LOG-POLYNOMIAL PERIOD FUNCTIONS FOR HECKE
GROUPS

ABDULKADIR HASSEN

ABSTRACT. In this article we shall determine the automorphic integrals of
positive and negative integral weight associated with the full modular group
and some Hecke groups. This will be done by using the Hecke Correspondence.
We will also give a characterization of multiplier systems of real weight for
Hecke groups.

1. INTRODUCTION

Roughly speaking, Hamburger’s Theorem states that the Riemann zeta
function is uniquely determined by its functional equation. More precisely,

Theorem 1.1. (Hamburger’s Theorem)  Let
o
R(s) =7 T(s)6(s),  6(s) =) ann", (1)
n=1

where a, = O (nY), n— oo, v>0.

Suppose

(i)  there exists a polynomial p(s) such that p(s)p(s) is entire and of finite order.
(i) ¢ (%) is also a Dirichlet series convergent in some half plane.

If R(s) satisfies the functional equation

R(L-o) -

then ¢(s) = C((2s) for some constant C.
Hecke gave the following version of the Hamburger’s Theorem:

Theorem 1.2. With ¢(s) and R(s) as in (1) , suppose (s — %) ¢(s) is entire and
of finite order. If R (3 — s) = R(s), then ¢(s) = C((2s) for some constant C.

The significance of Hecke’s version is that we are not assuming that ¢ (%) is a
Dirichlet series. Suppose we assume that only ¢(s) is a Dirichlet series and that
p(s)@(s) is entire and of finite order for some polynomial p(s). Does the conclusion
of Hamburger’s Theorem still hold? Recently, M. Knopp in [12] answered this ques-
tion in the negative. He showed that there are infinitely many linearly independent
solutions of the functional equation by showing the existence of infinitely many
automorphic integrals. In fact he was able to generalize this result to the following
more general setup.
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Suppose A > 0 and define

2

w6 = (2) 16006, o) = in

Also the functional equation generalizes to
Ry (k—s)=Ce™ /2R, (s), |C|=1.

Knopp showed that there are infinitely many linearly independent solutions of
this functional equation when A > 2 and k is any real number. It is the objective
of this article to investigate the case when A = 2 cos 7, where 0 < 6 < % This will
be done by deteriming the necessary conditions for the existence of automorphic
integrals corresponding to the Dirichlet series. To this end, following M. Knopp,
we apply the Hecke correspondence. This was first used by Riemann, developed by
Hecke in [7] and then by Bochner in [1]. Here we state it as generalized by Weil in
[20], and following Weil we shall refer to it in the sequel as Hecke’s Lemma.

Lemma 1.1. (Riemann-Hecke-Bochner-Weil Correspondence) Let f and g
be continuous functions on (0,00) such that

fW,g(/y) = O0(e ™), y— oo, a>0

Fw,g9(/y) =0, y— 0, b>0.
Throughout, we shall write s = o + it where o and t are real numbers. Define

P (s) = /Ooof(y)y“dy and VU (s) = /Ooog(y)y“dy

Assume that for some o¢ > b, ol < —b,
® (oo +it) = O(|t|™%) and V(op+it) = O(|t|?) as |t| — oco.
Let Q (s) be a rational function which vanishes at infinity and let sq1,- -+ , s, be the
poles of Q. Assume that o, < Re(s,) < oq for each v.
Then the following are equivalent:
(4)  f) —9) = X)L Res(Q(s)y™* s0);
(B) D(s) — Q(s) and U (s) — Q(s) can be continued to the same entire

function F (s) which is bounded in every vertical strip.
Here Res (Q (s)y~*,s,) is the residue of Q (s)y~*° at s,.

Remark 1.1 Let Q(z) =>." {M +- 4 M} , be a rational func-

v=1(z=s,)™ (z=s0)

tion with b(v,0) # 0. Then it can easily be seen that

m m n,—1 J .
D Res(Q(2)y %sy) = Y, (7»1) b(v,n, —j—1)(logy) y=™; (2)
v=1 :

which is a sum of the form

Knopp has called these functions log-polynomial sums. He used these sums to
show that the conditions in Hamburger’s Theorem cannot be relaxed without los-
ing uniqueness (Theorems 1 and 2 in ). In[1] , Bochner introduced a more general
class of functions which he called residual functions and showed that log-polynomial
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sums are instances of residual functions (Lemma 1 in [1]).

