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ABSTRACT. A Hypergeometric zeta function is a generalization of the Riemann zeta function via integral
representation. Hassen and Nguyen in ([2])introduced these families of functions and in subsequent papers,
developed many properties analogous to those satisfied by the classical zeta function. (See [2], [3], [4], [5].)
They showed that these functions have Dirichlet series type representations with coefficients u(n,s), which
depend on both n and s. In this paper, we will express p(n, s) explicitly and use this formula to write the
hypergeometric zeta function of order 2 as a power series in s with Dirichlet series as coefficients. We also
use this series representation to demonstrate that the second order hypergeometric zeta function has a zero
free region to the right half plane.

1. INTRODUCTION

The Riemann zeta function defined by
— 1
((s) = Z s’
n=1

where s = 0 +1t, o > 1, admits an integral representation given by

Hassen and Nguyen in [2] introduced and investigated a generalization of the integral representation of the
Riemann zeta function by replacing e® — 1 in the denominator in (1) with arbitrary Taylor difference e* —
Tn_1(xz) where N is a positive integer and Tnx_1(x) is the Taylor polynomial of e* at the origin having
degree N — 1. This defines a family of what Hassen and Nguyen called hypergeometric zeta functions denoted

by (n(s):
1 oo CES+N72
N =N /0 Ty ?

Observe that (1(s) = ((s). In several papers, ([2], [3]) Hassen and Nguyen established many of the
properties of the classical zeta function for the hypergeometric zeta functions. However, the hypergeometric
zeta functions do not appear to have a product formula. The zero of the e* — Ty _1(x) can be approximated
but cannot be found precisely. This makes it difficult to expect a functional equation. On a right half plane,
the hypergeometric zeta functions can be represented in the form:

() = 3 B Q
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for o > 1, where
(N-1)(n—-1)

ap(N,n)T'(s+ N+k—1)
= 4
R SR C S @
and ag(N,n) is generated by
12 1’3 (L‘Nﬁl n—1 (N—l)(n—l)
(TN,I(f))”*lz <1—|—x+2!+3!+"'+(]\/v_1)!> = Z ak(an)xk'

k=0

Following Riemann, it is possible, as Hassen and Nguyen demonstrated, to extend the hypergeometric zeta
function to a left half plane. In fact, it has been shown that the hypergeometric zeta functions {n(s) can be
extended analytically to the entire complex plane, except for N simple poles at s =1,0,—1,...,2 — N.

The coefficients puy(n,s) in the series representation of (x(s) depend on both n and s. It would be
desirable to find an expression of uy(n,s) that allows us to write (x(s) as a linear combination of ordinary
Dirichlet series. It is the objective of this paper to investigate the properties of the coefficients p2(n, s) and
write (2(s) as a "power” series in s with Dirichlet Series as coefficients. To this end, we will find an explicit
form of the coefficients of these polynomials and rewrite (a(s).

I(s+N+k—1)
T'(s+N-1)
ometric zeta function of order N as given in(4) is just (s + N — 1):
s+ N+k—-1)
I'(s+N-1)

We note that the expression which appears in the definition of the coefficient of the hyperge-

=(s+N 1)

where (s + a)i is Pochhammer symbol:
(s+a)g=(s+a)(s+a+1)--(s+a+k—1),
with initial value (s 4+ a)o = 1. Moreover the following recursive relation holds:
(s+a)yt1=(s+a+k)(s+a).

To express the polynomials pa(n,s) explicitly, we need to define a sequence of numbers recursively. For
m=12,---,andk=m+1,m+2,m+3,---, we define

B = kAR A 5)
with initial values
A =0, AF | =1
Note then that k(k )
+1
— (6)

We note that the recurrence relation above is the same as that of the unsigned Stirling numbers which are

IR R

Lemma 1.1. (s+ 1) is a polynomial of degree k given as follows:

