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Abstract. A Hypergeometric zeta function is a generalization of the Riemann zeta function via integral
representation. Hassen and Nguyen in ([2])introduced these families of functions and in subsequent papers,
developed many properties analogous to those satisfied by the classical zeta function. (See [2], [3], [4], [5].)
They showed that these functions have Dirichlet series type representations with coefficients µ(n, s), which
depend on both n and s. In this paper, we will express µ(n, s) explicitly and use this formula to write the
hypergeometric zeta function of order 2 as a power series in s with Dirichlet series as coefficients. We also
use this series representation to demonstrate that the second order hypergeometric zeta function has a zero
free region to the right half plane.

1. Introduction

The Riemann zeta function defined by

ζ(s) =
∞∑

n=1

1
ns

,

where s = σ + it, σ > 1, admits an integral representation given by

ζ(s) =
1

Γ(s)

∫ ∞
0

xs−1

ex − 1
dx. (1)

Hassen and Nguyen in [2] introduced and investigated a generalization of the integral representation of the
Riemann zeta function by replacing ex − 1 in the denominator in (1) with arbitrary Taylor difference ex −
TN−1(x) where N is a positive integer and TN−1(x) is the Taylor polynomial of ex at the origin having
degree N−1. This defines a family of what Hassen and Nguyen called hypergeometric zeta functions denoted
by ζN (s):

ζN (s) =
1

Γ(s + N − 1)

∫ ∞
0

xs+N−2

ex − TN−1(x)
dx (2)

Observe that ζ1(s) = ζ(s). In several papers, ([2], [3]) Hassen and Nguyen established many of the
properties of the classical zeta function for the hypergeometric zeta functions. However, the hypergeometric
zeta functions do not appear to have a product formula. The zero of the ex −TN−1(x) can be approximated
but cannot be found precisely. This makes it difficult to expect a functional equation. On a right half plane,
the hypergeometric zeta functions can be represented in the form:

ζN (s) =
∞∑

n=1

µN (n, s)
ns+N−1

, (3)
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for σ > 1, where

µN (n, s) =
(N−1)(n−1)∑

k=0

ak(N,n)Γ(s + N + k − 1)
nkΓ(s + N − 1)

(4)

and ak(N,n) is generated by

(TN−1(x))n−1 =
(

1 + x +
x2

2!
+

x3

3!
+ · · ·+ xN−1

(N − 1)!

)n−1

=
(N−1)(n−1)∑

k=0

ak(N,n)xk.

Following Riemann, it is possible, as Hassen and Nguyen demonstrated, to extend the hypergeometric zeta
function to a left half plane. In fact, it has been shown that the hypergeometric zeta functions ζN (s) can be
extended analytically to the entire complex plane, except for N simple poles at s = 1, 0,−1, ..., 2 −N.

The coefficients µN (n, s) in the series representation of ζN (s) depend on both n and s. It would be
desirable to find an expression of µN (n, s) that allows us to write ζN (s) as a linear combination of ordinary
Dirichlet series. It is the objective of this paper to investigate the properties of the coefficients µ2(n, s) and
write ζ2(s) as a ”power” series in s with Dirichlet Series as coefficients. To this end, we will find an explicit
form of the coefficients of these polynomials and rewrite ζ2(s).

We note that the expression Γ(s+N+k−1)
Γ(s+N−1) which appears in the definition of the coefficient of the hyperge-

ometric zeta function of order N as given in(4) is just (s + N − 1)k:

Γ(s + N + k − 1)
Γ(s + N − 1)

= (s + N − 1)k

where (s + a)k is Pochhammer symbol:

(s + a)k = (s + a)(s + a + 1) · · · (s + a + k − 1),

with initial value (s + a)0 = 1. Moreover the following recursive relation holds:

(s + a)k+1 = (s + a + k)(s + a)k.