A log-polynomial sum ¢(z) is called a Log-Polynomial Period Function(LPPF)
of weight 2k and multiplier system v for Hecke group G(\),\ = 2coswf,6 = %, P
is an integer greater than 2, if there is exists a function F defined and holomorphic
in the complex upper half plane satisfying

e~ 2min p (z+A)=F(z) and v(T) Pl (i) =F(2)+q(2),

with €2™* = v (S)) .

In this paper we will characterize, completely, LPPFs of weight 2k for the fol-
lowing cases; (1) k > 1 and Kk =0, (2) k > 0and kK # 0, (3) k£ > 0,2k € Z and
k=0,and (4) k <0 and x > 0.

Hecke’s Lemma is most frequently stated in a manner that illustrates the under-
lying group and the weight of the modular form. We record this in a slightly more
general form in the following corollary.

Corollary 1.1. Let A\ > 0 and k be a real number. Let a, and b, be complex
numbers such that

an, bp =0 (n°) as n— oo, for some ¢ > 0.

Define

o (s) = Z anpn”°, P (s) = Z b,n"°%;
n=1 n=1

0= (F) teee.  we-(F) ree:

F(Z) _ Z ane27rinz/)\’ G(Z) _ ane%rinz//\.
n=0 n=0

Then the following are equivalent:
(4) 2 *G(-1/2) = F (2);

(B) Oy (s) + % + e;;_kfo is entire and

D (s) = e "HRT, (2k — 5) .
Proof: Put f(y) = F (iy) — ao, g(y) = e ™y 2" {G (i/y) —bo} and Q(s) =

—mik
_ag 4 e ""bg i
0 4 £—p0. From (2) we obtain

Res (Q (s)y~?, O) + Res (Q (s)y~?, Zk) = —ag + e "Hpyy 2k,
Thus (A) is equivalent to

m

F@—g(y) =Y Res(Q(s)y *sv).

It is clear that -
)= [ fwy =01
0
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and .
W (s)= / g(y)y* rdy = e Ty (2k — s).
0

By Stirling’s formula ® and ¥ satisfy the growth condition in Hecke’s Lemma. We
now apply Hecke’s Lemma and analytic continuation.

The following corollary of Hecke’s Lemma contains the correspondence as used
by Knopp in [12] when applied to automorphic integrals. As Knopp pointed out
n [12], the residual functions of Bochner that are associated with automorphic
integrals and Dirichlet series are log-polynomial sums. In this paper we shall apply
this corollary in the case when Ay = Ay =X and G =4 (T) F.

Corollary 1.2. Let A, A2 >0, k a real number, v; and ¢ (j,t) be complex numbers
and let t,j,m, and n; be nonnegative integers. Let a, and b, be complex numbers
such that

an, by =0 (n°) as n— o0, for some ¢ > 0.
Define
= Z anpn=?°, P(s) = Z bpn™%;
n=1 n=1
21\ " ° 21\ °
Pr(s) =) T(s)ols), Ua(s)=(~-) T(s)¢(s);
A1 A2
F(Z) — Zane%riz/)\l’ G(Z) _ ane%riz//\z;
n=0 n=0
mo agp 677”%()0 L) . t
ZZ TLj—t-'rl_?_'_ s ok Q(Z)ZZ c(j,t) (logz)" 27.
Pl j=1t=0

Then the followmg are equivalent:

(4 G (-1/2)=F(2) +4(2) ;
(B) Dy (s) — Q(s) and Uy (s) — Q(s) can be continued to the same entire
function which is bounded in every lacunary vertical strip:
o1 <o <oy, |Im(s)]|>ty>0,
and they satisfy the functional equation

Dy (s) = e " HW, (2k — 5) .

Proof: Put f(y) = F(iy) — ag and g(y) = e~ "%y =2k (G (i/y) — by). Again by
(2), we see that (A) becomes

F)—g) =—ao+e ™ by —q(iy) => Res (Q(s)y™*,s.).

(Note that d (j,t) can be calculated from (2).) The rest of the argument is the same
as that of the proof of Corollary 1.1.

