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Abstract. This paper investigates the location of ‘trivial’ zeros of some hypergeometric zeta functions.

Analogous to Riemann’s zeta function, we demonstrate that they possess a zero free region on a left-half

complex plane, except for infinitely many zeros regularly spaced on the negative real axis.

1. INTRODUCTION

One of the outstanding problems in mathematics regards the location of the zeros the Riemann zeta
function:

ζ(s) =

∞∑
n=1

1

ns
. (1.1)

It is well known that ζ(s) is zero free outside of the critical strip {0 ≤ <(s) ≤ 1}, except for trivial zeros
located at negative even integers. In particular, Euler’s product formula for the zeta function,

ζ(s) =
∏

p prime

(
1− 1

ps

)−1
, (1.2)

establishes that ζ(s) 6= 0 on the right-half plane {<(s) > 1}. Its much celebrated functional equation,

ζ(s) = 2(2π)s−1 sin
(π

2
s
)

Γ(1− s)ζ(1− s), (1.3)

then reveals that ζ(s) 6= 0 on the left-half plane {<(s) < 0}, except at the aforementioned trivial zeros.
Regarding the zeros inside the critical strip, it is conjectured that these nontrivial zeros all must be located
on the critical line at <(s) = 1/2. This conjecture is known as Riemann’s Hypothesis.

In this paper we will investigate the nature of ‘trivial’ zeros of hypergeometric zeta functions, defined by
the integral formula

ζN (s) =
1

Γ(s+N − 1)

∫ ∞
0

xs+N−2

ex − TN−1(x)
dx. (1.4)

Here N is a positive integer and TN (x) = 1+x+x2/2!+· · ·+xN/N !. A study of these functions were initiated
in [2] as a natural generalization of the Riemann zeta function. Notice that for N = 1, (1.4) reproduces the
well known integral representation of ζ(s). In this same paper we established some analytic properties of
ζN (s) where, among other things, we proved that for <(s) < 0, ζN (s) satisfies the following ‘pre-functional’
equation:

ζN (s) = 2(−1)N−1(N − 1)!Γ(2−N − s)
∞∑
k=1

rs−1k cos [(s− 1)(π − θk)] . (1.5)

Here zk = xk + iyk = rke
iθk are the nonzero roots of ez − TN−1(z) = 0 in the upper-half complex plane

arranged in increasing order of modulus. Observe that for N = 1, equation (1.5) simplifies to the classical
functional equation given by (1.3) since in this case the zeros are elegantly located at zk = 2kπi.
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Figure 1. Zero-free left half-plane of ζ2(s) (shaded)

In particular, we will focus on the zeros of the second-order hypergeometric zeta function ζ2(s):

ζ2(s) =
1

Γ(s+ 1)

∫ ∞
0

xs

ex − 1− x
dx. (1.6)

Unlike the situation with classical zeta, there is no product formula for ζ2(s) to take advantage of here in
establishing a zero free region to the left. Therefore, we must resort solely on its pre-functional equation,
which in this case takes the form

ζ2(s) = −2Γ(−s)
∞∑
k=1

rs−1k cos [(s− 1)(π − θk)] . (1.7)

Using (1.7) and appropriate bounds on the roots zk, we intend to establish the following result for ζ2(s),
analogous to that for Riemann’s zeta:

Theorem 1.1. ζ2(s) has no zeros in the left-half complex plane {s = σ + it|σ < σ2} (cf. Figure 1), except
for infinitely many ‘trivial’ zeros on the negative real axis, one in each of the intervals

Sm = [σm+1, σm], (1.8)

where m ≥ 2 is a positive integer and σm = 1− π
π−θ1m.

A similar result will also be proven for ζ3(s) (cf. Theorems 2.3 and 2.4). Tables 1 and 2 appearing in
Appendix II list the approximate values of the first ten trivial zeros of ζ2(s) and ζ3(s), respectively.

Numerical evidence from the roots of ex − TN−1(x) = 0 suggests that statements similar to Theorem 1.1
should hold for ζN (s) in general. We will have more to say on this in our concluding remarks. The more
difficult problem of finding a functional equation or product representation of these functions remains open.

