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Abstract. In this article we shall determine the automorphic integrals of
positive and negative integral weight associated with the full modular group
and some Hecke groups. This will be done by using the Hecke Correspondence.
We will also give a characterization of multiplier systems of real weight for
Hecke groups.

1. Introduction

Roughly speaking, Hamburger’s Theorem states that the Riemann zeta
function is uniquely determined by its functional equation. More precisely,

Theorem 1.1. (Hamburger’s Theorem) Let

R(s) = π−sΓ(s)φ(s), φ(s) =
∞∑

n=1

ann
−s, (1)

where an = O (nγ) , n→∞, γ > 0.
Suppose
(i) there exists a polynomial p(s) such that p(s)φ(s) is entire and of finite order.
(ii) φ

(
s
2

)
is also a Dirichlet series convergent in some half plane.

If R(s) satisfies the functional equation

R

(
1
2
− s

)
= R(s),

then φ(s) = Cζ(2s) for some constant C.

Hecke gave the following version of the Hamburger’s Theorem:

Theorem 1.2. With φ(s) and R(s) as in (1) , suppose
(
s− 1

2

)
φ(s) is entire and

of finite order. If R
(

1
2 − s

)
= R(s), then φ(s) = Cζ(2s) for some constant C.

The significance of Hecke’s version is that we are not assuming that φ
(

s
2

)
is a

Dirichlet series. Suppose we assume that only φ(s) is a Dirichlet series and that
p(s)φ(s) is entire and of finite order for some polynomial p(s). Does the conclusion
of Hamburger’s Theorem still hold? Recently, M. Knopp in [12] answered this ques-
tion in the negative. He showed that there are infinitely many linearly independent
solutions of the functional equation by showing the existence of infinitely many
automorphic integrals. In fact he was able to generalize this result to the following
more general setup.
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Suppose λ > 0 and define

Rλ (s) =
(

2π
λ

)−s

Γ (s)φ (s) , φ(s) =
∞∑

n=1

ann
−s.

Also the functional equation generalizes to

Rλ (k − s) = Ceπik/2Rλ (s) , |C| = 1.

Knopp showed that there are infinitely many linearly independent solutions of
this functional equation when λ ≥ 2 and k is any real number. It is the objective
of this article to investigate the case when λ = 2 cosπθ, where 0 < θ < 1

2 . This will
be done by deteriming the necessary conditions for the existence of automorphic
integrals corresponding to the Dirichlet series. To this end, following M. Knopp,
we apply the Hecke correspondence. This was first used by Riemann, developed by
Hecke in [7] and then by Bochner in [1]. Here we state it as generalized by Weil in
[20], and following Weil we shall refer to it in the sequel as Hecke’s Lemma.

Lemma 1.1. (Riemann-Hecke-Bochner-Weil Correspondence) Let f and g
be continuous functions on (0,∞) such that

f (y) , g (1/y) = O
(
e−ay

)
, y → ∞, a > 0

f (y) , g (1/y) = O
(
y−b
)
, y → 0, b > 0.

Throughout, we shall write s = σ + it where σ and t are real numbers. Define

Φ (s) =
∫ ∞

0

f (y) ys−1dy and Ψ(s) =
∫ ∞

0

g (y) ys−1dy.

Assume that for some σ0 > b, σ′o < −b,
Φ (σ0 + it) = O

(
|t|−2

)
and Ψ(σ′0 + it) = O

(
|t|−2

)
as |t| → ∞.

Let Q (s) be a rational function which vanishes at infinity and let s1, · · · , sm be the
poles of Q. Assume that σ′0 ≤ Re(sν) ≤ σ0 for each ν.
Then the following are equivalent:
(A) f (y) − g (y) =

∑m
ν=1Res (Q (s) y−s, sν) ;

(B) Φ (s) − Q (s) and Ψ(s) − Q (s) can be continued to the same entire
function F (s) which is bounded in every vertical strip.

Here Res (Q (s) y−s, sν) is the residue of Q (s) y−s at sν .

Remark 1.1 Let Q (z) =
∑m

ν=1

{
b(ν,0)

(z−sν)nν + · · ·+ b(ν,nν−1)
(z−sν)

}
, be a rational func-

tion with b(ν, 0) 6= 0. Then it can easily be seen that

m∑
ν=1

Res
(
Q (z) y−z, sν

)
=

m∑
ν=1

nν−1∑
j=0

(−1)j

j!
b (ν, nν − j − 1) (log y)j

y−sν ; (2)

which is a sum of the form

q (z) =
m∑

j=1

nj∑
t=0

c (j, t) (log z)t
zγj .

Knopp has called these functions log-polynomial sums. He used these sums to
show that the conditions in Hamburger’s Theorem cannot be relaxed without los-
ing uniqueness (Theorems 1 and 2 in ). In[1] , Bochner introduced a more general
class of functions which he called residual functions and showed that log-polynomial
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sums are instances of residual functions (Lemma 1 in [1]).

A log-polynomial sum q(z) is called a Log-Polynomial Period Function(LPPF)
of weight 2k and multiplier system v for Hecke group G(λ), λ = 2 cosπθ, θ = 1

p , p
is an integer greater than 2, if there is exists a function F defined and holomorphic
in the complex upper half plane satisfying

e−2πiκF (z + λ) = F (z) and v (T ) z−2kF

(
−1
z

)
= F (z) + q (z) ,

with e2πiκ = v (Sλ) .

In this paper we will characterize, completely, LPPFs of weight 2k for the fol-
lowing cases; (1) k ≥ 1 and κ = 0, (2) k > 0 and κ 6= 0, (3) k ≥ 0, 2k ∈ Z and
κ = 0, and (4) k ≤ 0 and κ > 0.

Hecke’s Lemma is most frequently stated in a manner that illustrates the under-
lying group and the weight of the modular form. We record this in a slightly more
general form in the following corollary.

Corollary 1.1. Let λ > 0 and k be a real number. Let an and bn be complex
numbers such that

an, bn = O (nc) as n→∞, for some c > 0.

Define

φ (s) =
∞∑

n=1

ann
−s, ψ (s) =

∞∑
n=1

bnn
−s;

Φ1 (s) =
(

2π
λ

)−s

Γ (s)φ (s) , Ψ1 (s) =
(

2π
λ

)−s

Γ (s)ψ (s) ;

F (z) =
∞∑

n=0

ane
2πinz/λ, G (z) =

∞∑
n=0

bne
2πinz/λ.

Then the following are equivalent:
(A) z−2kG (−1/z) = F (z) ;
(B) Φ1 (s) + a0

s + e−πikb0
2k−s is entire and

Φ1 (s) = e−πikΨ1 (2k − s) .

Proof: Put f (y) = F (iy) − a0, g (y) = e−πiky−2k {G (i/y)− b0} and Q (s) =
−a0

s + e−πikb0
s−2k . From (2) we obtain

Res
(
Q (s) y−s, 0

)
+Res

(
Q (s) y−s, 2k

)
= −a0 + e−πikb0y

−2k.

Thus (A) is equivalent to

f (y)− g (y) =
m∑

ν=1

Res
(
Q (s) y−s, sν

)
.

It is clear that

Φ (s) =
∫ ∞

0

f(y)ys−1dy = Φ1 (s)
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and

Ψ (s) =
∫ ∞

0

g(y)ys−1dy = e−πikΨ1 (2k − s) .

By Stirling’s formula Φ and Ψ satisfy the growth condition in Hecke’s Lemma. We
now apply Hecke’s Lemma and analytic continuation.

The following corollary of Hecke’s Lemma contains the correspondence as used
by Knopp in [12] when applied to automorphic integrals. As Knopp pointed out
in [12], the residual functions of Bochner that are associated with automorphic
integrals and Dirichlet series are log-polynomial sums. In this paper we shall apply
this corollary in the case when λ1 = λ2 = λ and G = v̄ (T )F .

Corollary 1.2. Let λ1, λ2 > 0, k a real number, γj and c (j, t) be complex numbers
and let t, j,m, and nj be nonnegative integers. Let an and bn be complex numbers
such that

an, bn = O (nc) as n→∞, for some c > 0.
Define

φ (s) =
∞∑

n=1

ann
−s, ψ (s) =

∞∑
n=1

bnn
−s;

Φ2 (s) =
(

2π
λ1

)−s

Γ (s)φ (s) , Ψ2 (s) =
(

2π
λ2

)−s

Γ (s)ψ (s) ;

F (z) =
∞∑

n=0

ane
2πiz/λ1 , G (z) =

∞∑
n=0

bne
2πiz/λ2 ;

Q (s) =
m∑

j=1

nj∑
t=0

d (j, t)
(s− γj)

nj−t+1 −
a0

s
+
e−πikb0
s− 2k

, q (z) =
m∑

j=1

nj∑
t=0

c (j, t) (log z)t
zγj .