Observe that in Corollary 1.2, if we take G = @ (T) F and Ay = Ay = A, then the
term 2% (log z)" in the log-polynomial sum gives rise to a pole of order n;+1 at ~;
for the Dirichlet series (with the I'-factor), and conversely. Thus the determination
of Dirichlet series with functional equation amounts to finding log-polynomial sums
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which are period functions in the sense introduced by Knopp.

Other applications of Hecke’s Lemma can be found in [20]. Among other things
Weil shows that Hecke’s Lemma can be used to obtain modular integrals with
polynomial period functions. In other words, Eichler’s integrals can be obtained
from modular forms by manipulating the functional equations of the Dirichlet series
and then applying Hecke’s Lemma.

In the next two sections we shall be dealing with log-polynomial sums as period
functions for the discrete Hecke groups. In Section 2 we will discuss multiplier
systems and define automorphic integrals with log-polynomial period functions,
and in Section 3 we will characterize those periods of positive weight greater than
or equal to 2 and negative integral weight. In some cases we will obtain the complete
result for all positive weight (See Theorems 3.1 and 3.3) and give the general form
of these periods for nonintegral negative weights.

2. MULTIPLIER SYSTEMS AND LOG-POLYNOMIAL PERIOD
FUNCTIONS

2.1. Multiplier Systems for the Hecke Groups. In what follows, k will
be a fixed real number. We shall denote by Z, C, and H, the set of integers, the set
of complex numbers and the upper half-plane, respectively. For z € C, we assume
that —7 < argz < w and define

(cz+d)" =|cz+d|" exp{riarg (cz +d)}, (3)

where r, ¢, d are real numbers.
Let A > 0. The Hecke group G (X) is the group generated by

1 A 0 -1
SA<01> and T(l 0).

G (\) acts on H by Mz = ‘Clj_tg, where M = (i Z) € G\ and z € H. In

this case we identify M with its negative —M and consider the elements of G ()
as fractional linear transformations.

A multiplier system in weight 2k for G (\) is a complex-valued function v defined
on G (A) such that the following two properties hold:

(M) =1 VM ec G, (4)

v (M3) (c32 + d3)** = v (My) v (M) (1 Maz + dy)** (c22 + d2)™*,  (5)
a; b
¢ dj
Remark 2.1 (i) Condition ( 5) is sometimes called the consistency condition.
(i) By taking M; = My = I in ( 5), we get v (I) = v (I)* and by ( 4) we conclude
that v (I) = 1. If we take My = My = —I in ( 5), we get v (—1) (=1)** = £1.

forallMl, M, € G()\), M3 = My M, Mj = ), j= 1,2, 3, and Vz € H.

Lemma 2.1. Let v be a multipier system in weight 2k for G () such that v (—1I) (—1)** =

1. Then, with v (Sy) = €™, 0 < k < 1, we have

(i) v(T)=xe ™ (i) o (TSYMT) =e* " " (i) v (-TSy'T) = e 2",
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Proof : (i) Let My = My = T. Then M3 = T? = —I and hence for any z € H,

we have
1
L= (D) (1) =0 (- ) )
z
If we let z = i in ( 6), we get v (T)%i*F = 1, that is , (v(T ) =1 and (4) follows
from ( 3).
(i) Let My = T and My = S;'T = ( _1A _0 ) Then M3 = TS, 'T =
-1 0
( N 1 ) and hence
v (TSTIT) (=Az — D) = o (T) v (S51T) (S5 'T2)*" 22", (7)
On the other hand,
v (SY'T) 22 = v (S 1) v (T) 2%F. (8)
Substituting ( 8) in ( 7) yields
v (TSY'T) (—Az — )% = (1) v (S7h) (S;sz)% 22, (9)

Dividing both sides of ( 9) by (=Az — 1)**, we get
2k (_)\ _ 1)2](:
v (TSTIT) = v (T) v (S71 S - S
(ws07) =u 2o () S