2. A Zero Free Region on the Left

In [7], R. Spira established that the Hurwitz zeta function has a zero free region to the left of the complex
plane by demonstrating that its functional equation is essentially dominated by the first term. We shall
adopt his method to prove that ζ2(s) has no zeros in the left half plane {<(s) < σ2}, except for infinitely
many zeros on the negative real axis, one in each of the intervals Sm for m ≥ 2 (cf. (1.8)). To this end, we
use (1.7) to rewrite ζ2(s) as

ζ2(s) = f(s)(1 + g(s)), (2.1)

where
f(s) = −2Γ(−s)rs−11 cos[(s− 1)(π − θ1)] (2.2)

and

g(s) =

∞∑
k=2

(
rk
r1

)s−1(
cos[(s− 1)(π − θk)]

cos[(s− 1)(π − θ1)]

)
. (2.3)

The idea behind Spira’s method is to demonstrate that |g(s)| < 1 inside a given domain (or respectively
on its boundary). This essentially means that ζ2(s) is dominated by its first term, f(s). It follows that
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|ζ2(s)| 6= 0 (or respectively by Rouche’s Theorem both ζ2(s) and f(s) must have the same number of zeros).
To determine a suitable zero free domain, we observe that for σ = <(s) < 0, the series

∞∑
k=2

(
rk
r1

)σ−1
(2.4)

is increasing in σ. On the other hand, the modulus of the factor

cos[(s− 1)(π − θk)]

cos[(s− 1)(π − θ1)]
(2.5)

is decreasing in |t|. This led us to consider a left half-plane as a zero-free region for ζ2(s) (excluding the
negative real axis), since if we can bound (2.5) and (2.4) by constants P and Q with PQ < 1, then it will
follow from (2.3) that |g(s)| < PQ < 1.

In order to obtain bounds on the series (2.4), we first recall (see [2]) that the zeros zk = xk + iyk = rke
iθk

of ez − 1 − z = 0 can be arranged in increasing order of modulus along with their arguments. Thus both
sequences {θk} and {rk} are increasing with

0 < θk < π/2 and rk →∞ as k →∞. (2.6)

The following lemma provides an estimate for (2.4) based on estimates for the roots {zk}.

Lemma 2.1. Suppose the even and odd roots {zk} of ex − TN−1(x) = 0 are bounded in modulus:

r2m < Am, m ≥ 1
r2m−1 < Bm, m ≥M (2.7)

where A and B are positive constants and M ≥ 2 a positive integer. Then for x > 1,

∞∑
k=2

(
r1
rk

)x
< φN (x), (2.8)

where

φN (x) =
{(r1

A

)x
+
(r1
B

)x}
ζ(x)−

(r1
B

)x
+

M∑
m=3

[(
r1

r2m−1

)x
−
( r1
Bm

)x]
(2.9)

and ζ(x) is the Riemann zeta function.

Proof. The inequality above follows from rearrangement of the series (2.4) and the assumed bounds. �

We are now ready to state and prove our first result. First define for each positive integer m,

σm := σm(N) = 1− π

π − θ1
m, (2.10)

where θ1 is the argument of z1 (the smallest nonzero root of ex − TN−1(x) = 0 in modulus). For example,
if N = 2, then θ1 ≈ 1.2978341024 and θ2 ≈ 1.3811541551 (cf. Table 1); hence σ1 ≈ −0.703907 and
σ2 ≈ −2.40781 from (2.10).

Theorem 2.1. (N = 2) Let s = σ + it. If σ < σ2 and |t| > 1, then ζ2(s) 6= 0. Here, σ2 ≈ −2.40781 is
defined by (2.10).

Proof. For N = 2, the roots of ez − 1− z = 0 are known to be bounded as follows (cf. [2]):

r2m < 4πm, m ≥ 1
r2m−1 < 3πm, m ≥ 2

(2.11)
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If |t| > 1, then it follows from (4.3) and Lemma 2.1 (with A = 4π, B = 3π, and M = 2) that

|g(s)| ≤
∞∑
k=2

(
rk
r1

)σ−1 ∣∣∣∣cos ((s− 1)(π − θk))

cos ((s− 1)(π − θ1))

∣∣∣∣
≤ cosh(π − θ2)

sinh(π − θ1)

∞∑
k=2

(
r1
rk

)1−σ

(2.12)

≤ cosh(π − θ2)

sinh(π − θ1)
φ2(1− σ). (2.13)

Since φ2(1− σ) is increasing on (−∞, σ2), it follows that φ2(1− σ) ≤ φ2(1− σ2) < 0.29 where we have used
the fact that r1 ≈ 7.748360311 (cf. Table 1). Thus (2.13) implies that for σ < σ2,

|g(s)| ≤ cosh(π − θ2)

sinh(π − θ1)
φ2(1− σ2) (2.14)

