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Abstract. This paper investigates a new special function referred to as the error zeta function. Derived
as a fractional generalization of hypergeometric zeta functions, the error zeta function is shown to exhibit

many properties analogous to its hypergeometric counterpart. These new properties are treated in detail,
including an intimate connection to generalized Bernoulli numbers and a pre-functional equation satisfied

by the error zeta function.

1. INTRODUCTION

In [3] the authors investigated an interesting generalization of the Riemann zeta function based on its
integral representation:

ζ(s) =
1

Γ(s)

∫ ∞

0

xs−1

ex − 1
dx. (1.1)

In particular, the denominator ex−1 in (1.1) was replaced by an arbitrary Taylor remainder ex−TN−1(x),
where N is a positive integer and TN (x) is the Taylor polynomial of ex at the origin having degree N . This
defines a family of higher-order functions of zeta-type referred to as hypergeometric zeta functions:

ζN (s) =
1

Γ(s + N − 1)

∫ ∞

0

xs+N−2

ex − TN−1(x)
dx (N = 1, 2, ...). (1.2)

Observe that ζ1(s) = ζ(s). In the same paper, we developed the analytic continuation of ζN (s) to the
entire complex plane, except for N simple poles at s = 1, 0,−1, · · · , 2−N , and established many properties
analogous to those satisfied by Riemann’s zeta function, including a pre-functional equation and results
involving generalized Bernoulli numbers.

In this present work, we investigate a continuous version of hypergeometric functions by generalizing
definition (1.2) to all positive values of N . Since

ex − TN−1(x) =
xN [1F1(1, N + 1; x)]

Γ(N + 1)
, (1.3)

where 1F1(a, b; x) is the hypergeometric series

1F1(a, b; x) =
∞∑

n=0

(a)n

(b)n

xn

n!
, (1.4)

definition (1.2) can be rephrased as

ζN (s) =
Γ(N + 1)

Γ(s + N − 1)

∫ ∞

0

xs−2

1F1(1, N + 1; x)
dx. (1.5)

We now take (1.5) as our new definition of ζN (s), which is formally defined for all positive values of N .
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We focus in particular on the half-integer case N = 1/2 where the error function erf(x) makes its appear-
ance, hence motivating the title of this paper. Since

1F1(1, 1/2; x) =
√

π

2
√

x
exerf(

√
x), (1.6)

where erf(x) is defined by

erf(x) =
2√
π

∫ x

0

e−t2dt, (1.7)

it follows from a change of variable that

ζ1/2(s) =
2Γ(3/2)√

πΓ(s − 1/2)

∫ ∞

0

xs−3/2e−x

erf(
√

x)
dx =

2
Γ(s − 1/2)

∫ ∞

0

x2(s−1)e−x2

erf(x)
dx. (1.8)

It is discovered that this fractional hypergeometric zeta function of order N = 1/2, which we now refer
to as the error zeta function, shares many of the same properties found in hypergeometric zeta functions of
integer order, including a pre-functional equation valid for <(s) < 0 (see Theorem 4.1):

ζ1/2(s) =
Γ(1/2)Γ(1 − (s − 1/2))

cos [π(s − 1/2)]

∞∑

k=1

r2s−2
k {cos [2(s − 1)(π − θk)] + cos [2(s − 1)θk]} .

Here, zk = rkeiθk are the non-zero complex zeros of the error function erf(z) arranged by increasing
length. We apply the pre-functional equation above to obtain a bound on error zeta (see Theorem 4.2):

∣∣ζ1/2(s)
∣∣ <

∣∣∣∣
Γ(1/2)Γ(1 − (s − 1/2))(e|=(s)θ1| + e|3π=(s)/4|)

(2π)1−s cos [π(s − 1/2)]

∣∣∣∣ ζ(1 −<(s), 7/8).

However, as with hypergeometric zeta functions of positive integer order, any hope of establishing a func-
tional equation in the future will most likely require knowing the precise locations of these zeros which at
the moment is intractable.

This paper is organized as follows. In section 2, we define the error zeta function, establish its con-
vergence on a right half-plane, and develop its series representation. In section 3, we reveal its analytic
continuation to the entire complex plane, except at a countably infinite number of poles, and calculate the
residues of these poles in terms of fractional Bernoulli numbers. In section 4, we establish a pre-functional
equation for the error zeta function that is valid on a left half-plane. Lastly, section 5 (Appendix) establishes
a bound on the zeros of the error function claimed in section 4 and provides a list of the first ten of these zeros.