By (13),

(A1
(=Az —1)**
2[2F | =X = L 1% exp {2ki (arg 2z + arg (—A — 1))}
| — Az — 1|?k exp {2kiarg (— Az — 1)}

e ) e |

For z € 'H, we have 0 < argz < 7w, 0 < arg(—)\—%) < 0and —7 <

arg (—Az — 1) < 0. Thus,

)2k

1
0 < argz + arg (/\ - ) —arg(—Az —1) < 3. (12)
z
On the other hand,

1 z(-A—1)
D W dr—1) = N2 E)
argz+arg< z) arg (—Az — 1) arg( v
= argl = 0(mod2m). (13)
From ( 12) and ( 13) we obtain

1
arg z + arg (—)\ — z) —arg(—Az —1) =2m. (14)
Thus using ( 14) and ( 11) in ( 10) we conclude that
v(TS'T) =wv (T)*v (S7h) etmik,

Since v (Sy') = v (Sx)~" = e~ ™% and since v (T) €™ = 1, (ii) follows.
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(i73) Let My = —I and My = TS;lT. Then M3 = M1 My = —TS;1T = ( i\ (1) ) )

and for any z € ‘H we have
v (=TSTIT) Az + 1) =0 (=) v (TSTT) (=1 (=xz — 1)*".
Since v (—1I) (=1)%* = 1, we see that
(=Az — 1)
Az + 1%
By an argument similar to that in (i¢) above, we can show that
2k
(A2 =17 ik
% ¢
(Az+1)

and (i4i) follows from this and (4¢). This completes the proof of the lemma.

v (=TS'T) = v (TS'T)

Remark 2.2 It is well-known (see [7] and [3]) that the only discrete Hecke groups
are those for which

A>2 or A=2cos(n/p), pEZ, p>3.

When
A=2cos(n/p), pEZ, p>3, (15)
there are two relations between the generators Sy and T of G (\); namely,
T?=—1 and (S\T)" =-1I. (16)

The following lemma gives the relationship between the weight 2k, the multiplier
system v and A. It also generalizes a similar relation for the case of the full modular
group given by Rademacher and Zuckerman in [16].

Lemma 2.2. Let v be a multiplier system in weight 2k for G (\) such thatv (=I) (—1)* =
1 and let X be given by ( 15).

(i) If v (T) = e~ ™ or p is even, then (p — 2) k — 2pk is an even integer.

(ii) If v(T) = —e~™* and p is odd, then (p —2) k — 2pk is an odd integer.

Proof : Let V, = (S\T)" = ( :: ?: ) Then by ( 16), V, = —I = W V,_1,
and we have, for z € H,
L=v (=) (-1)*
= () (=1 =0 () v (Vpm1) V12 + )™ (312 + 8p-1) ™
= v(V1) 0o (Vo) (Vp12)™ (3porz + 8p-1)™"

A

since V; = S)\T = ( 1

Hence we have
v (Vie1) (12 + 6p-1) = v (V1) v (Vpo1) (1 Vpmoz + 61)* (122 + 6p—2) ™
= v(Vi)v(Vp-2) (foﬂ)% (Yp—22 + 51772)% .

_01 ) and hence 7; = 1 and §; = 0. But V,_y = ViV, _».

Thus
l=v (Vl)2 (Vp—lz)% (Vp—2z)2k v (Vp—2) (Yp—22 + 517—2)% .
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Proceeding inductively, we obtain
1= 0 (V) (Vy12)* (Vpoo2)® - (Vi2)2F 225, (17)

If we put z = e™/?, then we have Vociz=Vp oz =---=Viz=2z= e™i/P. Sub-
stituting this in ( 17) and observing the fact that v (V1) = v (S\T) = v (S\) v (T) =
e2™i%y (T, we get

v (T)P e27ripn627rik —1. (18)
(i) Ifv(T) = e ™ or pis an even integer, then v (T)? = e~™*P and ( 18) yields

—mipk+2mipk+27ik =1

€ )

that is, (p — 2) k — 2pk is an even integer.
(ii) Ifv(T)=—e™* and pis an odd integer, then v (T')’ = —e~™*P and ( 18)
gives

—mipk+2mips+2mik _ —1:

b

(&

that is, (p — 2) k — 2pk is an odd integer. This completes the proof.

2.2. Log-Polynomial Period Functions. A log-polynomial sum is a
function of the form
n m;
g(z) = 2% c(jt)(logz)", (19)
§=0 t=0
where 71,...,7, and the coefficients ¢ (j,t) are complex numbers, n, j, m; and t

are nonnegative integers. Here 2@ is defined by e®!°¢* where log z is the principal
branch of the logarithm function.