Then the following are equivalent:
(A) z−2kG (−1/z) = F (z) + q (z) ;
(B) Φ2 (s) − Q (s) and Ψ2 (s) − Q (s) can be continued to the same entire
function which is bounded in every lacunary vertical strip:

σ1 ≤ σ ≤ σ2, |Im (s) | ≥ t0 > 0,

and they satisfy the functional equation

Φ2 (s) = e−πikΨ2 (2k − s) .

Proof: Put f(y) = F (iy) − a0 and g(y) = e−πiky−2k (G (i/y)− b0). Again by
(2), we see that (A) becomes

f (y)− g (y) = −a0 + e−πikb0y
−2k − q (iy) =

m∑
ν=1

Res
(
Q (s) y−s, sν

)
.

(Note that d (j, t) can be calculated from (2).) The rest of the argument is the same
as that of the proof of Corollary 1.1.

Observe that in Corollary 1.2, if we take G = v̄ (T )F and λ1 = λ2 = λ, then the
term zγj (log z)nj in the log-polynomial sum gives rise to a pole of order nj +1 at γj

for the Dirichlet series (with the Γ-factor), and conversely. Thus the determination
of Dirichlet series with functional equation amounts to finding log-polynomial sums
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which are period functions in the sense introduced by Knopp.

Other applications of Hecke’s Lemma can be found in [20]. Among other things
Weil shows that Hecke’s Lemma can be used to obtain modular integrals with
polynomial period functions. In other words, Eichler’s integrals can be obtained
from modular forms by manipulating the functional equations of the Dirichlet series
and then applying Hecke’s Lemma.

In the next two sections we shall be dealing with log-polynomial sums as period
functions for the discrete Hecke groups. In Section 2 we will discuss multiplier
systems and define automorphic integrals with log-polynomial period functions,
and in Section 3 we will characterize those periods of positive weight greater than
or equal to 2 and negative integral weight. In some cases we will obtain the complete
result for all positive weight (See Theorems 3.1 and 3.3) and give the general form
of these periods for nonintegral negative weights.

2. MULTIPLIER SYSTEMS AND LOG-POLYNOMIAL PERIOD
FUNCTIONS

2.1. Multiplier Systems for the Hecke Groups. In what follows, k will
be a fixed real number. We shall denote by Z, C, and H, the set of integers, the set
of complex numbers and the upper half-plane, respectively. For z ∈ C, we assume
that −π ≤ arg z < π and define

(cz + d)r = |cz + d|r exp {ri arg (cz + d)} , (3)

where r, c, d are real numbers.
Let λ > 0. The Hecke group G (λ) is the group generated by

Sλ =
(

1 λ
0 1

)
and T =

(
0 −1
1 0

)
.

G (λ) acts on H by Mz = az+b
cz+d , where M =

(
a b
c d

)
∈ G (λ) and z ∈ H. In

this case we identify M with its negative −M and consider the elements of G (λ)
as fractional linear transformations.

A multiplier system in weight 2k for G (λ) is a complex-valued function v defined
on G (λ) such that the following two properties hold:

|v (M) | = 1 ∀M ∈ G (λ) , (4)

v (M3) (c3z + d3)
2k = v (M1) v (M2) (c1M2z + d1)

2k (c2z + d2)
2k
, (5)

for allM1, M2 ∈ G (λ) , M3 = M1M2, Mj =
(
aj bj
cj dj

)
, j = 1, 2, 3, and ∀z ∈ H.

Remark 2.1 (i) Condition ( 5) is sometimes called the consistency condition.
(ii) By taking M1 = M2 = I in ( 5), we get v (I) = v (I)2 and by ( 4) we conclude
that v (I) = 1. If we take M1 = M2 = −I in ( 5), we get v (−I) (−1)2k = ±1.

Lemma 2.1. Let v be a multipier system in weight 2k for G (λ) such that v (−I) (−1)2k =
1. Then, with v (Sλ) = e2πiκ, 0 ≤ κ < 1, we have

(i) v (T ) = ±e−πik, (ii) v
(
TS−1

λ T
)

= e2πi(k−κ), (iii) v
(
−TS−1

λ T
)

= e−2πiκ.
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Proof : (i) Let M1 = M2 = T . Then M3 = T 2 = −I and hence for any z ∈ H,
we have

1 = v (−I) (−1)2k = v (T )2 z2k

(
−1
z

)2k

. (6)

If we let z = i in ( 6), we get v (T )2 i4k = 1, that is ,
(
v (T ) i2k

)2 = 1 and (i) follows
from ( 3).

(ii) Let M1 = T and M2 = S−1
λ T =

(
−λ −1
1 0

)
. Then M3 = TS−1

λ T =(
−1 0
−λ −1

)
and hence

v
(
TS−1

λ T
)
(−λz − 1)2k = v (T ) v

(
S−1

λ T
) (
S−1

λ Tz
)2k

z2k. (7)

On the other hand,
v
(
S−1

λ T
)
z2k = v

(
S−1

λ

)
v (T ) z2k. (8)

Substituting ( 8) in ( 7) yields

v
(
TS−1

λ T
)
(−λz − 1)2k = v (T )2 v

(
S−1

λ

) (
S−1

λ Tz
)2k

z2k. (9)

Dividing both sides of ( 9) by (−λz − 1)2k, we get

v
(
TS−1

λ T
)

= v (T )2 v
(
S−1

λ

) z2k
(
−λ− 1

z

)2k

(−λz − 1)2k
. (10)

By ( 3),

z2k
(
−λ− 1

z

)2k

(−λz − 1)2k

=
|z|2k | −λ− 1

z |
2k exp

{
2ki
(
arg z + arg

(
−λ− 1

z

))}
| − λz − 1|2k exp {2ki arg (−λz − 1)}

= exp
{

2ki
(

arg z + arg
(
−λ− 1

z

)
− arg (−λz − 1)

)}
. (11)

For z ∈ H, we have 0 < arg z < π, 0 < arg
(
−λ− 1

z

)
< 0 and − π <

arg (−λz − 1) < 0. Thus,

0 < arg z + arg
(
−λ− 1

z

)
− arg (−λz − 1) < 3π. (12)

On the other hand,

arg z + arg
(
−λ− 1

z

)
− arg (−λz − 1) ≡ arg

(
z
(
−λ− 1

z

)
−λz − 1

)
≡ arg 1 ≡ 0 (mod2π) . (13)

From ( 12) and ( 13) we obtain

arg z + arg
(
−λ− 1

z

)
− arg (−λz − 1) = 2π. (14)

Thus using ( 14) and ( 11) in ( 10) we conclude that

v
(
TS−1

λ T
)

= v (T )2 v
(
S−1

λ

)
e4πik.

Since v
(
S−1

λ

)
= v (Sλ)−1 = e−2πiκ and since v (T )2 e2πik = 1, (ii) follows.



LOG-POLYNOMIAL PERIOD FUNCTIONS FOR HECKE GROUPS 7

(iii) LetM1 = −I andM2 = TS−1
λ T. ThenM3 = M1M2 = −TS−1

λ T =
(

1 0
λ 1

)
,

and for any z ∈ H we have

v
(
−TS−1

λ T
)
(λz + 1)2k = v (−I) v

(
TS−1

λ T
)
(−1)2k (−λz − 1)2k

.

Since v (−I) (−1)2k = 1, we see that

v
(
−TS−1

λ T
)

= v
(
TS−1

λ T
) (−λz − 1)2k

(λz + 1)2k
.

By an argument similar to that in (ii) above, we can show that

(−λz − 1)2k

(λz + 1)2k
= e−2πik

and (iii) follows from this and (ii). This completes the proof of the lemma.

Remark 2.2 It is well-known (see [7] and [3]) that the only discrete Hecke groups
are those for which

λ ≥ 2 or λ = 2 cos (π/p) , p ∈ Z, p ≥ 3.

When
λ = 2 cos (π/p) , p ∈ Z, p ≥ 3, (15)

there are two relations between the generators Sλ and T of G (λ); namely,

T 2 = −I and (SλT )p = −I. (16)

The following lemma gives the relationship between the weight 2k, the multiplier
system v and λ. It also generalizes a similar relation for the case of the full modular
group given by Rademacher and Zuckerman in [16].

Lemma 2.2. Let v be a multiplier system in weight 2k for G (λ) such that v (−I) (−1)2k =
1 and let λ be given by ( 15) .
(i) If v (T ) = e−πik or p is even, then (p− 2) k − 2pκ is an even integer.
(ii) If v (T ) = −e−πik and p is odd, then (p− 2) k − 2pκ is an odd integer.

Proof : Let Vn = (SλT )n =
(
αn βn

γn δn

)
. Then by ( 16), Vp = −I = V1Vp−1,

and we have, for z ∈ H,

1 = v (−I) (−1)2k

= v (Vp) (−1)2k = v (V1) v (Vp−1) (γ1Vp−1z + δ1)
2k (γp−1z + δp−1)

2k

= v (V1) v (Vp−1) (Vp−1z)
2k (γp−1z + δp−1)

2k
,

since V1 = SλT =
(
λ −1
1 0

)
and hence γ1 = 1 and δ1 = 0. But Vp−1 = V1Vp−2.

