
 1 

The Distribution of Relatively Prime Numbers 
 

Abdulkadir Hassen 

Matt Oster 

Mathematics Department 

Rowan University 

Glassboro, NJ 08028 

 

hassen@rowan.edu 

osterm38@students.rowan.edu  

 

 

1. Introduction 

 In this article, we aim to prove that if one picks an ordered pair of integers 

( , )x y at random, then the probability that these integers are relatively prime is 
2

6


or 

60.8%. Recall that two integers x and y are called relatively prime or co-prime if their 

greatest common divisor is 1. We will do this in three different ways. Our first proof is 

longer and makes use of the Möbius Inversion Formula. We have made every effort to 

make this as elementary as possible. While this is longer than the other two, it gives the 

flavor of the beautiful mathematics behind the techniques of Analytic Number Theory. 

The other two methods are shorter and use the concept of probability and modulo 

arithmetic.  

We state our result as  

Theorem 1:      If x and y  are randomly selected integers, then   2

6
Pr (gcd( , ) 1x y


  , 

where gcd( , )x y  stands for the greatest common divisor of x and y   

Note: 1.  Euler proved that     
2

1

1

n n





  = 
2

6


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2. 
1

( )
s

s
n

  , s > 1 is the Riemann Zeta function. Thus our probability is 

1

(2)
. 

 

2. Proof of Theorem 1 using Mobius Inversion Formula 

 

For 0,r  r , define {( , ) | , ,   and }rS x y x y r x r r y r         

Let ( )N r  be the number of elements in rS  and ( )M r  be the number of elements ( , )x y  

in rS  that are relatively prime. It is an interesting exercise to show that gcd( , ) 1x y   if 

and only if the line segment joining (0,0)  to ( , )x y  contains no point ( , )a b  with a, b 

integers. When the latter happens, we say ( , )x y is visible from the origin. 

Theorem 1 will follow if we prove  

Theorem 2:       

2

( ) 6
lim

( )r

M r

N r 
  

     To prove Theorem 2, we consider the following diagram. 
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 Clearly the eight points (0, 1) , ( 1,0),( 1, 1)   are relatively prime. Furthermore, 

if gcd( , ) 1x y  , then gcd( , ) 1 and gcd( , ) 1.x y y x       Thus, we count the relative 

prime pairs (that is, count ( , )x y for which gcd( , ) 1x y  ) in the set 2 ,1 .x r y x     In 

other words, if '( )M r  is the number of ordered pairs (x, y) such that gcd( , ) 1x y  and 

2 x r   and 1 ,y x   then 

( ) 8 8 '( )M r M r  . 

But for each n from 2 to r, the number of integers y, such that gcd( , ) 1n y  , is ( )n . Thus 

2

'( ) ( ).
r

n

M r n


  Since (1) 1,   we conclude that  

1

( ) 8 ( ).
r

n

M r n


   
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Theorem 2 (and hence Theorem 1) will be a consequence of  

Theorem 3:        2

2
1

3
( ) ( )

r

n

r r g r


   

where ( )g r  is a function with the  property that | ( ) | lng r Mr r  for some constant M. 

We will prove Theorem 3 in a moment. But first, let us assume its validity and 

prove Theorem 2. By the remarks preceding Theorem 3, we have  

 2 2

2 2
1

3 24
( ) 8 ( ) 8 ( ) 8 ( ).

r

n

M r n r g r r g r
 

 
     

 
  

Clearly 2 2( ) (2 1) 4 4 1N r r r r     . Therefore, 

 

2

2
2 2

2

2

24 24 ( )8 ( ) 8
( )

4 1( ) 4 4 1
4

r g rg r
M r r

N r r r

r r

 

 
  

  
 

 

 

And hence, 

2

2

24

( ) 6
lim .

( ) 4r

M r

N r





 
 
    

Before giving the proof of Theorem 3, let us consider two examples. 

Example 1: Let n = 20 and S = {1, 2, ….., 20}. We need to partition S in to subsets 

whose elements have the same gcd with 20.  For each divisor d of 20, let 

{ | gcd( ,20) }.dS x S x d   Thus    1 | gcd( ,20) 1 1,3,7,11,13,17,19 .S x x   These 

numbers are all relatively prime to 20. Hence 1S  has (20) elements. 
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2S  = {  |  gcd  ( ,  20)  2}  { 2 ,6,  14,  18}  {2 1,  2 3,  2 7,  2 9}.x x         If we factor 2, 

the remaining numbers in 2S  are those relatively prime to 10 = 
20

2
. Hence there are 

(10)  of them.  