To express the polynomials µ2(n, s) explicitly, we need to define a sequence of numbers recursively. For
m = 1, 2, · · · , and k = m + 1,m + 2,m + 3, · · · , we define

Am
k = kAm

k−1 + Am−1
k−1 , (5)

with initial values
A0

k = 0, Ak
k−1 = 1.

Note then that

A1
k = k! and Ak

k = 1 + 2 + 3 + · · ·+ k =
k(k + 1)

2
. (6)

We note that the recurrence relation above is the same as that of the unsigned Stirling numbers which are

denoted by
[

k
m

]
and is given by [

k
m

]
= k

[
k − 1
m

]
+

[
k − 1
m − 1

]
.

Lemma 1.1. (s + 1)k is a polynomial of degree k given as follows:

(s + 1)k = sk + Ak
ksk−1 + Ak−1

k sk−2 + Ak−2
k sk−3 + · · ·+ A2

ks + A1
k.
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Proof. We shall use induction on k.
For k = 0 we have (s + 1)0 = 1 = A1

0s
0, and assume the assertion is true for k:

(s + 1)k = sk + Ak
ksk−1 + Ak−1

k sk−2 + Ak−2
k sk−3 + · · ·+ A2

ks + A1
k,

we first observe that the leading coefficient in (s + 1)k+1 is 1.
From the Pochhammer symbol since we have,

(s + 1)k+1 = (s + 1)k(s + k + 1)

the coefficient of sk−j in (s + 1)k+1 is the sum of the coefficient of sk−j−1 in (s + 1)k and k + 1 times
the coefficient of sk−j in (s + 1)k . From the induction hypothesis the coefficient of sk−j−1 in (s + 1)k is
Ak−j

k and the coefficient of sk−j in (s + 1)k is Ak+1−j
k .

Therefore, the coefficient of sk−j in (s + 1)k+1 is (k + 1)(Ak+1−j
k ) + Ak−j

k = Ak+1−j
k+1 , as desired. �

Returning to the series representation of the hypergeometric zeta function given in (3), we note that
for N = 2 we have,

ζ2(s) =
∞∑

n=1

µ2(n, s)
ns+1

,

where

µ2(n, s) =
n−1∑
k=0

ak(2, n)Γ(s + k + 1)
nkΓ(s + 1)

and the ak(2, n) is generated by,

(T1(x))n−1 = (1 + x)n−1 =
n−1∑
k=0

(
n − 1

k

)
xk.

Thus,

µ2(n, s) =
n−1∑
k=0

(
n−1

k

)
Γ(s + k + 1)

nkΓ(s + 1)
=

n−1∑
k=0

(
n−1

k

)
(s + 1)k

nk
. (7)

Now we want to write these coefficients of the hypergeometric zeta function as a polynomial whose coefficient
is explicit as the following lemma shows:

Lemma 1.2. µ2(n, s) can be written as a polynomial of degree ”n− 1” with its explicit coefficients as given
below:

µ2(n, s) =
n−1∑
m=1

bnmsm−1

where

bnm =
n−1∑

j=m−1

n−j

(
n − 1

j

)
Am

j

Proof. To see this we begin from the very definition of µ2(n, s)

µ2(n, s) =
n−1∑
k=0

n−k

(
n − 1

k

)
(s + 1)k.
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By Lemma 1.1, the coefficients of sm−1 in (s + 1)k is
n−1∑

j=m−1

Am
j

for each m = 1, 2, · · · and hence the coefficient of sm−1 in

µ2(n, s) =
n−1∑
k=0

n−k

(
n − 1

k

)
(s + 1)k

becomes
n−1∑

j=m−1

n−j

(
n − 1

j

)
Am

j

which is equal to bnm. �

As an example we can have the first few µ2(n, s) as follows:

µ2(1, s) = 1 = b11

µ2(2, s) = 1 + 2−1 + 2−1s = b21 + b22s

µ2(3, s) = 1 +
(

2
1

)
3−1 +

(
2
2

)
2!3−2 + [

(
2
1

)
3−1 +

(
2
2

)
3−2A2

2]s +
(

2
2

)
3−2s2

= b31 + b32s + b33s
2

µ2(4, s) = 1 +
(

3
1

)
4−1 +

(
3
2

)
2!4−2 +

(
3
3

)
3!4−3 +

[(
3
1

)
4−1 +

(
3
2

)
4−2A2

2 +
(

3
3

)
4−3A2

3

]
s

+
[(

3
2

)
4−2 +

(
3
3

)
4−3A3

3

]
s2 +

(
3
3

)
4−3s3

= b41 + b42s + b43s
2 + b44s

3.