Hence we have

v (Vp−1) (γp−1z + δp−1)
2k = v (V1) v (Vp−1) (γ1Vp−2z + δ1)

2k (γp−2z + δp−2)
2k

= v (V1) v (Vp−2) (Vp−2z)
2k (γp−2z + δp−2)

2k
.

Thus
1 = v (V1)

2 (Vp−1z)
2k (Vp−2z)

2k
v (Vp−2) (γp−2z + δp−2)

2k
.
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Proceeding inductively, we obtain

1 = v (V1)
p (Vp−1z)

2k (Vp−2z)
2k · · · (V1z)

2k
z2k. (17)

If we put z = eπi/p, then we have Vp−1z = Vp−2z = · · · = V1z = z = eπi/p. Sub-
stituting this in ( 17) and observing the fact that v (V1) = v (SλT ) = v (Sλ) v (T ) =
e2πiκv (T ), we get

v (T )p
e2πipκe2πik = 1. (18)

(i) If v (T ) = e−πik or p is an even integer, then v (T )p = e−πikp and ( 18) yields

e−πipk+2πipκ+2πik = 1;

that is, (p− 2) k − 2pκ is an even integer.
(ii) If v (T ) = −e−πik and p is an odd integer, then v (T )p = −e−πikp and ( 18)
gives

e−πipk+2πipκ+2πik = −1;

that is, (p− 2) k − 2pκ is an odd integer. This completes the proof.

2.2. Log-Polynomial Period Functions. A log-polynomial sum is a
function of the form

q (z) =
n∑

j=0

zγj

mj∑
t=0

c (j, t) (log z)t
, (19)

where γ1, . . . , γn and the coefficients c (j, t) are complex numbers, n, j, mj and t
are nonnegative integers. Here zα is defined by eα log z, where log z is the principal
branch of the logarithm function.

A log-polynomial sum q (z) is said to be a log-polynomial period function (LPPF)
of weight 2k and multiplier system v for the Hecke group G (λ) , if there exists a
function F defined and holomorphic in H such that:

e−2πiκF (z + λ) = F (z) , (20)

v̄ (T ) z−2kF

(
−1
z

)
= F (z) + q (z) , (21)

where e2πiκ = v (Sλ) .
A function F satisfying ( 20) and ( 21) is called an automorphic integral of weight

2k and multiplier system v for G (λ), if it has an exponential series expansion:

F (z) =
∞∑

n=0

ane
2πi(n+κ)z/λ, (22)

where an ∈ C and satisfy the growth condition

an = O (nc) as n→∞, c > 0. (23)

In this case we say that q is the log-polynomial period function of the automorphic
integral F .

If we use the slash operator |2k
v defined by(

F |2k
v M

)
(z) = v̄ (M) (cz + d)−2k

F (Mz) ,
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where M =
(
a b
c d

)
∈ G (λ) and z ∈ H, then ( 20) and ( 21) become

F |2k
v Sλ = F and F |2k

v T = F + q, (24)

respectively. It can be shown easily that the consistency condition ( 5) for a mul-
tiplier system v in weight 2k for G (λ) is equivalent to

F |2k
v M1M2 =

(
F |2k

v M1

)
|2k
v M2, (25)

where M1,M2 ∈ G (λ). From now on we shall write F |M for F |2k
v M.

Remark 2.3 The assumptions made in Lemmas 2.1 and 2.2 are no restrictions
of generality in the sense that if v (−I) (−1)2k = −1, then there is no nontrivial
LPPF corresponding to v. To see this, suppose that q is an LPPF of weight 2k and
multiplier system v for G (λ) . Then there exists F satisfying ( 20) and ( 21). From
the second equation in ( 24) we get,

F | (−I) = F | T 2 = (F | T ) | T = (F + q) | T = F | T + q | T = F + q + q | T.

That is,

v̄ (−I) (−1)2k
F (z) = F (z) + q (z) + v̄ (T ) z−2kq

(
−1
z

)
,

and hence (
v̄ (−I) (−1)2k − 1

)
F (z) = q (z) + v̄ (T ) z−2kq

(
−1
z

)
. (26)

Let us suppose that v (−I) (−1)2k = −1. Then ( 26) reduces to

−2F (z) = q (z) + v̄ (T ) z−2kq

(
−1
z

)
. (27)

Since q (z) + v̄ (T ) z−2kq
(
− 1

z

)
is a log-polynomial sum, ( 27) implies that F is of

the form

F (z) =
J∑

j=0

zδj

mj∑
t=0

d (j, t) (log z)t
.

If F is given by the above sum, then F (nλ) is well-defined for each n ∈ Z,
n 6= 0. From the fact that F (z + λ) = e2πiκF (z), we deduce that F (z + nλ) =
e2πinκF (z). Thus,

lim
z→0

F (z) = e−2πinκF (nλ) .

This implies that (i) Re(δj) > 0 or (ii) Re(δj) = 0 and mj = 0. Suppose
that (i) or (ii) holds. Let L = limz→0 F (z). Then the above limit yields F (nλ) =
Le2πinκ. This in turn implies that F is bounded as n→∞, and so Re(δj) = 0 with
mj = 0. In other words, (i) cannot occur. As we shall see in Section 3, Lemma 3.7,
limz→0 F (z) does not exist if F is of the form

F (z) =
J∑

j=0

djz
iuj ,

where u1, . . . , uJ are real numbers. Hence F ≡ a , where a is a constant.
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If κ 6= 0, then F (z + λ) = e2πiκF (z) does not hold for a nonzero constant
function F . Hence, if κ 6= 0, F ≡ 0 and consequently, q ≡ 0. If κ = 0, and F ≡ a,
then F | T = F + q implies that

q(z) = a
(
v̄ (T ) z−2k − 1

)
.

Because they are periods of constant automorphic integrals, we call these functions
q the trivial period functions.

Thus the multiplier systems associated to nontrivial LPPF’s are those for which

v (−I) (−1)2k = 1, (28)

thereby justifying the assumptions made in Lemmas 2.1 and 2.2. Henceforth we
shall assume that if v is a multiplier system of weight 2k for G (λ), then ( 28) holds.
Note that ( 28) now yields

q + q | T = 0. (29)

If λ ≥ 2, then T 2 = −I is the only relation between the generators Sλ and T of
G (λ). Consequently, ( 29) is the only condition we have on an LPPF. In fact, if
r (z) is any log-polynomial sum, and if we define q by

q (z) = r (z)− v̄ (T ) z−2kr

(
−1
z

)
,

then q satisfies ( 29). In [9] and [12], Knopp has shown for these groups that if q
satisfies ( 29), then it is a period of an automorphic integral F of weight 2k and
multiplier system v.

It is customary to denote by qM the period function associated with M ∈ G (λ).
Thus F |M = F + qM and from ( 25) we deduce that

qM1M2 = qM1 |M2 + qM2 . (30)

Clearly, qI = q−I ≡ 0. When λ is given by ( 15), we have (SλT )p = −I. Repeated
application of ( 30) yields

q + q | (SλT ) + q | (SλT )2 + · · ·+ q | (SλT )p−1 = 0. (31)

In the next section we shall make use of ( 29) and ( 31) to determine the LPPF’s
of positive weight for the discrete Hecke groups. Then we shall apply Bol’s Theorem
to obtain log-polynomial period functions of negative integral weight.

3. LOG-POLYNOMIAL PERIOD FUNCTIONS FOR THE DISCRETE
HECKE GROUPS

3.1. Preliminaries. Throughout this section, k will be a fixed real number
and v will be a multiplier system in weight 2k for the Hecke group G (λ) , where λ
is given by ( 15). Let us write λ = 2 cosπθ with θ = 1/p. We define Vn = (SλT )n

and

Mn = VnT = (SλT )n
T =

(
an bn
cn dn

)
for n = 1, . . . , p.
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A straightforward induction shows that

an = − sinnπθ
sinπθ

, bn = − sin (n+ 1)πθ
sinπθ

,

cn = − sin (n− 1)πθ
sinπθ

, dn = − sinnπθ
sinπθ

. (32)

In what follows we shall assume that k > 0. Suppose q is an LPPF of weight 2k
and multiplier system v for G (λ). Combining ( 29) and ( 31), we obtain

q |Mp−1 + q |Mp−2 + · · ·+ q |M1 − q = 0. (33)

From ( 32) we see that bn 6= 0 and dn 6= 0 for n = 1, . . . , p− 2. Thus we have

lim
z→0

(q |Mn) (z) = lim
z→0

v̄ (Mn) (cnz + dn)−2k
q

(
anz + bn
cnz + dn

)
= Ln, (34)

where

Ln = v̄ (Mn) d−2k
n q

(
bn
dn

)
, n = 1, . . . , p− 2.