< (0.9716)(0.29) (2.15)

< 1. (2.16)

By the reverse triangle inequality it also follows that

|ζ2(s)| = |f(s)||1 + g(s)| ≥ |f(s)| (1− |g(s)|) > 0,

since |f(s)| > 0 in the region of the hypothesis. This proves the theorem. �

Theorem 2.2. (N = 2) Let s = σ+ it. If σ ≤ σ2 and |t| ≤ 1, then ζ2(s) has exactly one zero in the interval
[σm+1, σm], where σm = 1− π

π−θ1m, for each m = 2, 3, 4, · · · .

Proof. Let γm be the rectangle with vertices σm+1± i and σm± i. Let f(s) and g(s) be as in (2.2) and (2.3),
respectively. We shall show that

|g(s)| < 1 (2.17)

on γm. Since

|ζ2(s)− f(s)| = |f(s)g(s)| < |f(s)|, (2.18)

it follows from Rouche’s Thereom that f(s) and ζ2(s) have the number of roots inside γm. Clearly the roots
of f(s) = −2Γ(−s)rs−11 cos[(s − 1)(π − θ1)] are the roots of cos[(s − 1)(π − θ1)] and the latter has exactly
one root in the interval [σm+1, σm]. On the other hand, from (1.7), we observe that ζ2(s̄) = ζ̄2(s). Thus, if
sm is a root of ζ2(s) inside γm, then s̄m is also a root in the same region. Hence sm = s̄m and the theorem
follows.

To prove (2.17), we first consider the right vertical side of γm where σ = σm and |t| ≤ 1. Using (4.4) we
have ∣∣∣∣cos ((s− 1)(π − θk))

cos ((s− 1)(π − θ1))

∣∣∣∣ =

cos2
(
−π−θkπ−θ1m

)
+ sinh2 (t(π − θk))

cos2 (−mπ) + sinh2 (t(π − θ1))

1/2

≤
[

1 + sinh2 (t(π − θk))

1 + sinh2 (t(π − θ1))

]1/2
=

cosh (t(π − θk))

cosh (t(π − θ1))
≤ 1. (2.19)

It then follows from (2.19), as in the proof of Thereom 2.1, that |g(s)| ≤ φ2(1−σ) , where φ2(1−σ) is again
given by (2.9). Since φ2(1− σ) < 1 for σ = σm ≤ σ2, we conclude that |g(s)| < 1. A similar argument can
be applied on the left vertical side of γm where σ = σm+1 and |t| ≤ 1.
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Next we consider the top side of γm where t = 1 and σm+1 ≤ σ ≤ σm. On this part we have∣∣∣∣cos ((s− 1)(π − θk))

cos ((s− 1)(π − θ1))

∣∣∣∣ =

[
cos2 ((σ − 1)(π − θk)) + sinh2 (π − θk)

cos2 ((σ − 1)(π − θ1)) + sinh2 (t(π − θ1))

]1/2
≤

[
1 + sinh2 (π − θk)

sinh2 (π − θ1))

]1/2
=

cosh (π − θk)

sinh (π − θ1)

≤ cosh (π − θ2)

sinh (π − θ1)
.

Since since σm ≤ σ2, we once again have

|g(s)| < cosh (π − θ2)

sinh (π − θ1)
φ2(1− σ2) < 1. (2.20)

The argument for the bottom side of γm is exactly the same. This proves our theorem. �

Remark 2.1. Observe that our results do not account for the first zero s1 ≈ −1.605486847 of ζ2(s) on the
negative real axis since Theorem 2.2 holds only for m ≥ 2. Also, the zeros sm converge asymptotically to
the zeros of cos[(s− 1)(π − θ1)], which are located at (σm + σm+1)/2, i.e.

sm ∼
σm + σm+1

2
= 1− π

π − θ1

(
2m+ 1

2

)
. (2.21)

Table 3 lists the first ten values of sm and (σm + σm+1)/2.

Having now established a zero free region for ζ2(s), it becomes clear that this method applies to ζN (s) in
general as long as one can establish suitable bounds on the corresponding roots zk. We demonstrate this for
ζ3(s).

Theorem 2.3. (N = 3) Let s = σ + it. If σ < σ2 and |t| > 1, then ζ3(s) 6= 0. Here, σ2 ≈ −2.14012 is
defined by (2.10).