Acknowledgement: Both authors would like to thank their colleague and friend Thomas J. Osler for his
insight on expressing the incomplete gamma function as a hypergeometric series.

2. PRELIMINARIES

In this section we formally define the error zeta function, establish a domain of convergence, and demon-
strate its series representation.

Definition 2.1. The fractional hypergeometric zeta function is defined for all real N > 0 as

ζN (s) =
Γ(N + 1)

Γ(s + N − 1)

∫ ∞

0

xs−2

1F1(1, N + 1; x)
dx. (2.1)

Remark 2.1. Observe that for N = 0, (2.1) reduces to ζ0(s) ≡ 1. In this paper we shall avoid discussion of
this trivial case.

Lemma 2.1. ζN (s) is absolutely convergent and hence analytic for σ = <(s) > 1.
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Proof. Since the integrand 1F1(1, N + 1; x) is increasing on [0,∞) and grows asymptotically as

1F1(1, N + 1; x) ∼ Γ(N + 1)ex

xN
(1 + O(1/x)), (2.2)

it follows that there exists a positive constant K such that on [K,∞),

1F1(1, N + 1; x) ≥ Γ(N + 1)ex

xN
(2.3)

Moreover, 1F1(1, N + 1; x) ≥ 1 on [0, 1]. Therefore, for <(s) > 1,

|ζN (s)| ≤ Γ(N + 1)
|Γ(s + N − 1)|

[∫ K

0

∣∣xs−2
∣∣ dx +

1
Γ(N + 1)

∫ ∞

K

∣∣xs−N−2e−x
∣∣ dx

]

≤
Γ(N + 1)

|Γ(s + N − 1)|

[∫ K

0

∣∣∣x<(s)−2
∣∣∣ dx +

1
Γ(N + 1)

∫ ∞

K

∣∣∣x<(s)−N−2e−x
∣∣∣dx

]

≤ ∞.

This establishes the lemma. �

We now focus on the error zeta function (N = 1/2). Using its expression in (1.8), we can develop a series
representation for error zeta:

Lemma 2.2. For σ = <(s) > 1, we have

ζ1/2(s) =
∞∑

n=1

fn(1/2, s), (2.4)

where

fn(1/2, s) =
2

Γ(s − 1/2)

∫ ∞

0

x2(s−1)e−x2
erfcn−1(x) dx. (2.5)

Proof. Since erf(x) = 1 − erfc(x), where erfc(x) is the complementary error function, and erfc(x) < 1 for all
x > 0, we can rewrite the integrand in (1.8) as a geometric series:

x2(s−1)e−x2

erf(x)
=

x2(s−1)e−x2

1 − erfc(x)
= x2(s−1)e−x2

∞∑

n=0

erfcn(x)

The lemma now follows by reversing the order of integration and summation because of Dominated Conver-
gence Theorem:

ζ1/2(s) =
2

Γ(s − 1/2)

∫ ∞

0

x2(s−1)e−x2
∞∑

n=0

erfcn(x) dx

=
∞∑

n=1

[
2

Γ(s − 1/2)

∫ ∞

0

x2(s−1)e−x2
erfcn−1(x) dx

]
.

�

Remark 2.2. The series representation given by (2.4) above reduces formally to the harmonic series at s = 1.
This is because

fn(1/2, 1) =
2

Γ(1/2)

∫ ∞

0

e−x2
erfcn−1(x) dx =

[
−erfcn(x)

n

]∞

0

=
1
n

It follows that ζ1/2(1) =
∑∞

n=1 1/n formally represents the harmonic series. This reveals our motivation for
normalizing (2.1) as we did with a suitable gamma factor in defining ζ1/2(s).
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3. ANALYTIC CONTINUATION

In this section we develop the analytic continuation of ζN (s) to the entire complex plane by manipulating
its integral definition, previously done for hypergeometric zeta functions of positive integer order in [3]. In
addition, for ζ1/2(s), we shall demonstrate a second method via contour integration to perform the analytic
continuation in one stroke.

Theorem 3.1. For <(s) > 0,

ζN (s) =
Γ(N + 1)Γ(s − 1)

Γ(s + N − 1)
+

Γ(N + 1)
Γ(s + N − 1)

∫ ∞

0

(
1

1F1(1, N + 1; x)
− e−x

)
xs−2 dx. (3.1)

Proof. For <(s) > 1, we can first rewrite (2.1) as

Γ(s + N − 1)
Γ(N + 1)

ζN (s) =
∫ 1

0

xs−2

1F1(1, N + 1; x)
dx +

∫ ∞

1

xs−2

1F1(1, N + 1; x)
dx

=
∫ 1

0

(
1

1F1(1, N + 1; x)
− e−x

)
xs−2 dx +

∫ 1

0

xs−2e−xdx (3.2)

+
∫ ∞

1

xs−2

1F1(1, N + 1; x)
dx.