Observe that

µ2(4, s) =
3∑

m=1

b4msm−1,

where

b4m =
3∑

j=m−1

4−j

(
3
j

)
Am

j .

2. Series Representation

We are now in a position to state and prove our main result:

Theorem 2.1. The hypergeometric zeta function of order 2 can be rewritten as follows

ζ2(s) =
∞∑

m=1

Dm(s)sm−1,

where the coefficient Dm(s) is a Dirichlet series for each m = 1, 2, 3, · · · .
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Proof. We can rewrite ζ2(s) as follows:

ζ2(s) =
∞∑

n=1

µ2(n, s)
ns+1

= µ2(1, s) +
µ2(2, s)
2s+1

+
µ2(3, s)
3s+1

+
µ2(4, s)
4s+1

+ · · ·

= 1 +
1 + 2−1 + 2−1s

2s+1
+

1 +
(
2
1

)
3−1 +

(
2
2

)
2!3−2 + [

(
2
1

)
3−1 +

(
2
2

)
3−2A2

2]s +
(
2
2

)
3−2s2

3s+1
+ · · ·

=
b11

1s+1
+

b21 + b22s

2s+1
+

b31 + b32s + b33s
2

3s+1
+ · · ·

=
b11

1s+1
+

b21

2s+1
+

b31

3s+1
+ · · ·

+
[

b22

2s+1
+

b32

3s+1
+

b42

4s+1
+ · · ·

]
s + · · ·+

[
bnj

ns+1
+

b(n+1)j

(n + 1)s+1
+

b(n+2)j

(n + 2)s+1
+ · · ·

]
sj−1 + · · ·

=
∞∑

n=1

bn1

ns+1
+ s

∞∑
n=2

bn2

ns+1
+ s2

∞∑
n=3

bn3

ns+1
+ · · ·+ sj−1

∞∑
n=j

bnj

ns+1
+ · · ·

=
∞∑

n=1

n−1bn1

ns
+ s

∞∑
n=2

n−1bn2

ns
+ s2

∞∑
n=3

n−1bn3

ns
+ · · ·+ sj−1

∞∑
n=j

n−1bnj

ns
+ · · · .

Now we put,

D1(s) =
∞∑

n=1

n−1bn1

ns
,

D2(s) =
∞∑

n=2

n−1bn2

ns
,

D3(s) =
∞∑

n=3

n−1bn3

ns
.

So in general let Dm(s) be the coefficient of sm−1 for each m = 1, 2, 3, · · · , then,

Dm(s) =
∞∑

n=m

n−1bnm

ns

Therefore,

ζ2(s) =
∞∑

m=1

Dm(s)sm−1.

This completes the proof. �

For notational convenience, let us define

anm =
n−1∑

k=m−1

(
n − 1

k

)
Am

k n−(k+1) =
bnm

n
(8)

for each m = 1, 2, 3, · · · , so that the Dirichlet series Dm(s) can be expressed as
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Dm(s) =
∞∑

n=m

∑n−1
k=m−1

(
n−1

k

)
Am

k n−(k+1)

ns
=

∞∑
n=m

n−1bnm

ns
=

∞∑
n=m

anm

ns
, (9)

where the Am
k are given by (5).

We observe that the first few Dirichlet series given in (9) are

D1(s) =
∞∑

n=1

an1

ns

D2(s) =
∞∑

n=2

an2

ns

D3(s) =
∞∑

n=3

an3

ns

It is also interesting to list some few coefficients anm and look at what they represent as a remark.