A log-polynomial sum ¢ (2) is said to be a log-polynomial period function (LPPF)
of weight 2k and multiplier system v for the Hecke group G (), if there exists a
function F' defined and holomorphic in H such that:

e MR (24 \) = F(2), (20)

z

5(T) 2 2 F (_1) —F(2)+q(2), (21)

where 2™ =y (S)).
A function F satisfying ( 20) and ( 21) is called an autornorphic integral of weight
2k and multiplier system v for G (M), if it has an exponential series expansion:

F (Z) _ Z aneQﬂi(nJ’-n)z/)\’ (22)

n=0

where a,, € C and satisfy the growth condition
ap,=0(Mn° as n—oo, ¢>0. (23)

In this case we say that g is the log-polynomial period function of the automorphic
integral F'.

If we use the slash operator |?* defined by

(F 2 M) (2) = 0 (M) (cz +d) " ** F (M=),
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whereMz(a b
c d

FP?*8,=F and FPP*T=F +q, (24)

> € G (\) and z € H, then ( 20) and ( 21) become

respectively. It can be shown easily that the consistency condition ( 5) for a mul-
tiplier system v in weight 2k for G (\) is equivalent to

F[2F MM, = (F 28 My) |28 Ms, (25)
where Mi, My € G ()\). From now on we shall write F' | M for F |?* M.

Remark 2.3 The assumptions made in Lemmas 2.1 and 2.2 are no restrictions
of generality in the sense that if v(—I)(—1)*" = —1, then there is no nontrivial
LPPF corresponding to v. To see this, suppose that ¢ is an LPPF of weight 2k and
multiplier system v for G (A). Then there exists F' satisfying ( 20) and ( 21). From
the second equation in ( 24) we get,
FI(-D)=F|T*=(F|T)|T=F+q)|T=F|T+q|T=F+q+q|T.
That is,
1
DD DT PG = F ) +a() + o) (1)),

z

and hence
(@ (=I) (-1 - 1) F(2)=q(z)+9(T) 2z %q (_1) . (26)

Let us suppose that v (—I) (—1)** = —1. Then ( 26) reduces to

—2F (2) = q(2) + 0 (T) 2~ ¢ <—1> . (27)

z

Since ¢ (z) + v (T) 2 ?*q (—1) is a log-polynomial sum, ( 27) implies that F' is of
the form

J mj
F(z) = Z 2% Zd(j,t) (log z)" .
j=0 =0

If F is given by the above sum, then F'(n\) is well-defined for each n € Z,
n # 0. From the fact that F (z + \) = e*™*F (z), we deduce that F (z +n\) =
e?™ M~ [ (z). Thus,
lii% F(z) = e 2™ (n)).
This implies that (i) Re(d;) > 0 or (i) Re(d;) = 0 and m; = 0. Suppose
that (i) or (i¢) holds. Let L = lim,_,g F(z). Then the above limit yields F (n\) =
Le?™™*_This in turn implies that F is bounded as n — oo, and so Re(d;) = 0 with

m; = 0. In other words, (i) cannot occur. As we shall see in Section 3, Lemma 3.7,
lim, .o F'(2) does not exist if F' is of the form

J
F(z2)= Zdjzi“j,
§=0

where u1,...,uy are real numbers. Hence F' = a , where a is a constant.
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If K # 0, then F(2+\) = €>™*F (z) does not hold for a nonzero constant
function F'. Hence, if k # 0, F' = 0 and consequently, ¢ = 0. If Kk =0, and F = qa,
then F'| T = F + q implies that

q(z) = a (v(T) 272k _ 1).

Because they are periods of constant automorphic integrals, we call these functions
q the trivial period functions.

Thus the multiplier systems associated to nontrivial LPPF’s are those for which
v(=I) (-1)* =1, (28)

thereby justifying the assumptions made in Lemmas 2.1 and 2.2. Henceforth we
shall assume that if v is a multiplier system of weight 2k for G (X), then ( 28) holds.
Note that ( 28) now yields

g + ¢q|T =0. (29)

If A > 2, then T2 = —1 is the only relation between the generators Sy and T of
G ()\). Consequently, ( 29) is the only condition we have on an LPPF. In fact, if
r (z) is any log-polynomial sum, and if we define ¢ by

o) =1 () o ()= (~1),
then ¢ satisfies ( 29). In [9] and [12], Knopp has shown for these groups that if ¢
satisfies ( 29), then it is a period of an automorphic integral F of weight 2k and
multiplier system v.