Then rewrite ∫ 1

0

xs−2e−xdx = Γ(s − 1) −
∫ ∞

1

xs−2e−xdx. (3.3)

This simplifies (3.2) to

Γ(s + N − 1)
Γ(N + 1)

ζN (s) = Γ(s − 1) +
∫ ∞

0

(
1

1F1(1, N + 1; x)
− e−x

)
xs−2 dx, (3.4)

as desired. Now observe that the integral appearing in (3.4) is absolutely convergent for all <(s) > 0, hence
(3.4) defines an analytic function for all <(s) > 0, except for the simple pole due to Γ(s − 1) at s = 1. This
establishes (3.1). �

Remark 3.1. Observe from (3.1) that besides having a pole at s = 1, ζN (s) also has a zero at s = 1 − N if
0 < N < 1. Morever, this process of analytic continuation can be repeated to extend the domain of ζN (s)
to <(s) > −1 so that a second pole emerges at s = 0 and a second zero at s = −N . Therefore, it seems that
the error zeta function has an infinite number of poles since each application produces an additional pole.
On the other hand, each application also produces an additional zero. For hypergeometric zeta functions
defined by (1.2) for positive integers N , infinitely many of these poles and zeros overlap, resulting in a net
finite number of poles (cf. [3]). We will have more to say about this behavior in our second approach using
contour integration (see Theorem 3.3).

The main advantage in using (3.2) to analytically continue ζN (s) is that it reveals the behavior of ζN (s)
near the distinguished pole s = 1. The following theorem is valid for all positive real values of N and
generalizes the corresponding result stated in [3] for hypergeometric zeta functions of positive integer order.

Theorem 3.2.

lim
s→1

[
ζN (s) − N

s − 1

]
= log Γ(N + 1) − N

Γ′(N )
Γ(N )

. (3.5)
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Proof. From (3.1) we have by the Dominated Convergence Theorem that

lim
s→1

[
ζN (s) −

Γ(N + 1)Γ(s − 1)
Γ(s + N − 1)

]
=

Γ(N + 1)
Γ(N )

∫ ∞

0

(
1

1F1(1, N + 1; x)
− e−x

)
1
x

dx

=
Γ(N + 1)

Γ(N )

(
γ +

logΓ(N + 1)
N

)
(3.6)

= Nγ + logΓ(N + 1), (3.7)

where γ is Euler’s constant. It follows from (3.7) that

lim
s→1

[
ζN (s) − N

s − 1

]
= lim

s→1

[
ζN (s) − Γ(N + 1)Γ(s − 1)

Γ(s + N − 1)

]
− lim

s→1

[
N

s − 1
− Γ(N + 1)Γ(s − 1)

Γ(s + N − 1)

]

= Nγ + log Γ(N + 1) − (Nγ + NΓ′(N )/Γ(N ))
= logΓ(N + 1) − NΓ′(N )/Γ(N ),

as desired. �

Remark 3.2. Observe that (3.5) is analogous to the following classic result for ζ(s) (cf. [11]):

lim
s→1

[
ζ(s) − 1

s − 1

]
= −Γ′(1)

Γ(1)
= γ ≈ 0.577. (3.8)

We now take a different approach and follow Riemann (cf. [9]) by using contour integration to develop
the analytic continuation of ζ1/2(s) . This will not only allow us to make precise our earlier statement about
ζ1/2(s) having an infinite number of poles but also make explicit the role of the zeros of the error function
in determining the values of ζ1/2(s) at negative integers.

To this end consider the contour integral

I(s) =
1

2πi

∫

γ

2(−w)2s−1e−w2

√
πerf(w)

dw

w
, (3.9)

where the contour γ is taken to be along the real axis from ∞ to δ > 0, then counterclockwise around the
circle of radius δ, and lastly along the real axis from δ to ∞ (cf. Figure 1). Moreover, we let −w have
argument −π backwards along ∞ to δ and argument π when going to ∞. Also, we choose the radius δ to
be sufficiently small so that there are no roots of erf(w) = 0 inside the circle of radius δ besides the trivial
root z0 = 0. This follows from the fact that z0 = 0 is an isolated zero. It is then clear from this assumption
that I(s) must converge for all complex s and therefore defines an entire function. Also, since we are most
interested in the properties of I(s) in the limiting case when δ → 0, we will write I(s) to denote limδ→0 I(s).
No confusion should arise from this abuse of notation.

