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Abstract. There are two analytic approaches to Bernoulli polynomials Bn(x): either by way of the gener-
ating function zexz/(ez − 1) =

∑
Bn(x)zn/n! or as an Appell sequence with zero mean. In this article we

discuss a generalization of Bernoulli polynomials defined by the generating function zN exz/(ez −TN−1(z)),
where TN(z) denotes the N -th Maclaurin polynomial of ez , and establish an equivalent definition in terms

of Appell sequences with zero moments in complete analogy to their classical counterpart. The zero-moment
condition is further shown to generalize to Bernoulli polynomials generated by the confluent hypergeometric

series.

1. INTRODUCTION

There are two analytic approaches to Bernoulli polynomials. One approach, initiated by Euler, defines
them through the generating function

zexz

ez − 1
=

∞∑

n=0

Bn(x)
zn

n!
, (1.1)

where Bn(x) denotes the Bernoulli polynomial of degree n. Here are the first few:

B0(x) = 1,

B1(x) = x − 1/2,

B2(x) = x2 − x + 1/6,

B3(x) = x3 − 3x2/2 + x/2.

The corresponding Bernoulli numbers are given by Bn = Bn(0).
A second approach to Bernoulli polynomials is to define them as an Appell sequence with zero mean:

B0(x) = 1, (1.2)
B′

n(x) = nBn−1(x), (1.3)
∫ 1

0

Bn(x)dx =
{

1 n = 0
0 n > 0 . (1.4)

F. T. Howard in [4] considered the following generalization of Bernoulli polynomials:

z2exz/2
ez − 1 − z

=
∞∑

n=0

An(x)
zn

n!
, (1.5)

and more generally,
zN exz/N !

ez − TN−1(z)
=

∞∑

n=0

Bn(N, x)
zn

n!
, (1.6)
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where TN (z) =
∑N

n=0 zn/n! and N is any positive integer. For the cases N = 1 and N = 2, (1.6) reduces to
(1.1) and (1.5), respectively. Here are the first few polynomials when N = 2:

B0(2, x) = 1,

B1(2, x) = x − 1/3,

B2(2, x) = x2 − 2x/3 + 1/18,

B3(2, x) = x3 − x2 + x/6 + 1/90.

It was shown in [4], [5], and [6] that the polynomials Bn(N, x), referred to here as hypergeometric Bernoulli
polynomials, and their corresponding numbers, Bn(N ) = Bn(N, 0), share many number-theoretic properties
with their classical counterpart, including its intimate connection with Riemann’s zeta function. Indeed, a
theory of hypergeometric zeta functions has been developed by us in [3], where these functions are shown to
take on values expressed in terms of hypergeometric Bernoulli numbers at sufficiently large negative integers.

In this paper we establish the following equivalent definition of hypergeometric Bernoulli polynomials in
terms of Appell sequences with zero moments, in complete analogy to (1.2)-(1.4):

B0(N, x) = 1, (1.7)
B′

n(N, x) = nBn−1(N, x), (1.8)
∫ 1

0

(1 − x)N−1Bn(N, x)dx =
{

1/N n = 0
0 n > 0 . (1.9)

The integral condition (1.9) can be extended even further to resemble the beta function. Toward this
end, we consider a generalization of Bernoulli polynomials based on the confluent hypergeometric series
1F1(M, M + N, z), first discussed by K. Dilcher [2]:

exz

1F1(M, M + N, z)
=

∞∑

n=0

Bn(M, N, x)
zn

n!
. (1.10)

We end by demonstrating that the polynomials Bn(M, N, x) satisfy the following integral condition:
∫ 1

0

xM−1(1 − x)N−1Bn(M, N, x)dx =
{ Γ(M)Γ(N)

Γ(M+N) n = 0,

0 n > 0.
(1.11)

This paper is organized as follows. In section 2, we review Appell sequences and demonstrate that the two
analytic definitions of hypergeometric Bernoulli polynomials are equivalent. In section three, we generalize
the integral condition to Bernoulli polynomials derived from the confluent hypergeometric series.

2. Appell sequences

A sequence of polynomials {Pn(x)} is called an Appell sequence if it satisfies

P0(x) = 1,

P ′
n(x) = nPn−1(x).

Moreover, if {Pn(x)} is generated by the function

G(x, z) =
∞∑

n=0

Pn(x)
zn

n!
, (2.1)

and G(x, z) is a real analytic function in x, then
∂G

∂x
= zG(x, z).

It follows that
G(x, z) = exzg(z), (2.2)
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where the function g(z) is arbitrary unless additional constraints are given. We are now ready to state our
main result.