Combining ( 33) and ( 34), we get

limz→0 (q |Mp−1 − q) (z) = L,

where

L = −
p−2∑
n=1

Ln = −
p−2∑
n=1

v̄ (Mn) d−2k
n q

(
bn
dn

)
. (35)

Since Mp−1 = (SλT )p−1
T = TS−1

λ T =
(
−1 0
−λ −1

)
, and since by consistency

condition ( 5) for v we have

v̄
(
TS−1

λ T
)
(−λz − 1)−2k = v̄

(
−TS−1

λ T
)
(λz + 1)−2k = v (Sλ) (λz + 1)−2k

(where in the last equality we have used Lemma 2.1 (iii) ), we see that

(q |Mp−1) (z) = v (Sλ) (λz + 1)−2k
q

(
z

λz + 1

)
.

Consequently,

limz→0

{
v (Sλ) (λz + 1)−2k

q

(
z

λz + 1

)
− q (z)

}
= L.

We now replace z by 1/z in the last limit to obtain

lim
z→∞

{
v (Sλ)

(
z + λ

z

)−2k

q

(
1

z + λ

)
− q

(
1
z

)}
= L. (36)

On the other hand, from ( 32) we also see that an 6= 0 and cn 6= 0, for each
n = 2, . . . , p− 1. Since k > 0, it then follows that for n = 2, . . . , p− 1,

lim
z→∞

(q |Mn) (z) = lim
z→∞

v̄ (Mn) (cnz + dn)−2k
q

(
anz + bn
cnz + dn

)
= 0. (37)

Using ( 33) and ( 37), we obtain

limz→∞ (q |M1 − q) (z) = 0.
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Since M1 = (SλT )T = −Sλ and v (Sλ) = v (−Sλ), the above limit becomes

lim
z→∞

{v̄ (Sλ) q (z + λ)− q (z)} = 0. (38)

Remark 3.1: Let q (z) be a log-polynomial sum given by

q (z) =
n∑

j=0

zγj

mj∑
t=0

c (j, t) (log z)t
,

where γ1, . . . , γn and the coefficients c (j, t) are complex numbers and mj and t are
nonnegative integers. It is no loss of generality to assume that

Re (γ1) ≤ · · · ≤ Re (γn0) ≤ 0 < Re (γn0+1) ≤ · · · ≤ Re (γn) ,

with the mj ’s satisfying the condition

mj ≤ ml whenever j < l and Re (γj) = Re (γl) .

Thus any log-polynomial sum can be expressed in the form:

q (z) =
N∑

j=1

mj∑
t=0

a (j, t) z−βj (log z)t +
M∑
l=1

nl∑
t=0

b (l, t) zαl (log z)t
, (39)

where

0 ≤ Re (β1) ≤ · · · ≤ Re (βN ) ; mj ≤ ml if Re (βj) = Re (βl) (j < l) ;
0 < Re (α1) ≤ · · · ≤ Re (αM ) ; nj ≤ nl if Re (αj) = Re (αl) (j < l) . (40)

The following notation will be helpful for further investigation of the limits in
( 36) and ( 38). Let z, α ∈ C, z 6= 0,z 6= −λ, and ν ∈ Z. Then we define

τ (z) =
z log z − (z + λ) log (z + λ)

log z
,

fα,ν (z) = C1

(
z + λ

z

)α( log (z + λ)
log z

)ν

− 1,

gα,ν (z) = C2

(
z + λ

z

)α−2k ( log (z + λ)
log z

)ν

− 1,

φα,ν (z) = C1 (z + λ)α (log (z + λ))ν − zα (log z)ν
,

ψα,ν (z) = C2

(
z + λ

z

)−2k

(z + λ)α (log (z + λ))ν − zα (log z)ν
.

Note then that

φα,ν (z) = zα (log z)ν
fα,ν (z) and ψα,ν (z) = zα (log z)ν

gα,ν (z) .

Thus if q (z) is given by ( 39), then we can rewrite C1q (z + λ)− q (z) as

C1q (z + λ)− q (z) =
N∑

j=1

mj∑
t=0

a (j, t)φ−βj ,t (z) +
M∑
l=1

nl∑
t=0

b (l, t)φαl,t (z)

= φαM ,nM
(z)F (z) ,
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where C1 = v̄ (Sλ) = e−2πiκ and

F (z) =
N∑

j=1

mj∑
t=0

a (j, t)
φ−βj ,t (z)
φαM ,nM

(z)
+

M∑
l=1

nl∑
t=0

b (l, t)
φαl,t (z)

φαM ,nM
(z)

. (41)

Similarly,

C2

(
z + λ

z

)−2k

q

(
1

z + λ

)
− q

(
1
z

)
=

N∑
j=1

mj∑
t=0

a (j, t) (−1)t
ψβj ,t (z) +

M∑
l=1

nl∑
t=0

b (l, t) (−1)t
ψ−αl,t (z)

= ψβN ,mN
(z)G (z) ,

where C2 = v̄
(
−TS−1

λ T
)

= e2πiκ and

H (z) =
N∑

j=1

mj∑
t=0

a (j, t) (−1)t ψβj ,t (z)
ψβN ,mN

(z)
+

M∑
l=1

nl∑
t=0

b (l, t) (−1)t ψ−αl,t (z)
ψβN ,mN

(z)
. (42)

If we combine ( 36) with the equation before ( 41), and ( 40) with the equation
before ( 42), we have proved the following result.

Proposition 3.1. If q is an LPPF of weight 2k and multiplier system v for
G (λ) , given by ( 39) and ( 40), then

lim
z→∞

φαM ,nM
(z)F (z) = 0 and lim

z→∞
ψβN ,mN

(z)H (z) = L, (43)

where F and H are given by ( 41) and ( 42), respectively, and L is as in ( 35).

3.2. Log-Polynomial Period Functions of Positive Weight. In
this section we shall show that limz→∞ F (z) = 0 and limz→∞H (z) = 0 are both
impossible. In doing so we will arrive at the necessary and sufficient conditions for
the boundedness and existence of the limit at infinity for the functions φαM ,nM

and
ψβN ,mN

. By ( 40) this will enable us to determine, if it exists, an LPPF of positive
weight. To this end, we begin by proving the following limit-lemmas. In Lemmas
3.1 to 3.5, we assume that α, β ∈ C, ν, µ ∈ Z, and we shall say:

I holds if Re (α) < 0, ν ∈ Z or Re (α) = 0, ν < 0.
II holds if Re (α) > 0, ν ∈ Z or Re (α) = 0, ν > 0.
III holds if Re (α) < 1, ν ∈ Z or Re (α) = 1, ν < 0.
IV holds if Re (α) > 1, ν ∈ Z or Re (α) = 1, ν > 0.
V holds if β 6= 0, Re (α) < Re (β) , ν, µ ∈ Z or β 6= 0, Re (α) = Re (β) , ν < µ.

V I holds if Re (α) < 0, ν, µ ∈ Z or Re (α) = 0, ν < µ− 1.

Lemma 3.1.
(a) limz→∞ τ (z) = −λ.

(b) limz→∞ zα (log z)ν =
{

0, if I holds
∞, if II holds.

Proof : This is a routine application of L’Hospital’s Rule.
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Lemma 3.2. Suppose κ = 0. Then C1 = 1 and we have:

(a) limz→∞ φα,ν (z) =
{

0, if III holds
∞, if IV holds.

(b) If V or V I holds, then

lim
z→∞

φα,ν (z)
φβ,µ (z)

= 0.

Proof : (a) When C1 = 1, we have

φα,ν (z) = zα (log z)ν
fα,ν (z) ,

where

fα,ν (z) =
(
z + λ

z

)α( log (z + λ)
log z

)ν

− 1.

But then limz→∞fα,ν (z) = 0. If Re (α) < 0, ν ∈ Z or Re (α) = 0, ν ≤ 0, then
zα (log z)ν is bounded as z →∞ and hence limz→∞ φα,ν (z) = 0.

Next suppose Re (α) > 0 and ν ∈ Z. Then limz→∞ z−α (log z)−ν = 0 and by
L’Hospital’s Rule, we have

lim
z→∞

φα,ν (z) = lim
z→∞

fα,ν (z)
z−α (log z)−ν = lim

z→∞

d
dz (fα,ν (z))

d
dz

(
z−α (log z)−ν

) .
But,

d

dz
(fα,ν (z)) =

1
z2

(
z + λ

z

)α−1( log (z + λ)
log z

)ν {
−αλ+

ντ (z)
log z

}
(44)

and
d

dz

(
z−α (log z)−ν

)
= z−α−1 (log z)−ν

{
−α− ν

log z

}
. (45)

Thus,

lim
z→∞

φα,ν (z) = lim
z→∞

(z + λ)α−1 (log (z + λ))ν

(
−αλ+ ντ (z) / log z
−α− ν/ log z

)
= λ lim

z→∞
(z + λ)α−1 (log (z + λ))ν

,

since α 6= 0. By Lemma 3.1 (b), we then have

lim
z→∞

φα,ν (z) =

 0, if Re (α) < 0, ν ∈ Z or Re (α) = 0, ν ≤ 0
0, if 0 < Re (α) < 1, ν ∈ Z or Re (α) = 1, ν < 0
∞, if Re (α) > 1, ν ∈ Z or Re (α) = 1, ν > 0.

