii), we observe that a

)
)
)
)

From these equations and the induction assumptions we see that the assertions in
n + 1 as well, thereby completing the induction step. To complete the proof of
repeated application of the above procedure gives

ant1 (A) = mpAby1 (A) — an1 (A), bpgr (A) = (mamp1A? = 1) b1 (A) — mpg1dan—1 (A),
Cn+1 (A) = mn)\cn,l (A) — dn,1 (A) 5 dnJrl ()\) = (mnmn+1)\2 — 1) dn,1 ()\) — mn+1)\cn,1 (A) .

Upon comparing coefficients, we see from these equations that (i#¢) holds for n + 1 whenever it holds for n.
This completes the proof of the lemma.

-

In what follows we shall assume that A = 2cos(7f) is transcendental. Note that this is the case, for
example, if 6 is an irrational algebraic number. For in that case, by the Hilbert-Gelfond-Schneider Theo-
rem (See [3], Chapter III), p = €™ is transcendental and from the relation \ = p—l—%, we have p? —Ap+1=0.

Lemma 2. Suppose B € G () is an elliptic element of finite order. Then its order is either 2 or 8 and
tr (B) = —1,0,1, where tr (B) is the trace of B.

a(A) b(})
c(A) d(})
with coefficients in Z. We let ag and dy denote the constant terms of a (A) and d (\), respectively. Clearly
B is diagonalizable. Let C' be a matrix such that

_ A) 0
A=CBC™" = ( I ) :
0 g
Now if B" = I, then A" = I and hence f(A)" = 1 and g(\)" = 1. Since det(A) = 1, we see that
f(A) =e2™/™ and g (\) = e~ 2™™/™ for some integers m and n. On the other hand, tr(B) = tr(A) implies
that a (\) +d (\) = e2™™/™ fe=2mm/m — 9 cos (2rm/n). Since 2 cos (2rm/n) is algebraic and by assumption
A is transcendental, we see that a (A) + d (\) = ag + do and hence 2cos (2rm/n) is an integer. Since B is

Proof: Let B = ( > Note then that a (A), b(A), c¢(A\), and d()\) are polynomials in A
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elliptic, we conclude that 2 cos (2rm/n) = —1,0, or 1. Consequently, n = 2 or 3.

Corollary 1. If A, is elliptic of finite order, then a,0 =0 and so n is even and tr (A,) = 0.

Proof : By Lemma 2 tr (4,) = —1,0, or 1. Thus a, (A\) + d,, (A\) = —1,0, or 1 and since X is transcen-
dental, we have ag +dop = —1,0, or 1. But by Lemma 1(i4i), ag = do. Since these are integers, we must have
ag = 0. The remaining assertions of the corollary now follow from Lemma 1(ii).

Lemma 3. If B € G () is elliptic of finite order, then tr (B) =0 and hence B is of order 2.

Proof : There are four possibilities:

Case I: B = A,. In this case, the first statement follows from Corollary 1 and the second follows from the
proof of Lemma 1.

Case II: B =TA,T. In this case tr (B) = —tr (4,,) = 0, where we have used Corollary 4.1

Case III: B =TA,,. Then
B=|[ "¢ (A —dn(N)
L ar) oy )
and so tr (B) = b, (A) — ¢y, (A). But then by Lemma 2(i), tr (B) is not an integer and we have a contradiction

to Lemma 1.
Case IV: B = A,T. This is similar to Case III.

Remark 1: It follows from these lemmas that if B € G () is elliptic of finite order, then it is conjugate to
A,. We are now in a position to prove that an elliptic element of finite order is conjugate of T.

Theorem 1. If B € G (\) is elliptic of finite order, then it is conjugate to T'.

Proof : By Remark 1 it suffices to show that if A, is elliptic of finite order, then it is conjugate to 7.
First observe that n is even. We write
n(A) fu(N)
A2 = SPUTSYRT - S PSR L T = ( n { .
n A A A A A g (N ha (V)
Then by Lemma 4.2(ii), we have f, (\) = (mima - (my + m1)ma - my)A2"~1 + ... (where the dots are
terms of degree less than 2n — 1). Since A is transcendental, it must be that the leading term of f,, is zero.

Since each m; is nonzero, we must have m; + m,, = 0, that is, m,, = —m;. Hence A, is conjugate to
SYTSYST -+ S\~ * and the stage for induction has been set.
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