Proof. As in Theorem 2.1 we shall again use (1.5) but with N = 3. Let f(s) and g(s) be as in (2.2) and
(2.3) respectively, where zk = rke

iθk are roots of ez − 1 − z − z2/2 = 0. In [2], these roots were shown to
satisfy (2.6). Moreover, zk is bounded in modulus: rk > (2k + 1/2)π. Thus

r2m > 4mπ, (m = 1, 2, 3, · · · ) and r2m−1 > 3.24mπ, (m = 2, 3, 4, · · · ).
Using the approximate values r1 ≈ 9.2053499 , θ1 ≈ 1.1406576364, and θ2 ≈ 1.2568294158 (cf. Table 2), it
follows from (4.3) that for |t| > 1,∣∣∣∣cos (s− 1)(π − θk))

cos (s− 1)(π − θ1))

∣∣∣∣ ≤ cosh(π − θ2)

sinh(π − θ1)
< 0.927818.

On the other hand, for σ < σ2, we have from Lemma 2.1 (with A = 4π, B = 3π, and M = 2) that
∞∑
k=2

(
r1
rk

)1−σ

< φ3(1− σ) ≤ φ3(1− σ2) < 1.

As before, it follows that |g(s)| < 1 and hence ζ3(s) 6= 0. This completes the proof of the theorem. �

Combining Theorem 2.3 and same arguments used in Theorem 2.2 (with the natural modifications), we
obtain an analogous result for the case N = 3:

Theorem 2.4. (N = 3) Let s = σ+ it. If σ ≤ σ2 and |t| ≤ 1, then ζ3(s) has exactly one zero in the interval
[σm+1, σm], where σm = 1− π

π−θ1m, for each integer m ≥ 2.

See Table 3 for a listing of the first ten trivial zeros of ζ3(s) compared to those of cos[(s− 1)(π − θ1)].
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Figure 2. Extended zero-free region of ζ2(s) to the left (shaded)

3. Concluding Remarks

It is possible to enlarge the zero-free region {<(s) < σ2} as illustrated in Figure 2. Let us assume for
N = 2 that |t| > t0 > 0 and σ < σ0 < 0. It follows from Lemmas 2.1 and 4.1 that

|g(s)| ≤ cosh[t0(π − θ2)]

sinh[t0(π − θ1)]
φ2(1− σ0). (3.1)

Since the region {s : |<(s)| > t0,=(s) < σ0} will be zero free when |g(s)| < 1, the boundary of the largest
possible zero-free region in terms of t0 and σ0 is then defined by the constraining equation

cosh[t0(π − θ2)]

sinh[t0(π − θ1)]
φ2(1− σ0) = 1. (3.2)

This is the boundary drawn in Figure 2.
As for zero-free regions of ζN (s) where N ≥ 4, one needs to obtain bounds on the roots of ez−TN−1(z) = 0

similar to those required by Lemma 2.1. While numerical evidence for the first several values of N suggest
such bounds exists, we do not have a proof of this beyond N ≥ 4.

Lastly, we do not yet know if ζ2(s) has any nontrivial zeros on a right half-plane. We recall from [2] that
ζN (s) for <(s) > 1 has ‘Dirichlet series’ type representation of the form

ζN (s) =

∞∑
n=1

µN (n, s)

ns+1
,

where

µN (n, s) =

(N−1)(n−1)∑
k=0

ak(N,n)

nk
(s+N − 1)k

and ak(N,n) is generated by

(TN−1(x))
n−1

=

(
N−1∑
k=0

xk

k!

)n−1
=

(N−1)(n−1)∑
k=0

ak(N,n)xk.

In the absence of a functional equation or Euler product for hypergeometric zeta, one needs a good under-
standing of the properties of the “coefficients” µN (n, s) in order to investigate the existence of zeros to the
right of the complex plane.
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4. Appendix I

Lemma 4.1. Let {θk} be a strictly increasing sequence of arguments satisfying (2.6). Then the following
bounds hold true:

(a) If s = σ + it and |t| ≥ t0 > 0, then∣∣∣∣cos [(s− 1)(π − θk)]

cos [(s− 1)(π − θ1)]

∣∣∣∣ ≤ cosh[t0(π − θ2)]

sinh[t0(π − θ1)]
for all k > 1. (4.3)

(b) Let t be any real value. Then ∣∣∣∣cosh (t(π − θk))

cosh (t(π − θ1))

∣∣∣∣ ≤ 1. (4.4)