It remains to consider the case when Re (α) = 0, ν > 0. If α 6= 0, then ( 44) and
( 45) are applicable and we have the desired result. So suppose α = 0 and ν > 0.
In this case we have

d

dz
(f0,ν (z)) =

(
log (z + λ)

log z

)ν
ντ (z)

z (z + λ) log z
(46)

and
d

dz

(
(log z)−ν

)
=
−ν
z

(log z)−ν−1
.

Hence

lim
z→∞

φ0,ν (z) = − lim
z→∞

τ (z) (log z) (log (z + λ))ν−1

z + λ
= 0.
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This completes the proof of (a).

(b) Once again we apply L’Hospital’s Rule. We need to consider four cases.
Case 1. α 6= 0 and β 6= 0. From ( 44), we see that

lim
z→∞

φα,ν (z)
φβ,µ (z)

= lim
z→∞

fα,ν (z)
fβ,µ (z)

zα (log z)ν

zβ (log z)µ =
α

β
lim

z→∞
zα−β (log z)ν−µ

.

We now apply Lemma 3.1 (b) for the desired conclusions.

Case 2. α = 0 and β 6= 0. From ( 44) and ( 46) we deduce that

lim
z→∞

f0,ν (z)
fβ,µ (z)

= lim
z→∞

((
log(z+λ)

log z

)ν
ντ(z)

z(z+λ) log z

)
(

1
z2

(
z+λ

z

)β−1
(

log(z+λ)
log z

)µ {
−βλ+ µτ(z)

log z

})
= lim

z→∞
ν

(
z + λ

z

)−β ( log (z + λ)
log z

)ν−µ−1
τ (z)

log (z + λ)
1

(−βλ+ µτ (z) / log z)
= 0.

If V holds, then zα−β (log z)ν−µ is bounded and hence

lim
z→∞

φ0,ν (z)
φβ,µ (z)

= lim
z→∞

zα−β (log z)ν−µ f0,ν (z)
fβ,µ (z)

= 0.

Case 3. α 6= 0 and β = 0. We should note that when β = 0 we must assume that
µ 6= 0 for the obvious reason that φ0,0 ≡ 0. Write

φα,ν (z)
φβ,µ (z)

=
zα (log z)ν−µ

fα,ν (z)
f0,µ (z)

=
h (z) fα,ν (z)
f0,µ (z)

,

where h (z) = zα (log z)ν−µ
.

If Re (α) < Re (β) = 0 or Re (α) = 0, ν < µ, then limz→∞ h (z) = 0 and
applying L’Hospital’s Rule, we get

lim
z→∞

φα,ν (z)
φ0,µ (z)

= lim
z→∞

(
h′ (z) fα,ν (z)
f ′0,µ (z)

+
h (z) f ′α,ν (z)
f ′0,µ (z)

)
.

But,

h′ (z) = zα−1 (log z)ν−µ

{
α+

ν − µ

log z

}
,

and using ( 46), we get

h′ (z) fα,ν (z)
f ′0,µ (z)

= g1 (z) zα (log z)ν−µ+1 (z + λ) fα,ν (z) ,

where

g1 (z) =
1

ντ (z)

(
log (z + λ)

log z

)1−µ{
α+

ν − µ

log z

}
.

From ( 44) and ( 46) we get
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h (z) f ′α,ν (z)
f ′0,µ (z)

= g2 (z) zα (log z)ν−µ+1
,

where

g2 (z) =
1

ντ (z)

(
z + λ

z

)α(
log (z + λ)

log z

)ν−µ+1{
−αλ+

ντ (z)
log z

}
.

Since limz→∞ g1 (z) = − α
νλ , limz→∞ g2 (z) = α

ν , and by L’Hospital’s Rule,

lim
z→∞

(z + λ) fα,ν (z) = lim
z→∞

fα,ν (z)
1

z+λ

= lim
z→∞

f ′α,ν (z)
−1

(z+λ)2
= − lim

z→∞
f ′α,ν (z) (z + λ)2 = αλ,

we have

lim
z→∞

{g1 (z) (z + λ) fα,ν (z) + g2 (z)} =
− (α)2 + α

ν
=
α (1− α)

ν
6= 0.

(Note that Re (α) < 0 or Re (α) = 0, α 6= 0.) Thus if V I holds, then

lim
z→∞

φα,ν (z)
φ0,µ (z)

= lim
z→∞

(
h′ (z) fα,ν (z)
f ′0,µ (z)

+
h (z) f ′α,ν (z)
f ′0,µ (z)

)
= lim

z→∞
zα (log z)ν−µ+1 {g1 (z) (z + λ) fα,ν (z) + g2 (z)}

=
α (1− α)

ν
lim

z→∞
zα (log z)ν−µ+1

= 0.

Case 4. α = 0 and β = 0. Then

lim
z→∞

f0,ν (z)
f0,µ (z)

=
ν

µ
.

In this case we must have ν 6= 0 and µ 6= 0 and hence, if ν < µ, we have

lim
z→∞

φ0,ν (z)
φ0,µ (z)

= 0.

This completes the proof of the lemma.

The following three lemmas are immediate consequences of the above two lem-
mas.

Lemma 3.3. Suppose κ = 0. Then C2 = 1 and we have

(a) limz→∞ ψα,ν (z) =
{

0, if III holds
∞, if IV holds.

(b) Suppose β 6= 2k. If V holds, then

lim
z→∞

ψα,ν (z)
ψβ,µ (z)

= 0.

(c) If Re (α) < 2k, ν, µ ∈ Z or if Re (α) = 2k, ν < µ− 1, then

lim
z→∞

ψα,ν (z)
ψ2k,µ (z)

= 0.
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Lemma 3.4. Suppose κ > 0. Then

(a) limz→∞ φα,ν (z) =
{

0, if I holds
∞, if II holds.

(b) If V holds or if β = 0, Re (α) < 0, ν, µ ∈ Z or if β = 0, Re (α) = 0, ν < µ,
then

lim
z→∞

φα,ν (z)
φβ,µ (z)

= 0.

Lemma 3.5. Suppose κ > 0. Then

(a) limz→∞ ψα,ν (z) =
{

0, if I holds
∞, if II holds.

(b) If V holds or if β = 0, Re (α) < 0, ν, µ ∈ Z or if β = 0, Re (α) = 0, ν < µ,
then

lim
z→∞

ψα,ν (z)
ψβ,µ (z)

= 0.

Lemma 3.6. Let α1, . . . , αN be distinct complex numbers and P1 (x) , · · · , PN (x)
be polynomials. If

N∑
j=1

Pj (x) eαjx ≡ 0, then Pj ≡ 0 for all j.

Proof : The proof is a simple induction on N . For N = 1, the lemma is trivial.
So suppose the lemma is true for N and assume that

∑N+1
j=1 Pj (x) eαjx = 0, where

α1, . . . , αN+1 are distinct. Put βj = αj−αN+1. Then, dividing the above equation
by eαN+1x, we get

PN+1 (x) +
N∑

j=1

Pj (x) eβjx ≡ 0.

If PN+1 (x) ≡ 0, then the rest of the polynomials are also zero by the induction
hypothesis. So suppose PN+1 (x) 6= 0 and let m be the degree of PN+1. If we
differentiate the last equation m+ 1 times, we obtain

N∑
j=1

Qj (x) eβjx ≡ 0, where Qj (x) =
m+1∑
r=0

(
m+ 1
r

)
βr

jP
(m+1−r)
j (x) .

Here P (t) (x) is the tth derivative of P (x) .
Since βj are distinct we have, by the induction assumption, that Qj (x) ≡ 0 for

each j = 1, . . . , N.
However, no nonzero polynomial P satisfies a nontrivial differential equation of

the form
∑n

r=0 crP
(r) (x) ≡ 0, with cr 6= 0 for all r. For if P (x) = amx

m + · · · +
a0, am 6= 0, is a polynomial, then
P (r)(x) = m(m − 1) · · · (m − r + 1)amx

m−r + · · · + r!ar and hence the leading
coefficient of

∑n
r=0 crP

(r) (x) is c0am, which is nonzero. Therefore, P cannot satisfy
the differential equation.

Thus Pj ≡ 0 for each j = 1, . . . , N and hence PN+1 ≡ 0. This completes the
proof of the lemma.
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Corollary 3.1. If γ1, . . . , γN are distinct complex numbers and if
N∑

j=1

mj∑
t=0

c (j, t) zγj (log z)t = 0,

then
c (j, t) = 0 for all j and all t.