(s+ 1)k = 8%+ APl 4 ARTIgh=2 1 AR=260=8 1 .. 1 A25 1 A}

AL =k and AF=1+4+2+34---+k=

denoted by [ fn ] and is given by
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Proof. We shall use induction on k.
For k = 0 we have (s + 1)g = 1 = A}s?, and assume the assertion is true for k:

(s+ 1)) = 8"+ AFsP™1 AR~k =2 o AR=26h=3 oy AZ5 4 A}
we first observe that the leading coefficient in (s + 1)1 is 1.
From the Pochhammer symbol since we have,
(s+ D1 =(s+1)p(s+k+1)
the coefficient of s*=7 in (s + 1)441 is the sum of the coefficient of s*=7=! in (s 4 1), and k + 1 times
the coefficient of s*~7 in (s + 1); . From the induction hypothesis the coefficient of s#=7=1 in (s + 1) is
AF77 and the coefficient of s*~7 in (s + 1)), is AF ™77,

Therefore, the coefficient of s*~7 in (s + 1)g4q is (k+ 1) (AT ) + A7 = AIZE 7 as desired. 0

Returning to the series representation of the hypergeometric zeta function given in (3), we note that
for N = 2 we have,

Gols) = > ta(n, s)

ns+1 ?

n=1

where

B = ap(2,n)T(s+k+1)
H2(n,s) = kz:% nFT(s + 1)

and the ag(2,n) is generated by,

Ty = ey =5 (“; 1)xk.

Thus,

n—1

8+k‘—|—1 nol (- )k
(n, s) Z n’ff‘s—i—l Z ) (7)

Now we want to write these coePﬁc1ents of the hypergeometric zeta function as a polynomial whose coefficient
is explicit as the following lemma shows:

Lemma 1.2. ps(n,s) can be written as a polynomial of degree "n — 17 with its explicit coefficients as given
below:

n—1
u2(n, 5) = Z bnmsm_l
m=1
where
n—1
nJ (n B 1) A
j=m—1

Proof. To see this we begin from the very definition of us(n, s)

1a(n, ) — fn—k("; 1)(3 1)

k=0
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By Lemma 1.1, the coefficients of s™~! in (s + 1)y is

n—1
m
>4
j=m—1

for each m = 1,2, --- and hence the coefficient of s~ ! in

(i, ) = 2” (")

becomes

which is equal to b,,,.

As an example we can have the first few ua(n, s) as follows:

,ug(l,s) = 1= b11

1+ 271 + 2718 = b21 -+ b22$

/l2(2’ S)

2 —1 2 —2 2 —1 2 —2 42 2 -2 2
= '

p2(3,8) 1+(1>3 +(2>2.3 +[<1>3 +<2>3 Asls + 5 37%s

= b3y + bgas + bazs?

3 3 3 3 3 3
1 41 21472 1473 41 47242 473 A2
# (1)t ()pe e (o [(G)+ ()t (G o)

3\ ,—2 3\ —3 43| 2 3\ ,-3.3
+[(2)4 +(3)4 A?’}S + 3 47°s

= by + byos + byzs® + byys®.
Observe that

/,62(4, 8)

3
/1'2(47 S) = Z b4m3m717
m=1

where
> 3
— —J m
b= 3 4 (j)Aj |
j=m—1
2. SERIES REPRESENTATION
‘We are now in a position to state and prove our main result:

Theorem 2.1. The hypergeometric zeta function of order 2 can be rewritten as follows
o0
(a(s) =D Dp(s)s™ 1,
m=1

where the coefficient Dy, (8) is a Dirichlet series for each m =1,2,3,---.
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Proof. We can rewrite (a(s) as follows:

o = >

n=1

p2(2,8)  p2(3,8)  pe(4,s)