We begin by evaluating I(s) at integer values of s. To this end, we decompose it as follows:

I(s) =
1

2πi

∫ δ

∞

2e(2s−1)(logx−πi)−w2

√
πerf(w)

dx

x

+
1

2πi

∫

|w|=δ

2(−w)2s−1e−w2

√
πerf(w)

dw

w
(3.10)

+
1

2πi

∫ ∞

δ

2e(2s−1)(logx+πi)−w2

√
πerf(w)

dx

x
.
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Figure 1. Contour γ.

Now, for s = n/2, where n is an integer, the two integrations along the real axis in (3.10) cancel and we are
left with just the middle integral around the circle of radius δ:

I(n) =
1

2πi

∫

|w|=δ

2(−w)2s−1e−w2

√
πerf(w)

dw

w
.

Since the expression we−w2
/erf(w) inside the integrand has a removable singularity at the origin, it follows

by Cauchy’s Theorem that for integers n ≥ 3,

I(n/2) = 0.

As for integers n ≤ 2, we consider the power series expansion

2we−w2

√
πerf(w)

=
∞∑

m=0

B1/2,m

m!
wm. (3.11)

It now follows from the Residue Theorem that

I(n) =
1

2πi

∫

|w|=δ

2(−w)2s−1e−w2

√
πerf(w)

dw

w

=
(−1)2n−1

2πi

∫

|w|=δ

(
∞∑

m=0

B1/2,m

m!
wm

)
dw

w3−2n
(3.12)

= −
B1/2,2−2n

(2 − 2n)!
.

Remark 3.3. The coefficients B1/2,n generalize the Bernoulli numbers Bn, which arise in the case of the
Riemann zeta function. Observe that B1/2,n = 0 for n odd since we−w2

/erf(w) is an even function. For n
even, Bn can be found recursively by the relation

B1/2,0 = 1,

n∑

m=0

(−1)mn!B1/2,2m

(2m!)(n − m)!(2(n − m) + 1)
= 1 (n ≥ 1).

Here are the first few values of B1/2,n:

B1/2,0 = 1, B1/2,2 = −4/3, B1/2,4 = 64/15,
B1/2,6 = −256/21, B1/2,8 = −4096/45, B1/2,10 = 81920/33
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We now express ζ1/2(s) in terms of I(s). For <(s) = σ > 1, the middle integral in (3.10) goes to zero as
δ → 0. It follows that

I(s) =
(

eπi(2s−1) − e−πi(2s−1)

2πi

)∫ ∞

0

2x2(s−1)e−x2

√
πerf(x)

dx

=
sin [π(2s − 1)]Γ(s − 1/2)ζ1/2(s)

π3/2

=
2 cos [π(s − 1/2)] sin [π(s − 1/2)]Γ(s − 1/2)ζ1/2(s)

π3/2
.

Now, by using the functional equation for the gamma function,

Γ(1 − (s − 1/2))Γ(s − 1/2) =
π

sin[π(s − 1/2)]
,

and the fact that Γ(3/2) =
√

π/2 we obtain

ζ1/2(s) =
Γ(3/2)Γ(1 − (s − 1/2))I(s)

cos [π(s − 1/2)]
. (3.13)

Remark 3.4. Equation (3.13) implies that the zeros of IN (s) at positive integers n > 1 are simple since we
know by definition that ζ1/2(n) > 0 for n > 1.

Here is another consequence of (3.13), which we state as

Theorem 3.3. ζ1/2(s) is analytic on the entire complex plane except for simple poles at {1, 0,−1,−2, · · ·}
whose residues are

Res
(
ζ1/2(s), s = n

)
=

Γ(3/2)B1/2,2−2n

(2 − 2n)!Γ(n − 1/2)
(2 − N ≤ n ≤ 1). (3.14)

Furthermore, for half-integers (2n + 1)/2 less than 1, we have

ζ1/2((2n + 1)/2) = 0 (n = 0,−1,−2, · · ·) (3.15)