It is customary to denote by gps the period function associated with M € G ()).
Thus F' | M = F + gy and from ( 25) we deduce that

qvyMs = Gy | Ma + qu, .- (30)

Clearly, g; = q_; = 0. When )\ is given by ( 15), we have (S\T)” = —I. Repeated
application of ( 30) yields

q+q| (SAT)+q| (S\T)*+--+q| (SKT)P~' =o0. (31)

In the next section we shall make use of ( 29) and ( 31) to determine the LPPF’s
of positive weight for the discrete Hecke groups. Then we shall apply Bol’s Theorem
to obtain log-polynomial period functions of negative integral weight.

3. LOG-POLYNOMIAL PERIOD FUNCTIONS FOR THE DISCRETE
HECKE GROUPS

3.1. Preliminaries. Throughout this section, k£ will be a fixed real number
and v will be a multiplier system in weight 2k for the Hecke group G (A), where A
is given by ( 15). Let us write A = 2cos 76 with § = 1/p. We define V,, = (S\T)"
and

a, by

MnVnT(S)\T)"T(C d > for n=1,...,p.
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A straightforward induction shows that

sin nwé sin (n + 1) 76
an =———, bp = ——7—7—,
sin w6 sin 6
sin(n — 1) 76 sinnmd
e i KL dy = -7 32
¢ sin 6 sin 6 (32)

In what follows we shall assume that & > 0. Suppose ¢ is an LPPF of weight 2k
and multiplier system v for G (A). Combining ( 29) and ( 31), we obtain

gl My 1 +q| My o+ +q| M —q=0. (33)
From ( 32) we see that b, # 0 and d,, #0 for n =1,...,p — 2. Thus we have
anz+bn>

Ly, (34)

. T —2k
i (0| M, () = im0 0 (e + ) g (22550

where
bn

L, =7 (M,)d,**q <d

>7 n=1,...,p—2.

Combining ( 33) and ( 34), we get
lim.—o (¢ | Mp-1 =) (2) = L,

where
p—2 p—2 b
L==> L,=—Y o(M,)d%q|2).
> o= X e () (35)

Since M, = (S\T)" ' T = TS;'T = ( -

> =

_01 )7 and since by consistency
condition ( 5) for v we have
0 (TSTIT) (A2 = 1) =5 (=TS7T) Az + 1) =0 (S)) Az + 1)~

(where in the last equality we have used Lemma 2.1 (i) ), we see that

(Mﬂéqﬂd=v@an+D”%( : ).

Az +1
Consequently,

lim,, o {’U(S,\) (Az+1)"%g (/\Zi 1) - q(z)} =L

We now replace z by 1/z in the last limit to obtain

i s (2) i) ()

On the other hand, from ( 32) we also see that a, # 0 and ¢, # 0, for each
n=2,...,p— 1. Since k > 0, it then follows that for n =2,...,p — 1,

anz + by,
— ] =0. 37
cnz + dn) (37)

lim (¢ | M,)(z) = lim o (M,) (cnz—|—dn)_2kq<

Using ( 33) and ( 37), we obtain
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Since My = (S\T)T = —S) and v (Sy) = v (—S)), the above limit becomes

lim {2(S3)q (= + ) —g(2)} = 0. (39)
Remark 3.1: Let ¢(2) be a log-polynomial sum given by
-3 S os)
t=0
where v1,...,7, and the coefficients ¢ (j, t) are complex numbers and m; and t are

nonnegative integers. It is no loss of generality to assume that
Re(m1) <+ < Re(vn,) <0< Re(Yngt1) < -+ < Re (),
with the m;’s satisfying the condition
mj <m; whenever j <! and Re(y;) = Re(y).