 The reader can show that 4S  has 
20

( ) (5)
4

   elements, 5S  has 

10

20
( ) (4),  

5
S   has 

20
( ) (2),
10

   and 20S  has 
20

( ) (1)
20

   element. The sets 

1 2 4 5 10 20, , , , ,S S S S S S  are mutually disjoint. Hence 

 20 (20) (10) (5) (4) (1)          

In general, we have  

Lemma 1: For any positive integer n we have 
|

( )
d n

n d . 

Here |d n  means d is a divisor of n and 
|d n

 means that we are adding over the positive 

divisors of n.  

  Next, we consider the problem of recovering a function ( ),g n  if we are given that   

   
|

( ) ( ).
d n

f n g d  

In other words, given the above sum, can we find ( )g n  in terms of ( ),  |f d d n ? 

The answer is yes. It is given by the use of Mobius Inversion Formula. We show this with 

an example.  

Example 2: Again we use n= 20 as an example to show how this can be done. 

Suppose then  

|20

(20) ( ) (1) (2) (4) (5) (10) (20).
d

f g d g g g g g g        
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We want to express g(20) in terms of (1),   (2),   (4),   (5),   (10),  (20). f f f f f f We list the 

values of f at 1,2,4,5,10,20d   as follow 

           (20) (1) (2) (4) (5) (10) (20)f g g g g g g       

           (10) (1) (2) (5) (10)f g g g g      

           (5) (1) (2) (5)f g g g    

  (4) (1) (2) (4)f g g g    

          (2) (1) (2)f g g   

           (1) (1)f g  

Thus  

 (20) -  (10)  (4)  (20). f f g g   

 

To get rid of (4)g  let us subtract (4). f This gives us 

(20) -  (10) -  (4)  (20) -  (1) -  (2).f f f g g g  

However, we do not want (1)  (2),g g   so we add (2).f  Thus 

(20) -  (10) -  (4)  (2)  (20).f f f f g   

Therefore   

 (20)  (2) -  (4) - (10)  (20).g f f f f   

 

We are missing (1)  (5).f and f   Let us note that 20/1 = 20 and 20/5 = 4 have square 

factors; 20/4 = 5 and 20/10 = 2 have one prime factors; 20/ 2  10  2 5   has two 

prime factors, and 20/20 = 1 has no prime factor.  Thus if we define  

 (1) 1,   (2) -1,   (4) 0,  (5) -1,  (10) 1,  and (20) 0            

we see that  

|20

20
(20) ( )

d

g f d
d


 

  
 

  
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 This leads to the definition of the following: 

            Mobius Function  

1,  if 1

( ) 0, if  has a square divisor

(-1) ,  if  is a product of  distinct primes.r

n

n n

n r



 


 



 

A general statement shown by the above example is the 

Mobius Inversion Formula:  If 
|

( ) ( ),
d n

f n g n  then
|

( ) ( )
d n

d
g n d f

n


 
  

 
  

We now return to Theorem 3. 

By lemma 1, 
|

( ).
d n

n d  If ( ) ,   and ( ) ( )f n n g n n  , then the Mobius Inversion 

Formula gives,  

|

( ) ( ) .
d n

n
n d

d
 

 
  

 
  

Therefore   

1 |
,

( ) ( ) ( ) ( )
r

rn d n qd r d r
q

q d d

n
M r d d q d q

d
  

  


 
        

  
 

      

We now use 

2

1

( 1) 1
( ),  

2 2

x

k

x x
k x f x




    

r
 where ( ) ,  and  the greatest integer less than or equal to 

2 d

x r
f x x

d

 
   

 
 

Hence  

2
1

,        
2r

q
d

r r r r
q f f K

d d d d


     
       

     
 . Therefore 
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2

2

2

2

2 2
1

2

2
1

1 1 ( )
( ) ( ) ( )

2 2

1 ( ) ( )
            ( )

2

1 ( )
           ( ),

2

n r d r d r d r

d d r d r

d

r r d r
n d f r d f

d d d d

d d r
r d f

d d d

d
r G r

d


  

 




   



  





      
         

       

   
     

  

 

   

  



 

where 

2

2

1 ( )
( ) ( )

2d r d r

r d
G r d f r

d d




 

 
  

 
   

To show that | ( ) | ln ,G r Mr r  we observe that  

2 2 2

2 2 2

1 ( ) 1 1 1 1 1
.