Theorem 2.1. The two definitions of hypergeometric Bernoulli polynomials {Bn(N, x)} given by the gen-
erating function in (1.6) and the Appell sequence in (1.7)-(1.9) are equivalent.

Proof. Assume first that {Bn(N, x)} is the Appell sequence given by (1.7)-(1.9). Then define G(x, z) to be
its generating function:

G(x, z) =
∞∑

n=0

Bn(N, x)
zn

n!
. (2.3)

The series in (2.3) converges uniformly in x on [0, 1] for any |z| < 1/2. This follows from the following bound
on hypergeometric Bernoulli numbers (see [3]):

|Bn(N )| ≤ C
n!

(2π)n
, (2.4)

where C is a sufficiently large positive constant. Since

Bn(N, x) =
n∑

k=0

(
n

k

)
Bk(N )xn−k, (2.5)

we can bound Bn(N, x) on [0, 1] using (2.4):
∣∣∣∣Bn(N, x)

zn

n!

∣∣∣∣ ≤ zn
n∑

k=0

(
n

k

)
|Bk(N )|

n!

≤ Czn
n∑

k=0

(
n

k

)
k!

n!(2π)k

≤ C

2π
zn

n∑

k=0

(
n

k

)

≤
C

2π
(2z)n.

It follows for |z| < 1/2 that ∣∣∣∣∣
∞∑

n=0

Bn(N, x)
zn

n!

∣∣∣∣∣ ≤
C

2π

∞∑

n=0

(2z)n < ∞. (2.6)

Thus G(x, z) converges uniformly in x on [0, 1].
From (2.2) we have G(x, z) = exzg(z). The function g(z) can now be found by integrating (2.3) with

weight (1 − x)N−1:
∫ 1

0

(1 − x)N−1g(z)exzdx =
∫ 1

0

(1 − x)N−1
∞∑

n=0

BN,n(x)
zn

n!
dx, (2.7)

Through induction on N and integration by parts, the left hand side above yields the closed formula
∫ 1

0

(1 − x)N−1g(z)exzdx = (N − 1)!
ez − TN−1(z)

zN
g(z). (2.8)

Now equate (2.7) and (2.8) and reverse the order of integration and summation to obtain

(N − 1)!
ez − TN−1(z)

zN
g(z) =

∞∑

n=0

(∫ 1

0

(1 − x)N−1BN,n(x)dx

)
zn

n!
. (2.9)
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But every integral except the first on the right hand side above must vanish because of (1.9). Therefore

(N − 1)!
ez − TN−1(z)

zN
g(z) =

1
N

,

which yields

g(z) =
zN /N !

ez − TN−1(z)
. (2.10)

By analytic continuation, (2.10) holds for all z ∈ C. Hence, {Bn(N, x)} satisfies (1.6) is desired.
Now assume on the other hand that {Bn(N, x)} is defined by (1.6). To establish properties (1.7)-(1.9),

we can of course employ uniqueness of power series expansions to argue that the only polynomials satisfying
such properties must be {Bn(N, x)}. However, we shall instead give a more explicit proof. To this end, we
first differentiate (1.6) with respect to x and re-index our series (since B′

0(x) = 0) to obtain

zN+1exz/N !
ez − TN−1(z)

=
∞∑

n=1

B′
n(N, x)

zn

n(n − 1)!
(2.11)

On the other hand,

zN+1exz/N !
ez − TN−1(z)

= z

∞∑

n=0

Bn(N, x)
zn

n!
=

∞∑

n=1

Bn−1(N, x)
zn

(n − 1)!
. (2.12)

Equating (2.11) and (2.12) then yields the derivative property (1.8).
To establish the other two conditions, we rewrite (1.6) as

exz =
ez − TN−1(z)

zN /N !

∞∑

n=0

Bn(N, x)
zn

n!
=

( ∞∑

m=0

zm

(N + 1)m

)( ∞∑

n=0

Bn(N, x)
zn

n!

)
,

where the Pochhammer symbol (N )m = N (N + 1)...(N + m − 1) refers to a rising factorial starting at N .
It follows from equating series cofficients that

xn

n!
=

n∑

m=0

Bm(N, x)
m!(N + 1)n−m

,

or, equivalently,

xn = N !
n∑

m=0

(
n

m

)
(n − m)!