Thus any log-polynomial sum can be expressed in the form:

N mj M ny
q(z):ZZa(j,t) i (logz)" + ZZb (1,t) 2% (log 2)" (39)
j=1t=0 I=1 t=0

where
0< Re(f1) <--- < Re(fBn); my <my if Re(8;)=Re(B) (j<1);
0 < Re(ai) <---<Re(anm); n; <mn if Re(a;)=Re(ay) (j<1). (40)

The following notation will be helpful for further investigation of the limits in
(36) and ( 38). Let z,a € C, 2 # 0,2 # —\, and v € Z. Then we define

zlogz — (z+ A)log (z + A)

() = e ,
fane) = 0 (R (REEEA)

G (2) = i (x4 X" (log (2 + X))" — 22 (log2)".

Yo () = 02(Z+)\>_2k (= + A" (o =+ X))" — 2* (log 2)"

Note then that

baw (2) = 2% (10g2)" fau (2) and Yaw (2) = 2% (log 2)"” gaw (2) -
Thus if ¢ () is given by ( 39), then we can rewrite C1q (z + \) — ¢ (2) as

N my M ny
Cig(z+ M) —q(z) = D > a(t)d-p,(2)+ > > b(lt) b (2)
j=11t=0 =1 t=0

= Gannn (2) F(2),
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where C; = 9 (Sy) = e~ 2™ and

N ¢_p LS ot (2)
a 17’ + b(l,t) —t2 41
= ; (baM,nM (2) lz; ; ¢on nar (2) b
Similarly,
z4+ A 1\
z z+)\ — 4 2]
N m; M n
ZZCL -1)" Vs, .t (2 ZZ() (1,%) ( —at (%)
j=1t=0 =1 t=0

= Ygymn (2)G(2),
where Cy = 0 (—TS;lT) = 2™ and

Al Vs, S Yo (2)
= 1) (—1)F —2 4 b(l,t) (—1)F —2 (42
; ; ¢ (j ) ( wﬁN mN ; ; ¢5N7mN (Z) ( )

If we combine ( 36) with the equation before ( 41), and ( 40) with the equation
before ( 42), we have proved the following result.

Proposition 3.1. If q is an LPPF of weight 2k and multiplier system v for
G (\) , given by ( 39) and ( 40), then
Im ¢oyny (2)F(2) =0 and lUm gy my (2) H(2) =L, (43)
zZ— 00 zZ— 00

where F' and H are given by ( 41) and ( 42), respectively, and L is as in ( 35).

3.2. Log-Polynomial Period Functions of Positive Weight. In
this section we shall show that lim,_ ., F'(2) = 0 and lim,_ ., H (2) = 0 are both
impossible. In doing so we will arrive at the necessary and sufficient conditions for
the boundedness and existence of the limit at infinity for the functions ¢q,, n,, and
Yan my- By ( 40) this will enable us to determine, if it exists, an LPPF of positive
weight. To this end, we begin by proving the following limit-lemmas. In Lemmas
3.1 to 3.5, we assume that o, 3 € C, v, u € Z, and we shall say:

I holdsif Re(a)<0,v€eZ or Re(a) =0, v <O.

IT holdsif Re(w)>0,veZ or Re(a) =0, v>0.
ITT holdsif Re(a)<1l,veZ or Re(a) =1, v <0.

IV holdsif Re(a)>1,veZ or Re(a) =1, v>0.

V holdsif B#0, Re(a) < Re(f), v, p€Z or §#0, Re(a) = Re (), v < p.
VI holdsif Re(a)<0, v, p€Z or Re(o) =0, v < pu— 1.

\_/\/\/\_/

Lemma 3.1.
(a) hmz%oo T (Z) = -\

. R v [0, 4fI holds
(b) lim, 00 2% (log 2) —{ oo, if IT holds.