= p2(l,s) + gttt et e T
Lo irtaets 14 ()37 1+ (521372 +[(3)371 + (5)372A43s + (3)372s? L
2s+1 3s+1
_ bir | bor +bogs | ba1 + bsps + bazs?
- 1s+1 25+1 3s+1
b11 ba1 b31
- 1s+1 + 9s+1 + 3s+1 T
baa b32 bao bn; bin+1)j bn+2)j -1
+|:2s+1+3s+1+4s+1+”. s+t ns+l (n+1)s+l (n+2)s+1+ § +o
_ 1
- Z s+1 +s Z s+1 Z s+1 +s7” Z s+1
n=1
(oo} (oo} oo
B n " b1 1" by 9 n- bng -1 n- bn]
DI S D R o
n=1 n=2 n=3
Now we put,
> n_lbnl
Dl(s) = Zl ns )
D (S) _ i n_lbn2
2 — o ns )
Dy(s) = i n” g
’ - n=3 n® .
So in general let D,,(s) be the coefficient of s™~1 for each m = 1,2,3,--- , then,
o 1
n= " buy

Therefore,

oo
Z Dm

m=1

This completes the proof.
For notational convenience, let us define

! n—1 m, —(k+1) bnm
aum = 0y AR = 2

k=m-—1

for each m =1,2,3,--- | so that the Dirichlet series D,,(s) can be expressed as
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00 n:;i n—1 Amn_(k.l,_l) 0o _1bnm 0o o
Din(s) = Z = l(is)k :ZnT:Zans» (9)

where the A}* are given by (5).

We observe that the first few Dirichlet series given in (9) are

oo

Anl

D)=
n=1

= An2

Dals) = 3 %
n=2

- an3

Dy = >0 %
n=3

It is also interesting to list some few coefficients a,,,, and look at what they represent as a remark.

Remark 2.1. The first few values of a,,, are given by

3 17 142

a11 = 17 a21 = 4> azp = 27 aq1 = 256
1 1 95 1220

a22 = 7, asz2 = 3, 42 = 556, A52 = 3755

_ 1 __ 18 305
agzz = 27 43 = 2567 a53 = 3125

‘We note that

n—1 -1\ k!
_ - 1, —(k+1) _ - :
=3 (" e = (") e 10
k=0 k=0
where we have used (6) in the last equality. It is interesting to note that a,; has a closed form given by
_ e"T'[n,n]
Gnl T?

where I'[a, z] is the upper incomplete gamma functions. This can proven by mathematical induction. The
number a, is the probability of selecting a ball from an urn containing n different balls, with replacement
until exactly one ball has been selected twice and that ball was also the first ball selected once. Further
more the sequence {n"a,;} begins as

1,3,17,142,1569, 21576, 355081, 6805296, 148869153, 3660215680, 99920609601, - - -

and is listed as A001865 in the On-Line Encyclopedia of Integer Sequences (OEIS) [10]. This sequence
represents the number of connected functions on n-labeled nodes as indicated in OEIS. We also mention
here that the sequence {n" a2} appears as A065456 on OEIS([11]), and it is the number of functions on
n-labeled nodes whose representation as a digraph has two components. However, we have not seen a list
that corresponds to other sequences {an, } for m > 3 we have here. We will explore this in a future work.

Finally, if we define a,,,, = 0 for n < m, then the Dirichlet series given in (9) is an ordinary Dirichlet series:

oo

Du(s) = &,

ns
n=1
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We do not know if these Dirichlet series have functional equations. We also note that each of the coefficients
has the following relations on the real line:

-+, D3(0) < Da(0) < Di(0) < ((0) < G(0).
Moreover,

1

Da(0) < 1¢(0)
1

Ds3(0) < ?7((0)
1

Dy(o) < %g(o)

3. ZERO FREE REGION ON THE RIGHT HALF PLANE

Zero free regions of the hypergeometric zeta functions of order 2 and order 3 on the left half plane was
established by Hassen and Nguyen in [5]. In this section we will establish a zero free region for (3(s) in the
right half plane. In the case of the classical Riemann Zeta function, the Euler product formula

)

p prime

can be used to conclude that it is zero free for o > 1(see [1],[7], [8] and [9]). The hypergeometric zeta
functions are not known to have such a product formula. Furthermore, due to lack of knowledge of the
precise locations of the zeros of e* — 1 — z = 0, we do not have a functional equation. However one can use
the Cauchy theory to express (2(s) in terms of a series that involves the roots of e* — 1 — z = 0 and establish
zero free region on the left half plane. (See [5] for details.)