Proof. Since Γ(1 − (s − 1/2)) has only simple poles at s = 3/2, 5/2, · · ·, which are cancelled by the zeros of
I(s) at s = 3/2, 2, 5/2, · · ·, and cos [π(s − 1/2)] has simple zeros at the integers, it follows from (3.13) that
ζ1/2(s) is analytic on the whole plane except for simple poles at s = 1, 0,−1,−2, · · ·. Recalling the fact that
Γ(3/2) =

√
π/2, it follows from (3.12) that the residue of ζN (s) at these poles are

Res
(
ζ1/2(s), s = n

)
= lim

s→n
(s − n)ζ1/2(s)

= Γ(3/2)Γ(1 − (n − 1/2))I(n) lim
s→n

(s − n)
cos [π(s − 1/2)]

=
Γ(3/2)B1/2,2−2nΓ(1 − (n − 1/2))

π(2 − 2n)! sin [π(n − 1/2)]

=
Γ(3/2)B1/2,2−2n

(2 − 2n)!Γ(n− 1/2)
which proves (3.14). For half-integers s = (2n + 1)/2, we have from Remark 3.3 that

ζ1/2((2n + 1)/2) =
Γ(3/2)Γ(1− ((2n + 1)/2− 1/2))I((2n + 1)/2)

cos [π((2n + 1)/2− 1/2)]

= −
Γ(3/2)B1/2,1−2nΓ(1 − n)

(2 − n)! cos(πn)
= 0

which is (3.15) . This completes the proof the theorem. �
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Figure 2. Contour γM .

4. PRE-FUNCTIONAL EQUATION

In the present section, we discuss a pre-functional equation satisfied by ζ1/2(s). Let γM be the annulus-
shaped contour consisting of two concentric circles centered at the origin, the outer circle having radius
(2M + 1)π and the inner circle having radius δ < π (cf. Figure 2). The outer circle is traversed clockwise,
the inner circle counterclockwise and the radial segment along the positive real axis is traversed in both
directions. Then define

IγM (s) =
1

2πi

∫

γM

2(−z)2s−1e−z2

√
πerf(z)

dz

z
. (4.1)

We claim that IγM (s) converges to I(s) defined by (3.9) as M → ∞ for <(s) < 0. To prove this, observe
that the portion of IγM (s) around the outer circle tends to zero as M → ∞ on the same domain. This
is because on the outer circle defined by |z| = (2M + 1)π we have that

∣∣∣(−z)2s−1e−z2
/erf(z)

∣∣∣ is bounded
independently of M and s. Therefore,

I(s) = lim
M→∞

IγM (s). (4.2)

On the other hand, we have by residue theory

IγM (s) =
K∑

k=1

[
Res

(
2(−z)2s−2e−z2

√
πerf(z)

, z = zk, z̄k,−zk,−z̄

)]
. (4.3)

Here, zk = rkeiθk , z̄k, −zk, and −z̄k are simple roots of erf(z) = 0 (with zk chosen to be in the first quadrant)
and K = KM is the number of such roots inside γM that are in the first quadrant. Moreover, we arrange
the roots in ascending order so that |z1| < |z2| < |z3| < · · · , since none of the roots can have the same length
(see Appendix). Now, to evaluate the residues, we call upon Cauchy’s Integral Formula:

Res

(
2(−z)2s−2e−z2

√
πerf(z)

, z = zk

)
= (−zk)2s−2e−z2

k lim
z→zk

2(z − zk)√
πerf(z)

.

But then

lim
z→zk

2(z − zk)√
πerf(z)

=
1

e−z2
k

.



THE ERROR ZETA FUNCTION 9

It follows that

Res

(
2(−z)2s−2e−z2

√
πerf(z)

, z = zk

)
= (−zk)2s−2.

Therefore,

IγM (s) =
K∑

k=1

[
z2s−2
k + z̄2s−2

k + (−zk)2s−2 + (−z̄k)2s−2
]

= 2
K∑

k=1

r2s−2
k {cos [2(s − 1)θk] + cos [2(s − 1)(π − θk)]} . (4.4)

Since K → ∞ as M → ∞, we have by (4.2) and (4.4),

I(s) = lim
M→∞

IγM (s)

= 2
∞∑

k=1

r2s−2
k {cos [2(s − 1)θk] + cos [2(s − 1)(π − θk)]} . (4.5)

Combining (3.13) and (4.5) we have proved

Theorem 4.1. For <(s) < 0,

ζ1/2(s) =
Γ(1/2)Γ(1− (s − 1/2))

cos [π(s − 1/2)]

∞∑

k=1

r2s−2
k {cos [2(s − 1)θk] + cos [2(s − 1)(π − θk)]} . (4.6)

Remark 4.1.
(a) Observe that (4.6) resembles the pre-functional equation for hypergeometric zeta functions:

ζN (s) = 2(−1)N−1(N − 1)!Γ(1− (s + N − 1))
∞∑

k=1

rs−1
k cos [(s − 1)(π − θk)] . (4.7)

(b) Observe that the series appearing in (4.6) vanishes at half integers less than 1. These zeros are the
‘trivial’ zeros of ζ1/2(s) described by (3.15).