Lemma 3.7. If c1, . . . , cN are complex numbers not all zero and if u1, . . . , uN are
distinct real numbers, then limz→∞

∑N
j=1 cjz

iuj exists if and only if N = 1 and
u1 = 0.

Proof : Suppose N > 1 and the limit exists and is equal to L. Let us assume
that uj 6= 0 for all j. Fix ϕ and let

zn = rne
iϕ where rn = e

2πn
|u1| .

Claim. There exist a subsequence {znm
} of {zn} and complex numbers ξ1, . . . , ξN ,

independent of ϕ and of absolute value 1, such that

lim
m→∞

ziuj
nm

= ξje
−ujϕ for all j = 1, . . . , N.

Assume the claim for a moment. Then, since zn →∞ as n→∞, we have
znm →∞ as m→∞, and hence

L = lim
m→∞

N∑
j=1

cjz
iuj
nm

=
N∑

j=1

cj lim
m→∞

ziuj
nm

=
N∑

j=1

cjξje
−ujϕ.

With x = ϕ, P0 (ϕ) = −L and Pj (ϕ) = cjξj for j = 1 · · ·N , and recalling that the
uj are distinct and nonzero, we apply Lemma 3.6 to conclude that L = c1 = c2 =
· · · = cN = 0. (Note that ξj 6= 0.) But this is contrary to the hypothesis of the
lemma. Thus if the limit exists, then N = 1. In this case if u1 6= 0, then the above
choice of zn yields L = c1ξ1e

−u1ϕ which is impossible unless c1 = L = 0.
To complete the proof of the lemma we need only prove the claim. To this end,
we first observe that when zn = rne

iϕ, then

ziuj
n = eiuj log zn = eiuj(log rn+iϕ) = e−ujϕe

2πi
uj
|u1|

n
.

Put ξ1 = 1. Then ziu1
n → ξ1e

−u1ϕ as n→∞. Consider the sequence{
e
2πi

u2
|u1|

n
}
.

Since it is a sequence of numbers with absolute value 1, it has a convergent subse-
quence, say,

e
2πi

u2
|u1|

nν → ξ2 as ν →∞.

We repeat this procedure with the sequence{
e
2πi

u3
|u1|

nν

}
.

This yields a convergent subsequence, say ,

e
2πi

u3
|u1|

nνµ → ξ3 as µ→∞.

Note then that

ziuj
nνµ

→ ξje
−ujϕ as µ→∞ for j = 1, 2, 3.
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We proceed in this manner to get the subsequence and the complex numbers of the
claim.

We are now in a position to prove a proposition which is essential in determining
the LPPF’s of positive weight for the discrete Hecke groups.

Proposition 3.2.

(a)
limz→∞ F (z) 6= 0 or the limit does not exist.

(b) limz→∞H (z) 6= 0 or the limit does not exist.

Proof : (a) Suppose, to the contrary, that

lim
z→∞

F (z) = 0. (47)

Recall that F is given by

F (z) =
N∑

j=1

mj∑
t=0

a (j, t)
φ−βj ,t (z)
φαM ,nM

(z)
+

M∑
l=1

nl∑
t=0

b (l, t)
φαl,t (z)

φαM ,nM
(z)

.

Since Re (−βj) ≤ 0 < Re (αM ) , for each j, we have (by Lemma 3.3 (b) if κ = 0
and by Lemma 3.4 (b) if κ 6= 0)

lim
z→∞

φ−βj ,t (z)
φαM ,nM

(z)
= 0,

for all j and all t. By the same lemmas, we also have

lim
z→∞

φαl,t (z)
φαM ,nM

(z)
= 0,

for each l and each t such that (i) Re (αl) < Re (αM ) and any t or (ii)
Re (αl) = Re (αM ) , and t < nl ≤ nM . Thus

lim
z→∞

F (z) = lim
z→∞

M∑
l=l0

b (l, n)
φαl,n (z)
φαM ,n (z)

, (48)

where n = nl = nM and Re (αl) = Re (αM ) for all l ≥ l0.
Let αl − αM = iyl for l = l0, . . . ,M. Then we have

φαl,n (z)
φαM ,n (z)

= ziyl
fαl,n (z)
fαM ,n (z)

.

Note that Re (αl) > 0 for each l, so that αl 6= 0, and hence by ( 44), we have

fl := lim
z→∞

fαl,n (z)
fαM ,n (z)

=
{ αl

αM
, κ = 0

1, κ 6= 0.
(49)

As ziyl is bounded for each l, ( 49) yields

lim
z→∞

ziyl

(
fl −

fαl,n (z)
fαM ,n (z)

)
= 0,
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and hence

lim
z→∞

M∑
l=l0

b (l, t) ziyl

(
fl −

fαl,n (z)
fαM ,n (z)

)
= 0.

The last equation can be rewritten as

lim
z→∞

(
M∑

l=l0

(b (l, t) fl) ziyl −
M∑

l=l0

b (l, t) ziyl
fαl,n (z)
fαM ,n (z)

)
= 0. (50)

Combining ( 47), ( 48) and ( 50), we obtain

lim
z→∞

M∑
l=l0

(b (l, n) fl) ziyl = 0,

contrary to Lemma 3.7.

(b) Suppose limz→∞H (z) = 0, where

H (z) =
N∑

j=1

mj∑
t=0

a (j, t) (−1)t ψβj ,t (z)
ψβN ,mN

(z)
+

M∑
l=1

nl∑
t=0

b (l, t) (−1)t ψ−αl,t (z)
ψβN ,mN

(z)
.

We will consider two cases:
Case 1. βN 6= 2k or κ > 0.

Since Re (−αl) < 0 ≤ Re (βN ), by Lemmas 3.3(b) or 3.5(b), we have

lim
z→∞

ψ−αl,t (z)
ψβN ,mN

(z)
= 0,

for all l and all t. Also

lim
z→∞

ψβj ,t (z)
ψβN ,mN

(z)
= 0,

for all j and t such that (i) Re (βj) < Re (βN ) and any t or (ii) Re (βj) = Re (βN )
and t < mN . Thus we have

lim
z→∞

H (z) = lim
z→∞

N∑
j=j0

(−1)m
a (j,m)

ψβj ,m (z)
ψβN ,m (z)

,

where m = mj = mN and Re (βj) = Re (βN ) for all j ≥ j0.
Let βj − βN = iuj for j = j0, . . . , N. Then we have

ψβj ,m (z)
ψβN ,m (z)

= ziuj
gβj ,m (z)
gβN ,m (z)

.

Since βN − 2k 6= 0 or κ > 0, we see that

gj := lim
z→∞

gβj ,m (z)
gβN ,m (z)

=

{
βj−2k
βN−2k , κ = 0
1, κ 6= 0.
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As in (a) above, we conclude then that

lim
z→∞

N∑
j=j0

(−1)m (a (j,m) gj) ziuj = 0,

contrary to Lemma 3.7.

Case 2. βN = 2k and κ = 0.
In this case we first observe that m = mN > 0 and that limz→∞

H(z)
log z = 0.

Next we note that

lim
z→∞

z log z
((

log(z + λ)
log z

)m

− 1
)

= lim
z→∞

(
log(z+λ)

log z

)m

− 1
1

z log z

= lim
z→∞

m
(

log(z+λ)
log z

)m−1
τ(z)

z(z+λ) log z

− log z+1
(z log z)2

= lim
z→∞

−mτ(z)
(

log(z + λ)
log z

)m−1
z log z

(z + λ) (log z + 1)
= mλ.

Also

lim
z→∞

z

((
z + λ

z

)α−2k ( log(z + λ)
log z

)t

− 1

)
= λ (α− 2k) .

Thus,

lim
z→∞

ψβ,t (z)
log zψ2k,m (z)

= lim
z→∞

zβ−2k (log z)t−m
z

((
z+λ

z

)β−2k
(

log(z+λ)
log z

)t

− 1
)

z log z
((

log(z+λ)
log z

)m

− 1
)

=
β − 2k
m

lim
z→∞

zβ−2k (log z)t−m = 0,

if Re (β) < 2k or if Re (β) = 2k and t < m. Hence

lim
z→∞

H (z)
log z

= lim
z→∞

N∑
j=j1

(−1)m
a (j,m)

ψβj ,m (z)
log zψ2k,m (z)

,

where m = mj = mN and Re (βj) = 2k for all j ≥ j1.
We now proceed as in Case 1 and arrive at the same contradiction. This com-

pletes the proof of the proposition.