(N + n − m)!
Bm(N, x). (2.13)

Now set n = 0 in the above equation to obtain property (1.7). Next, define hypergeometric Bernoulli numbers
by Bn(N ) = Bn(N, 0), or equivalently,

zN/N !
ez − TN−1(z)

=
∞∑

n=0

Bn(N )
zn

n!
. (2.14)

Next

exz
∞∑

n=0

Bn(N )
zn

n!
=

∞∑

n=0

Bn(N, x)
zn

n!

follows by comparison of 2.14 with 1.6. Then equating series cofficients yields

Bn(N, x) =
n∑

k=0

(
n

k

)
Bk(N )xn−k. (2.15)



HYPERGEOMETRIC BERNOULLI POLYNOMIALS AND APPELL SEQUENCES 5

Therefore by integrating (2.15) with weight (1 − x)N−1 we obtain
∫ 1

0

(1 − x)N−1Bn(N, x)dx =
n∑

k=0

(
n

k

)
Bk(N )

∫ 1

0

(1 − x)N−1xn−kdx. (2.16)

To simplify the right hand side above we first evaluate the beta integral that appears in terms of factorials
(valid for non-negative exponents):

∫ 1

0

(1 − x)N−1xn−kdx =
(N − 1)!(n − k)!

(N + n − k)!
. (2.17)

Then equating (2.16) and (2.17) produces our result:
∫ 1

0

(1 − x)N−1Bn(N, x)dx = (N − 1)!
n∑

k=0

(
n

k

)
(n − k)!

(N + n − k)!
Bk(N )

=
{

1/N n = 0,
0 n > 0.

Here, we have applied the recurrence relation (see [5] and [6])
n∑

k=0

(
n

k

)
(n − k)!

(N + n − k)!
Bk(N ) =

{
1/N ! n = 0,

0 n > 0,

which follows from (2.13). This completes our proof. �

3. The Confluent Hypergeometric Series

Observe that the generating function in (1.6) can be expressed in terms of the confluent hypergeometric
function:

zN exz/N !
ez − TN−1(z)

=
exz

1F1(1, N + 1, x)
. (3.1)

Here, 1F1(a, b, z) =
∑∞

n=0
(a)n

(b)n

zn

n!
is the confluent hypergeometric function. We can therefore use (3.1) to

define hypergeometric Bernoulli polynomials in two continuous parameters, a generalization introduced by
K. Dilcher [2]:

exz

1F1(M, M + N, z)
=

∞∑

n=0

Bn(M, N, x)
zn

n!
. (3.2)

For M = 0 and N a positive integer, we have Bn(0, N, x) = Bn(N, x), where Bn(N, x) are hypergeometric
Bernoulli polynomials defined by (1.6). For M = s+1 and N = r+1, where r and s are nonnegative integers,
we have Bn(s − 1, r − 1, x) = B

(r,s)
n (x), where B

(r,s)
n (x) are Bernoulli-Padé polynomials defined using Padé

approximants of ex (see [1] and [2]).
We conclude by demonstrating that these hypergeometric Bernoulli polynomials Bn(M, N, x) of order

(M, N ) satisfy the following integral condition, which generalizes (1.9):

Theorem 3.1. For real M > 0 and N > 0,
∫ 1

0

xM−1(1 − x)N−1Bn(M, N, x)dx =
{ Γ(M)Γ(N)

Γ(M+N)
n = 0,

0 n > 0.
(3.3)

Proof. Following the proof of Theorem 2.1, we first rewrite (3.2) as

exz = 1F1(M, M + N, x)
∞∑

n=0

Bn(M, N, x)
zn

n!
. (3.4)
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Then equating coefficients yields

xn =
Γ(M + N )

Γ(M )

n∑

k=0

(
n

k

)
Γ(M + n − k)

Γ(M + N + n − m)
Bk(M, N, x). (3.5)

Moreover, (2.15) continues to hold for Bn(M, N, x):

Bn(M, N, x) =
n∑

k=0

(
n

k

)
Bk(M, N )xn−k. (3.6)

It follows from (3.5) and (3.6) that
∫ 1

0

xM−1(1 − x)N−1Bn(M, N, x)dx =
n∑

k=0

(
n

k

)
Bk(M, N )

∫ 1

0

(1 − x)N−1xM+n−k−1dx

= Γ(N )
n∑

k=0

(
n

k

)
Γ(M + n − k)

Γ(M + N + n − k)
Bk(M, N )

=
{ Γ(M)Γ(N)

Γ(M+N) n = 0,

0 n > 0.

�

Remark 3.1. Observe that (3.5) and (3.6) are inversions of each other. Moreover, Theorem 3.1 reduces to
the beta function B(M, N ) for the case n = 0:

B(M, N ) =
∫ 1

0

xM−1(1 − x)N−1dx =
Γ(M )Γ(N )
Γ(M + N )

. (3.7)
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