Remark 2.1. The first few values of anm are given by

a11 = 1, a21 = 3
4 , a31 = 17

27 , a41 = 142
256

a22 = 1
4 , a32 = 1

3 , a42 = 95
256 , a52 = 1220

3125

a33 = 1
27 , a43 = 18

256 , a53 = 305
3125

We note that

an1 =
n−1∑
k=0

(
n − 1

k

)
A1

kn−(k+1) =
n−1∑
k=0

(
n − 1

k

)
k!

nk+1
, (10)

where we have used (6) in the last equality. It is interesting to note that an1 has a closed form given by

an1 =
enΓ[n, n]

nn
,

where Γ[a, z] is the upper incomplete gamma functions. This can proven by mathematical induction. The
number an1 is the probability of selecting a ball from an urn containing n different balls, with replacement
until exactly one ball has been selected twice and that ball was also the first ball selected once. Further
more the sequence {nnan1} begins as

1, 3, 17, 142, 1569, 21576, 355081, 6805296, 148869153, 3660215680, 99920609601, · · ·
and is listed as A001865 in the On-Line Encyclopedia of Integer Sequences (OEIS) [10]. This sequence
represents the number of connected functions on n-labeled nodes as indicated in OEIS. We also mention
here that the sequence {nnan2} appears as A065456 on OEIS([11]), and it is the number of functions on
n-labeled nodes whose representation as a digraph has two components. However, we have not seen a list
that corresponds to other sequences {anm} for m ≥ 3 we have here. We will explore this in a future work.
Finally, if we define anm = 0 for n < m, then the Dirichlet series given in (9) is an ordinary Dirichlet series:

Dm(s) =
∞∑

n=1

anm

ns
.
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We do not know if these Dirichlet series have functional equations. We also note that each of the coefficients
has the following relations on the real line:

· · · , D3(σ) < D2(σ) < D1(σ) < ζ(σ) < ζ2(σ).

Moreover,

D2(σ) <
1
4
ζ(σ)

D3(σ) <
1
27

ζ(σ)

D4(σ) <
1

256
ζ(σ)

3. Zero Free Region on the Right Half Plane

Zero free regions of the hypergeometric zeta functions of order 2 and order 3 on the left half plane was
established by Hassen and Nguyen in [5]. In this section we will establish a zero free region for ζ2(s) in the
right half plane. In the case of the classical Riemann Zeta function, the Euler product formula

ζ(s) =
∏

p prime

(
1 − 1

ps

)−1

can be used to conclude that it is zero free for σ > 1(see [1],[7], [8] and [9]). The hypergeometric zeta
functions are not known to have such a product formula. Furthermore, due to lack of knowledge of the
precise locations of the zeros of ez − 1 − z = 0, we do not have a functional equation. However one can use
the Cauchy theory to express ζ2(s) in terms of a series that involves the roots of ez − 1− z = 0 and establish
zero free region on the left half plane. (See [5] for details.)

It follows from Theorem 2.1 that the second order hypergeometric zeta function has no real zeros if σ > 1
where s = σ + it. The following result extends this domain to σ > 0:

Theorem 3.1. ζ2(s) 6= 0 for s = σ > 0

Proof. As remarked above, we need only to show that ζ2(σ) 6= 0 for 0 < σ < 1. For this we note that when
N = 2, the integral representation in (2) becomes

ζ2(s) =
1

Γ(s + 1)

∫ ∞
0

xs

ex − 1 − x
dx (11)

and this can be rewritten as

Γ(s + 1)ζ2(s) =
∫ 1

0

xs

ex − 1 − x
dx +

∫ ∞
1

xs

ex − 1 − x
dx

(12)

=
∫ 1

0

(
1

ex − 1 − x
− 2

x2

)
xs dx +

2
s− 1

+
∫ ∞

1

xs

ex − 1 − x
dx. (13)

The last formula in (13) is analytic in the strip 0 < σ ≤ 1, except for the pole at s = 1, since both integrals
on the right hand side are convergent on this domain. Moreover, for 0 < σ < 1,

1
s− 1

= −
∫ ∞

1

xs

x2
dx.