(c) The first 10 nonzero roots {zk} of erf(z) = 0 are listed in the Appendix.

Lastly we establish a connection between ζ1/2(s) and the classical zeta function.

Theorem 4.2. For <(s) < 0, we have

∣∣ζ1/2(s)
∣∣ <

∣∣∣∣
Γ(1/2)Γ(1 − (s − 1/2))(e|=(s)θ1| + e|3π=(s)/4|)

(2π)1−s cos [π(s − 1/2)]

∣∣∣∣ ζ(1 −<(s), 7/8). (4.8)

Proof. The argument essentially rests on bounds for the zeros of erf(z) = 0 established in the Appendix.
In particular, for each positive integer k, there exists precisely one zero zk = rkeiθk whose magnitude is
bounded by

rk >
√

2π(k − 1/8). (4.9)

It follows that the zeros in the first quadrant satisfying (4.9), their cousins in the other three quadrants, and
z = 0 exhaust all the roots of erf(z) = 0.

Now, using the fact that the angles {θk} are monotonically decreasing to π/4, we have

| cos [(s − 1)θk] | ≤ e|=(s)θk| < e|=(s)θ1|,

| cos [(s − 1)(π − θk)] | ≤ e|=(s)(π−θk)| < e|3π=(s)/4|.
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Therefore, by (4.6) and (4.9), for <(s) < 0, the following bound is achieved:

|ζ1/2(s)| =

∣∣∣∣∣
Γ(1/2)Γ(1− (s − 1/2))

cos [π(s − 1/2)]

∞∑

k=1

r2s−2
k {cos [2(s − 1)θk] + cos [2(s − 1)(π − θk)]}

∣∣∣∣∣

≤
∣∣∣∣
Γ(1/2)Γ(1− (s − 1/2))(e|=(s)θ1| + e|3π=(s)/4|)

cos [π(s − 1/2)]

∣∣∣∣
∞∑

k=1

1

r
2−2<(s)
k

<

∣∣∣∣
Γ(1/2)Γ(1− (s − 1/2))(e|=(s)θ1| + e|3π=(s)/4|)

(2π)1−s cos [π(s − 1/2)]

∣∣∣∣
∞∑

k=1

1
(k − 1/8)1−<(s)

<

∣∣∣∣
Γ(1/2)Γ(1− (s − 1/2))(e|=(s)θ1| + e|3π=(s)/4|)

(2π)1−s cos [π(s − 1/2)]

∣∣∣∣ ζ(1 − <(s), 7/8).

This completes the proof. �

5. APPENDIX

According to [2], the complex roots of erf(z) = 0, z = x + iy, satisfy

2xy = 2nπ − β, n = 1, 2, ..., (5.1)

where 0 ≤ β < π/4. Therefore,

r2 = |z|2 = x2 + y2 > 2xy = 2nπ − β > 2nπ − π/4 (5.2)

Hence, we may arrange the roots {zk} so that

rk >
√

2π(n − 1/8) (5.3)

Table 1 lists the first ten zeros of erf(z) = 0. These values were computed using the software program
Mathematica.
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k zk rk θk

1 1.450616163 + 1.880943000i 2.375338675 0.9138537276
2 2.244659274 + 2.616575141i 3.447457139 0.8617558815
3 2.839741047 + 3.175628100i 4.260134158 0.8411783838
4 3.335460735 + 3.646174376i 4.941648096 0.8298732386
5 3.769005567 + 4.060697234i 5.540276617 0.8226354431
6 4.158998400 + 4.435571444i 6.080424469 0.8175670375
7 4.516319400 + 4.780447644i 6.576459579 0.8138012859
8 4.847970309 + 5.101588044i 7.037685464 0.8108829957
9 5.158767911 + 5.403332686i 7.470534818 0.8085489637
10 5.452192209 + 5.688837465i 7.879674587 0.8066358482

Table 1. First ten nonzero roots of erf(z) = 0 in the first quadrant of the complex plane.