Proof. To prove (a), we observe that | cos(x + iy)|2 = cos2 x + sinh2 y and hence | sinh y| ≤ | cos(x + iy)| ≤
cosh y. Since cosh[t(π − θk)]/ sinh[t(π − θ1)] is monotonically decreasing in |t| and monotonically increasing
in k, it follows for |t| ≥ t0 that∣∣∣∣cos [(s− 1)(π − θk)]

cos [(s− 1)(π − θ1)]

∣∣∣∣ ≤ cosh [t(π − θk)]

| sinh [t(π − θ1)] |

≤ cosh [t0(π − θk)]

| sinh [t0(π − θ1)] |

≤ cosh [t0(π − θ2)]

| sinh [t0(π − θ1)] |
.

This proves (4.3).

To prove (b), we merely observe that coshx is increasing in |x| and if 0 < α ≤ β, then
∣∣∣ cosh(αt)cosh(βt)

∣∣∣ ≤ 1.

As {θk} is increasing in k towards π, we have π − θk < π − θ1 and thus (4.4) immediately follows. This
completes the proof of the lemma. �

5. Appendix II

Tables 1 and 2 list the first ten non-trivial zeros of ez−1−z = 0 and ez−1−z−z2/2 = 0 corresponding to
N = 2 and N = 3, respectively. Tables 3 and 4 list the first ten trivial zeros of ζ2(s) and ζ3(s), respectively.
These values were computed using the pre-functional equation (1.5) and the software program Mathematica.
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k zk rk θk
1 2.088843016+7.461489286i 7.748360311 1.2978341024
2 2.664068142+13.87905600i 14.13242564 1.3811541551
3 3.026296956+20.22383500i 20.44900915 1.4222583654
4 3.291678332+26.54323851i 26.74656346 1.4474143156
5 3.501269010+32.85054823i 33.03660703 1.4646154233
6 3.674505305+39.15107412i 39.32313052 1.4772159363
7 3.822152869+45.44738491i 45.60782441 1.4868931567
8 3.950805215+51.74088462i 51.89150222 1.4945866979
9 4.064795694+58.03240938i 58.17459155 1.5008669923
10 4.167125550+64.32248998i 64.45733203 1.5061018433

Table 1. First ten nonzero roots of ez − 1− z = 0 in the upper-half complex plane.

k zk rk θk
1 3.838602048+8.366815507i 9.205349934 1.1406576364
2 4.857263960+14.95891141i 15.72774757 1.2568294158
3 5.520626554+21.39846201i 22.09912880 1.3183102795
4 6.016178416+27.77895961i 28.42296607 1.3575169538
5 6.412519686+34.12944500i 34.72663855 1.3850733959
6 6.743013428+40.46233161i 41.02034263 1.4056646865
7 7.026523305+46.78391852i 47.30863623 1.4217195916
8 7.274789053+53.09777556i 53.59380865 1.4346366398
9 7.495625078+59.40609018i 59.87710703 1.4452835555
10 7.694499832+65.71028350i 66.15925246 1.4542298245

Table 2. First ten nonzero roots of ez − 1− z − z2/2 = 0 in the upper-half complex plane.

m sm
σm+σm+1

2 = 1− π
π−θ1

(
2m+1

2

)
1 -1.605486847 -1.555860135
2 -3.279946232 -3.259766892
3 -4.972103587 -4.963673649
4 -6.671076580 -6.667580406
5 -8.372911061 -8.371487163
6 -10.07596151 -10.07539392
7 -11.77952201 -11.77930068
8 -13.48329192 -13.48320743
9 -15.18714578 -15.18711419
10 -16.89103253 -16.89102095

Table 3. First ten trivial zeros {sm} of ζ2(s) on the negative real axis and corresponding
zeros of cos[(s− 1)(π − θ1)].
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m sm
σm+σm+1

2 = 1− π
π−θ1

(
2m+1

2

)
1 -1.441343934 -1.355093464
2 -2.965619536 -2.925155773
3 -4.514693033 -4.495218082
4 -6.074606688 -6.065280391
5 -7.639732900 -7.635342700
6 -9.207425391 -9.205405009
7 -10.77637373 -10.77546732
8 -12.34592528 -12.34552963
9 -13.91575965 -13.91559194
10 -15.48572309 -15.48565425

Table 4. First ten trivial zeros {sm} of ζ3(s) on the negative real axis and corresponding
zeros of cos[(s− 1)(π − θ1)].