Remark 3.2: It follows from Proposition 3.2 that there are sequences {zν} and
{wµ} such that

| F (zν) |≥ δ and | H (wµ) |≥ δ,

for some positive real number δ. This, together with ( 43), implies that
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lim
ν→∞

φαM ,nM
(zν) = 0 and {ψβN ,mN

(wµ)} is bounded. (51)

Remark 3.3: In his first two papers on rational period functions [10] and [11],
Knopp has shown that for the full modular group Γ (1) the rational functions given
by

q (z) =
{
a
(
1− v̄ (T ) z−2k

)
, if k > 1

a
(
1− v̄ (T ) z−2

)
+ bz−1, if k = 1

are rational period functions. Here we are assuming that k ∈ Z which is the case
if κ = 0. In fact he showed that these are the only rational period functions with
rational poles. It can easily be seen that the functions given above are period
functions for the Hecke groups G (λ). With this in mind we now state and prove
our main results.

Theorem 3.1. Suppose q (z) given by ( 39) and ( 40), is an LPPF of weight
2k, k > 0 and multiplier system v for the Hecke group G (λ), where λ = 2 cos

(
π
p

)
.

Suppose also that v (Sλ) = e2πiκ = 1, i.e., κ = 0.
(a) If k > 1, then q (z) is of the form

q (z) = a
(
1− v̄ (T ) z−2k

)
.

(b) If k = 1, then q (z) reduces to the form

q (z) = a
(
1− v̄ (T ) z−2

)
+ bz−1.

Proof : If v (Sλ) = 1, then C1 = C2 = 1. Note that if Re (α) = 1 and ν = 0, then
from the proof of Lemma 3.3 (a) we have limz→∞ φα,ν (z) = limz→∞ λ (z + λ)α−1 =
λ if α = 1 , and the limit does not exist otherwise. Thus limz→∞ φα,ν (z) 6= 0.
From Lemma 3.3 (a) and the first part of ( 51), we conclude that Re (αM ) < 1.
On the other hand, from Lemma 3.4 (a) and the second part of ( 51), we see that
Re (βN ) < 1 or Re (βN ) = 1, mN = 0. Noting the fact that ψ2k,0 ≡ 0 and using
( 39), we conclude that q (z) takes the form:

q (z) = a+ cz−2k +
K∑

j=0

bjz
−1+iuj +

N∑
j=1

z−βjPj (z) +
M∑
l=1

zαlRl (z) ,

where

0 ≤ Re (β1) ≤ · · · ≤ Re (βN ) < 1, 0 < Re (α1) ≤ · · · ≤ Re (αM ) < 1,

Pj (z) =
mj∑
t=0

a (j, t) (log z)t
, Rl (z) =

nl∑
t=0

b (l, t) (log z)t
,

and u0, . . . , uK are real numbers.
Recall that limz→∞ ψβj ,t (z) = 0 for all j and t, and that limz→∞ ψ−αl,t (z) = 0

for all l and t.
Thus
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L = lim
z→∞

((
z + λ

z

)−2k

q

(
1

z + λ

)
− q

(
1
z

))

= lim
z→∞

K∑
j=0

bj

((
z + λ

z

)−2k+1−iuj

z1−iuj − z1−iuj

)

= lim
z→∞

K∑
j=0

bjz
−iujhj (z) ,

where

hj (z) = z

((
z + λ

z

)−2k+1−iuj

− 1

)
.

But then limz→∞ hj(z) = (−2k + 1− iuj)λ = cj 6= 0. We conclude from this
and the above limit that

lim
z→∞

K∑
j=0

bjcjz
−iuj = L,

which implies that bj = 0 unless uj = 0. Thus q takes the form :

q (z) = a+ bz−1 + cz−2k + +
N∑

j=1

z−βjPj (z) +
M∑
l=1

zαlRl (z) , (52)

where

0 ≤ Re (β1) ≤ · · · ≤ Re (βN ) < 1, 0 < Re (α1) ≤ · · · ≤ Re (αM ) < 1,

Pj (z) =
mj∑
t=0

a (j, t) (log z)t and Rl (z) =
nl∑

t=0

b (l, t) (log z)t
. (53)

As an LPPF recall that q should satisfy the relation q + q | T = 0; that is,

q (z) + v̄ (T ) z−2kq

(
−1
z

)
= 0.
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But,

v̄ (T ) z−2kq

(
−1
z

)
= av̄ (T ) z−2k − bv̄ (T ) z−2k+1 + cv̄ (T ) z−2k

(
−1
z

)−2k

+
N∑

j=1

v̄ (T ) z−2k

(
−1
z

)−βj

Pj

(
−1
z

)
+

M∑
l=1

v̄ (T ) z−2k

(
−1
z

)αl

Rl

(
−1
z

)
= av̄ (T ) z−2k − bv̄ (T ) z−2k+1 (−1)−2k + cv̄ (T )

+
N∑

j=1

z−2k+βjAj (z) +
M∑
l=1

z−2k−αlBl (z) ,

where

Aj (z) = v̄ (T ) (−1)−βj Pj

(
−1
z

)
, Bl (z) = v̄ (T ) (−1)αl Rl

(
−1
z

)
.

Consequently,(
a+ (−1)−2k

cv̄ (T )
)

+ (av̄ (T ) + c) z−2k + bz−1 − bv̄ (T ) z−2k+1+

N∑
j=1

z−βjPj (z) +
N∑

j=1

z−2k+βjAj (z) +
M∑
l=1

zαlRl (z) +
M∑
l=1

z−2k−αlBl (z) = 0. (54)

Note then that the left-hand side of ( 54) is a sum of the form
L∑

j=1

rj∑
t=0

c (j, t) zγj (log z)t = 0,

where the powers γj of z are

0, −2k, −1, −2k + 1, −βj , −2k + βj , αl, −2k − αl. (55)

Suppose k > 1. Then by ( 53) the numbers in ( 55) are all distinct and we apply
Corollary 3.1 to conclude that all the coefficients of ( 54) are zero. In particular,
we have

a+ (−1)−2k
cv̄ (T ) = 0, av̄ (T ) + c = 0, bj = 0 Pj (z) = 0, and Rl (z) = 0.

By Lemma 2.1 we have v̄ (T )2 (−1)−2k = 1, and so c = −av̄ (T ). Therefore,

q (z) = a
(
1− v̄ (T ) z−2k

)
,

and (a) is proved.
Next suppose k = 1. Then the list in ( 55) becomes

0, −2, −1, −1, −βj , −2 + βj , αl, −2− αl.

Here all powers of z except −1 are distinct and we must have 1− v̄ (T ) = 0 or b = 0
and hence q takes the form as stated in (b) . This completes the proof of the theorem.

Remark 3.4: Suppose κ = 0 and λ is given by ( 15). Then by Lemma 2.2, we
have (p − 2)k ∈ Z, which is even when p is even. In particular, for p = 3 and
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p = 4, we see that k ∈ Z and hence the assumption that k ≥ 1 in Theorem 3.1
is no restriction of generality. For p = 6, that is, for the group G

(√
3
)
, there is

one possible case that is not covered by Theorem 3.1, for in this case we can have
2k = 1 as a weight. In general for weight 2k < 2 we have the following theorem.

Theorem 3.2. Under the assumptions of Theorem 3.1, if 1 ≤ 2k < 2, then q
reduces to the form:

q(z) = a
(
1− v̄ (T ) z−1

)
+

N∑
j=1

Pj(z)z−βj − v̄ (T )
N∑

j=1

(−1)−βj Pj

(
−1
z

)
z−2k+βj ,

where
0 ≤ Re (β1) ≤ Re (β2) ≤ · · · ≤ Re (βN ) < 1.

If 0 < 2k ≤ 1, then q takes the same form as above with

0 ≤ Re (β1) ≤ Re (β2) ≤ · · · ≤ Re (βJ) ≤ 2k < Re (βJ+1) ≤ · · · ≤ Re (βN ) < 1.

Proof: If 1 ≤ 2k < 2, then the list in ( 55) becomes

0, −2k, −1, −2k + 1, −βj , −2k + βj , αl, −2k − αl. (56)
In ( 56) repetition occurs if and only if −βj = −2k+βr for some j and r. By the

assumptions made on the real parts of the β′s it follows that −βj = −2k+βN−j+1

for j = 1, . . . , J , where J = N/2 or J = (N − 1)/2. We now substitute this in the
equation for q + q | T = 0. In this rearranged sum the powers of z are distinct, so
we can apply Corollary 3.1. Thus q (z) has the form

q(z) = a
(
1− v̄ (T ) z−2k

)
+

N∑
j=1

Pj(z)z−βj − v̄ (T )
N∑

j=1

(−1)−βj Pj

(
−1
z

)
z−2k+βj .

This completes the proof of the theorem.

Theorem 3.3. Suppose q (z) given by ( 39) and ( 40), is an LPPF of weight
2k, k > 0 and multiplier system v for the Hecke group G (λ), where λ = 2 cos

(
π
p

)
.

Suppose also that v (Sλ) = e2πiκ 6= 1, i.e., κ > 0, then q (z) = 0.