Therefore, we can rewrite

ζ2(s) =
1

Γ(s + 1)

∫ ∞
0

(
1

ex − 1 − x
− 2

x2

)
xs dx.
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Since ex > 1 + x + x2

2 for all x > 0, we see that(
1

ex − 1 − x
− 2

x2

)
xσ < 0

for σ > 0 and all x > 0.
So the result follows. �

Now we show it has zero free regions to the right half plane by showing that the limit of ζ2(s) as the real
part tends to infinity converges to 1 uniformly with some restrictions on the imaginary part. This is the
content of the following theorem:

Theorem 3.2. If F (s) = ζ2(s)−D1(s), where D1(s) is given by (9), then

lim
σ→∞

|F (s)| = 0

uniformly in t, where s = σ + it satisfies the inequality |s| < Cσ, for some constant C.

Proof. With

anm =
n−1∑

k=m−1

(
n − 1

k

)
Am

k n−(k+1)

we have,

Dm(s) =
∞∑

n=m

anm

ns
.

We now use triangle inequality to obtain

|F (s)| = |ζ2(s)−D1(s)|
=

∣∣D2(s)s + D3(s)s2 + D4(s)s3 + · · ·
∣∣

≤ |D2(s)s|+
∣∣D3(s)s2

∣∣ +
∣∣D4(s)s3

∣∣ + · · ·

≤
∣∣∣a22

2s
+

a32

3s
+

a42

4s
+ · · ·

∣∣∣ |s|+ ∣∣∣a33

3s
+

a43

4s
+

a53

5s
+ · · ·

∣∣∣ |s|2 + · · ·

≤
(a22

2σ
+

a32

3σ
+

a42

4σ
+ · · ·

)
|s|+

(a33

3σ
+

a43

4σ
+

a53

5σ
+ · · ·

)
|s|2 + · · ·

<
Cσ

2σ

(
a22 +

2σ

3σ
a32 + · · ·

)
+

(Cσ)2

3σ

(
a33 +

3σ

4σ
a43 + · · ·

)
+ · · · .

From this we get that,
lim

σ→∞
|F (s)| ≤ 0.

Hence,
lim

σ→∞
F (s) = 0.

�

We also note that the constant C is larger than 1.

Corollary 3.1. Within the restriction given in Theorem 3.2,

lim
σ→∞

|ζ2(s)| = 1.
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Figure 1. A Zero Free Region in the Right Half Plane

Proof. Since limσ→∞ |F (s)| = 0 and limσ→∞ |D(s)| = 1, we have

|D1(s)| = |D1(s)− ζ2(s) + ζ2(s)|

≤ |D1(s)− ζ2(s)|+ |ζ2(s)|

Hence

1 = lim
σ→∞

|D1(s)| ≤ lim
σ→∞

|D1(s)− ζ2(s)|+ lim
σ→∞

|ζ2(s)|

≤ lim
σ→∞

|ζ2(s)|

On the other hand,
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|ζ2(s)| = |D1(s)−D1(s) + ζ2(s)|

≤ |D1(s)− ζ2(s)|+ |D1(s)| .
Thus we have,

lim
σ→∞

|ζ2(s)| ≤ lim
σ→∞

|D1(s)− ζ2(s)|+ lim
σ→∞

|D1(s)|

≤ lim
σ→∞

|ζ2(s)| ≤ 1.

Therefore, we have,
lim

σ→∞
|ζ2(s)| = 1.

�

We note that the condition |s| < Cσ in the the above theorem can be strengthened to |s| < σγ for any
γ > 1. This zero free region is shown roughly as in the figure. We conjecture, based on numerical evidence,
that there is a σ0 > 1 such that ζ2(s) 6= 0 for all s for which σ > σ0. We will return to this conjecture in the
future work. We also expect similar result for other hypergeometric zeta function of order N .
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