2 2 2 2d r n r r

d
r r r L dx Lr

d n x




 

      

and  

( ) 1
( ) ln .

d r d r d r

r d
d f Kr Kr Kr r

d d d




  

 
   

 
    

Consequently,  

2 2

2 2

1 ( ) 1 ( ) 1
| ( ) | ( ) ( ) ln ln

2 2 2d r d r d r d r

r d r d
G r d f r d f r Kr r Lr Mr r

d d d d

 
 

   

   
         

   
   

 

 To complete the proof of Theorem 3, all we need to show is that  

2
1

( ) 1

(2)d

d

d









 . 

But this follows from 
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       

 

      
      

2 2 2 2 2 2

 prime

2 2 2

2 2 2

2 2 2

1 1 2 1 3 1 5 1 7 1 11

                    1 2 3 5

                          2 3 2 5 3 5

                         2 3 5 2 3 7 3 5 7

                       

p

p     

  

  

  

      

    

       

         



2

( )
  .

n

n




 

The sum on the first row is obtained when we multiply each of the prime factors with one 

form all the other factors, the sum in the second row is obtained by taking the primes 

multiplied by 1 taken from the rest of the factors. The sum in the second row comes from 

the product of two primes from two of the factors and all 1 from the other factors. And so 

on. The last equality is clear from the definition of the Mobius Function.  A Similar 

argument yields  

 
     

   

1
2

2 2 2

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

2

2

1 1 1
1

1 2 1 3 1 5

                      = 1 (2 ) (2 ) 1 (3 ) (3 ) 1 (5 ) (5 )

                     1 2 3 5 (2 2) (2 3) (2 5)

1
                     

6

p

n






  

     

     

   
  

        

           

 





 

Therefore 

 
2 2

2

( ) 1 6
.

1

n

n

n




 


 

 This completes the proof of Theorem 3. 

3. Probability Argument 
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 We will use the fact that if S is a sample space of all possible outcomes of an 

experiment, then pr(S) = 1, where pr(S) denotes probability of S. Also if 
n

n

S S  and 

the collection { }jS  is pairwise disjoint, then  Pr 1jS  . 

 We also need the modulo notation for easier argument. We say x is congruent to y 

modulo n and write  modx y n  if n is a divisor of x – y. It is not hard to see that for 

any given  x  and 1,n   then 

1
Pr({ | (mod )})x x c n

n
   

If we pick x and y randomly and independently, then 

   2

1
Pr ( , ) | 0(mod ) and 0(mod )x y x n y n

n
     

Let P = Pr(gcd(x, y) = 1) where x, y are randomly selected. Then, for a fixed n > 1, 

  Pr gcd , 1 .
x y

P
n n

  
   

  
 

A fact that can easily be established is that 

gcd(x, y) = n if and only if

 

 

0 mod

0 mod

gcd , 1.

x n

y n

x y

n n


 





   
  

 

 Therefore  
1 1

Pr gcd( , )x y n P
n n

     

And since  
1

Pr gcd( , ) 1,
n

x y n




   we see that
2

1
1P

n
 and hence 

 
2

2

1 6

1
P

n


 


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Another probabilistic argument can be given as follows: 

gcd( ,  )  1 x y  if and only if 

0(mod )

0(mod )

x p

or

y p




 

   for all prime p 

Since   2

1
Pr 0(mod ) and 0(mod )x p y p

p
    and the negation of 

0(mod ) and 0(mod )x p y p  is  0(mod )x P or 0(mod ),y P  we see that  

  2

1
Pr 0(mod ) or 0(mod ) 1x p y p

p
     

Since primes are independent, we conclude that 

  2 2
1

1 ( )
Pr gcd( , ) 1 1

np

n
x y

p n





 
    

 
 . 
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