It follows from Theorem 2.1 that the second order hypergeometric zeta function has no real zeros if o > 1
where s = 0 4 it. The following result extends this domain to o > 0:
Theorem 3.1. (2(s) #0 fors=0>0

Proof. As remarked above, we need only to show that {2(c) # 0 for 0 < o < 1. For this we note that when
N = 2, the integral representation in (2) becomes

Ca(s) = F(31+ . /Ooo . _w; —ds (11)

1 s [ee} s
T T
—d —d
/Oew—l—xx+/1 ew—l—mx
(12)

1 o0 5

1 2 2 z®
= — = — | 2%d e — dx. 13
/0<ef’3—1—$ :c2>x x+s—1+/1 e —1-z" (13)

The last formula in (13) is analytic in the strip 0 < o < 1, except for the pole at s = 1, since both integrals
on the right hand side are convergent on this domain. Moreover, for 0 < o < 1,

1 s
=— | Za.
s—1 /1 2t

and this can be rewritten as

[(s+ 1)¢(s)

Therefore, we can rewrite
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Since e > 1+ x + ‘”—22 for all x > 0, we see that

1 2 -
<e”—1—x302>x <0
for o > 0 and all z > 0.

So the result follows. O

Now we show it has zero free regions to the right half plane by showing that the limit of (5(s) as the real
part tends to infinity converges to 1 uniformly with some restrictions on the imaginary part. This is the
content of the following theorem:

Theorem 3.2. If F(s) = (2(s) — D1(s), where D1(s) is given by (9), then
lim |F(s)|=0
uniformly in t, where s = o + it satisfies the inequality |s| < Co, for some constant C.

Proof. With

n—1
-1
Apm = Z (n L >A21n_(k+1)

k=m—1
we have,
> a
nm
Dy (s) = E s
n=m

We now use triangle inequality to obtain

[F(s)] = 1¢2(s) = Da(s)|
= |D2(S)S —+ D3(5)52 + D4(5)83 + .- |

S ‘DQ |+’D3 2‘+|D4(S)83’+"'

a2 as2 42 a43 as53 2
<
< |EH+E+Ee T \\su

a Qa, Q. Qa, a a
(22 ﬁ+ﬁ+ )|s|+(ﬁ+ﬁ+i‘3+ >|s|2_|_

40 37 57
< O (a4 Dt )+ € (g P ) +
9o (022 T 35032 30 33 + 7 0a3 :
From this we get that,
lim |F(s)] <0.
Hence,
lim F(s) =0.

We also note that the constant C' is larger than 1.
Corollary 3.1. Within the restriction given in Theorem 3.2,

lim [Ga(s)] = 1.
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100
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100

FIGURE 1. A Zero Free Region in the Right Half Plane

Proof. Since limy_,o |F(s)] = 0 and lim,_,o [D(s)| = 1, we have

[ D1(s)]

Hence

1= lim |D;(s)]

g—00

On the other hand,

IN

[D1(s) — Ca(s) + Ga(s)]

[D1(s) = Ga(s)| + [C2(s)]

Jim [Di(s) = Ca(s)] + lim [Ca(s)]

i [Ga(s)]
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G2(s)| = [D1(s) — Di(s) + Ca(s)]

IN

|D1(s) = Ca(s)| + [D1(s)] -
Thus we have,

o—00

lim [Go(s)| < lim [Di(s) ~ Gals)| + lim Dy (s)

< lim [G(s)] < 1.

- o0—0o0

Therefore, we have,
im [¢o(s)] = 1.
O

We note that the condition |s| < Co in the the above theorem can be strengthened to |s| < o7 for any
~v > 1. This zero free region is shown roughly as in the figure. We conjecture, based on numerical evidence,
that there is a og > 1 such that (5(s) # 0 for all s for which o > 9. We will return to this conjecture in the
future work. We also expect similar result for other hypergeometric zeta function of order N.
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