Proof : If v (Sλ) 6= 1, then C1 6= 1 and C2 6= 1. By Lemma 3.4 (a) and the first
part of ( 51), we must have Re (αM ) < 0. But this contradicts ( 40). Hence it must
be that b (l, t) = 0 for all l and all t. On the other hand, combining Lemma 3.5 (a)
and the second part of ( 51), we see that Re (β) < 0 or Re (βN ) = 0,mN = 0. Since
Re (βN ) < 0 is contrary to ( 40), it must be that Re (βN ) = 0,mN = 0. But then
(again by ( 40)) we have m1 = · · · = mN = 0. Consequently q (z) takes the form

q (z) =
N∑

j=1

bjz
iuj ,

where the uj are distinct real numbers. But then

(q + q | T ) (z) =
N∑

j=1

bjz
iuj +

N∑
j=1

b′jz
−2k+iuj = 0,

and Corollary 3.1 implies that bj = 0 for each j and hence q (z) = 0. This completes
the proof of the theorem.
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3.3. Log-Polynomial Period Functions of Negative Weight. Finally
we shall determine the LPPF’s of negative integral weight for the Hecke groups and
give the general form of the LPPF’s for nonintegral negative weight. First we will
discuss the negative integral weights. For this we shall apply an observation made
by G. Bol in [2], which we state as

Lemma 3.8. (Bol’s Theorem). Suppose r ∈ Z, r ≥ 0 and a, b, c, d ∈ C such
that ad− bc = 1. If f is a differentiable function, then

D(r+1)

(
(cz + d)r

f

(
az + b

cz + d

))
= (cz + d)−r−2

f (r+1)

(
az + b

cz + d

)
. (57)

Proof : Induction on r. See also [8].

We now apply this Lemma to prove

Theorem 3.4. Suppose q is an LPPF of weight 2k ∈ Z, k ≤ 0 and multiplier
system v for G (λ) where λ is given by ( 15). Then

q (z) =


a
(
(−1)−2k

v̄ (T ) z−1 + z−2k+1
)

+ pk (z) , k < 0, κ = 0
a
(
z−1 + v̄ (T ) z

)
+ b log z + c, k = 0, κ = 0

pk (z) , k ≤ 0, κ > 0,

where a, b, c ∈ C and pk (z) is a polynomial of degree at most −2k.

Proof : If q is a log-polynomial sum, then it can easily be seen that q(r) (z) is
also

a log-polynomial sum for any r ∈ Z, r > 0. But then by Bol’s Theorem we see
that q(−2k+1) is an LPPF of weight −2k + 2 and multiplier system v for G (λ).

Now by Theorem 3.1 (if κ = 0) and by Theorem 3.3 (if κ > 0), we obtain

q(−2k+1) (z) =

 A
(
1− v̄ (T ) z2k−2

)
, k < 0, κ = 0

A
(
1− v̄ (T ) z−2

)
+Bz−1, k = 0, κ = 0

0, k ≤ 0, κ > 0.

The theorem now follows from integrating this (−2k + 1)-times.

Remark 3.5: When k = 0, κ = 0, we have v (T ) = ±1 and v (Sλ) = 1. Suppose
f (z) is an entire modular form of weight r and multiplier system v = 1 for the
Hecke group G (λ) such that f never vanishes in the upper half-plane. Define

F (z) = log f (z) .

Then
F (−1/z) = F (z) + r log z.

Thus

q (z) = a
(
z−1 + v̄ (T ) z

)
+ b log z + c

is indeed an LPPF of weight 0 for the Hecke group provided such an f exists. That
such an f exists was proved by Knopp and Smart in [14] (Theorem 2, page 135).
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Next we consider the LPPF’s of nonintegral negative weights. Suppose k < 0
and 2k is not an integer and let q be an LPPF of weight 2k and multiplier system
v for G (λ), where λ is given by ( 15). Then ( 36) holds, that is, we have

lim
z→∞

{
v (Sλ)

(
z + λ

z

)−2k

q

(
1

z + λ

)
− q

(
1
z

)}
= L, (58)

where

L = −
p−2∑
n=1

Ln = −
p−2∑
n=1

v̄ (Mn) d−2k
n q

(
bn
dn

)
and

Mn = VnT = (SλT )n
T =

(
an bn
cn dn

)
for n = 1, . . . , p.

Note that ( 38) does not hold as −2k > 0. However, if we multiply both sides of
( 33) by z2k, we obtain

z2k (q |Mp−1) (z) + z2k (q |Mp−2) (z) + · · ·+ z2k (q |M1) (z)− z2kq (z) = 0. (59)

We now make use of ( 32)
and take the limit as z →∞ in ( 59), to obtain

lim
z→∞

z2k {v̄ (Sλ) q (z + λ)− q (z)} = K, (60)

where

K = −
p−1∑
n=2

v̄ (Mn) c−2k
n q

(
an

cn

)
.

The Limit-Lemmas of Section 3.2 are applicable for any k and we apply them to
obtain the following result.

Proposition 3.3. Suppose q (z), as given by ( 39) and ( 40), is an LPPF of weight
2k, k < 0, and multiplier system v for the Hecke group G (λ), where λ is given by
( 15). Suppose also that v (Sλ) = e2πiκ, 0 ≤ κ < 1.

(i) If κ = 0, then

q (z) = A
(
1− v̄ (T ) z−2k

)
+

N∑
j=1

mj∑
t=0

a (j, t) z−βj (log z)t +
M∑
l=1

nl∑
t=0

b (l, t) zαl (log z)t
,

(61)
where

0 < Re (β1) ≤ · · · ≤ Re (βN ) < 1; mj ≤ ml if Re (βj) = Re (βl) (j < l) ;
0 < Re (α1) ≤ · · · ≤ Re (αM ) < −2k + 1; nj ≤ nl if Re (αj) = Re (αl) (j < l) .

(ii) If κ > 0, then
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q (z) =
M∑
l=1

nl∑
t=0

b (l, t) zαl (log z)t
,

where

0 < Re (α1) ≤ · · · ≤ Re (αM ) < −2k; nj ≤ nl if Re (αj) = Re (αl) (j < l) .

4. Concluding Remarks

As mentioned in Section 1, the Riemann-Hecke-Bochner-Weil correspondence
applies to automorphic integrals on the Hecke groups G (λ). Suppose that q given
is by ( 39) and ( 40), that is,

q (z) =
N∑

j=1

mj∑
t=0

a (j, t) z−βj (log z)t +
M∑
l=1

nl∑
t=0

b (l, t) zαl (log z)t
,

where

0 ≤ Re (β1) ≤ · · · ≤ Re (βN ) ; mj ≤ ml if Re (βj) = Re (βl) (j < l) ;
0 < Re (α1) ≤ · · · ≤ Re (αM ) ; nj ≤ nl if Re (αj) = Re (αl) (j < l) .

If q is an LPPF, then there exists a function F defined and holomorphic in the
upper half-plane satisfying ( 20), ( 21) , ( 22) and ( 23).

Let us define

φ (s) =
∞∑

n=1

ann
−s, Φ (s) =

(
2π
λ1

)−s

Γ (s)φ (s) ;

Q (s) =
N∑

j=1

mj∑
t=0

c (j, t)
(s+ βj)

mj−t+1 +
M∑
l=1

nl∑
t=0

d (l, t)
(s− αl)

nl−t+1 + a0

(
1
s
− v̄ (T )

2k − s

)
,

where

c (j, t) = (−1)jj!a (j,mj − t+ 1) and d (l, t) = (−1)ll!b (l, nl − t+ 1) .

Then Hecke’s Lemma states that Φ (s)−Q (s) can be continued to an entire function
which is bounded in every lacunary vertical strip:

σ1 ≤ σ ≤ σ2, |Im (s) | ≥ t0 > 0,

and Φ (s) satisfies the functional equation

Φ (s) = e−πikv̄ (T ) Φ (2k − s) .

When k > 0 and κ > 0, it follows from Theorem 3.3 that q (z) = 0 and hence
Φ (s) is holomorphic in the entire s-plane except for possible simple poles at s = 0
and s = 2k. In fact Theorem 3.3 asserts that the only automorphic integrals with
log-polynomial period function are the automorphic forms. If k ≥ 1 and κ = 0,
then from Theorem 3.1 we conclude that Φ (s) has at worst simple poles at s = 0
and s = 2k.
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Finally, suppose F1 and F2 are two linearly independent automorphic integrals
of weight 2k, k ≥ 1 and multiplier system v with LPPF’s q1 and q2, respectively. If
κ > 0, then Fj , j = 1, 2 are automorphic forms. If, on the other hand, κ = 0, then
by Theorem 3.1 the q’s are of the form
c
(
1− v̄ (T ) z−2k

)
. Thus for a suitable choice of constants a and b, aF1 + bF2 is

an automorphic form of weight 2k.
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[20] Weil, André. 1977. Some Remarks on Hecke’s Lemma and Its Use. In: Alg. Numb.

Th., International Symposium, Kyoto, Japan.

Department of Mathematics, Rowan College, Glassboro, NJ 08028.
E-mail address: hassen@rowan.edu