Proof : This is a routine application of L'Hospital’s Rule.
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Lemma 3.2. Suppose Kk =0. Then C; =1 and we have:
. |0, 4fIII holds
(@) limsoo G (2) = { oo, if IV holds.
(b) If V or VI holds, then
lim ba (2)
Z—00 ¢57M (2)
Proof : (a) When C; =1, we have

Ga (2) = 2% (log 2)” fa (2),

24+ M\ (log(z+N)\"
- (2 (322
z log 2z
But then lim, oo fa, (2) = 0. If Re(a) < 0, v € Z or Re(«)
2* (log 2)"” is bounded as z — oo and hence lim, o @a,, (2) = 0.
~* (log

=0.

where

=0, v <0, then

Next suppose Re(a) > 0 and v € Z. Then lim, . z 2)"" = 0 and by
L’Hospital’s Rule, we have
da
lim ¢q, (2) = lim _awlz) (Z)_V = tim — gz
2Z2—00 z2—00 y—« (10g Z) 2Z—00 dd (Z a (log Z) 1/)
But,
d 1 2+ M\ [log(z+A)\” vt (2)
= o (2)) = = ST e 44
dz(f’ (2)) 22 ( z > < log z art log z (44)
and p
el -« vy _ _—a—1 -v)_ v
- (z (log z) ) =z (log z) { @ logz}' (45)
Thus,
) ) _ v [ —aX+vT(2) /log 2
1 L(z) = 1 a1 -
T G () = lim (-4 A7 log a4 )" (T2

= Mlim (z4+ X" (log(z+ )",
since o # 0. By Lemma 3.1 (b), we then have
0, ifRe(a)<0,veZorRe(a)=0,v<0
lim ¢o,(2) =< 0, fO0<Re(a)<l,veZorRe(a)=1,v<0
e oo, if Re(a)>1, v€Zor Re(a) =1, v>0.
It remains to consider the case when Re (o) =0, v > 0. If o # 0, then ( 44) and

( 45) are applicable and we have the desired result. So suppose a = 0 and v > 0.
In this case we have

d log (z + M) \” vt (2
dz (o (2)) = ( glf)gz )> z(z—l—)(\))logz (46)
and J
o ((log z)ﬂ’) = 71/ (logz)™" ",
Hence

7(2) (log 2) (log (= + \))” '

Z—00 Z—00 z + A =0.
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This completes the proof of (a).

(b)  Once again we apply L’'Hospital’s Rule. We need to consider four cases.
Case 1. a # 0 and 8 # 0. From ( 44), we see that

. d)a,u (Z) ERT fa,l/ (Z) 2% (IOg Z)V - g v—
zli{l;o qﬁ@“ (Z) o zli{lc}o fﬂ;#« (Z) ZfB (log Z) ﬁ zll{lolo Z (log Z) : ’

We now apply Lemma 3.1 (b) for the desired conclusions.

Case 2. a =0 and 8 # 0. From ( 44) and ( 46) we deduce that

L fow ()
2= fg.u(2)
(log(z+)\ ) vT(2) )
log = z(z+A) log 2
= lim

2—00 (% (er)\

z

-1 (1ogl(()»;-ij)) { BA+ 5 log,z })

(
)’

log (z+ M)\ " 1(2) 1
) ( log 2 > log (2 + A) (=B + pu7 (2) /log 2)

If V holds, then z*# (log z)” ™" is bounded and hence
lim do.v (2) = lim 2*7% (logz)" ™" fo (2)
im0 P (2) oo fo.u(2)

Case 3. a # 0 and 8 = 0. We should note that when § = 0 we must assume that
1 # 0 for the obvious reason that ¢o o = 0. Write

= lim v
Z—00

=0.

Pav (2) _ 2% (log 2)" " faw (2)
Pp.pu (2) Jou (2)
h(2) fau (2)
fou (2) ’

where h (z) = 2% (log z)" ™"
If Re(a) < Re(B) = 0 or Re(a) = 0, v < p, then lim, .. h(z) = 0 and
applying L’Hospital’s Rule, we get

 Gan(2) (W) e (5) B fan ()
== ¢o,#<z>‘3~m< Bu@ T T2 )

But

B (2) = 2271 (log 2)" " {a 4+ “} :

log 2z
and using ( 46), we get

W (2) faw (2)
fou(2)

1 log (z+A)\ " v—p
9(z) = vt (2) ( log 2 ) at logz |~
From ( 44) and ( 46) we get

= g1(2) 2% (log 2)" "™ (2 4+ A) fa (),

where
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h(2) fi (2) -
— = = g2 (2) 2% (log 2)" ",
fo.u(2)
where
1 + A\ /1 +A v—p41
g2 (2) = : 09 (2 + ) RGN
vT (2) z log = log 2
Since lim, oo g1 (2) = —-%, lim, .o g2 (2) = 2, and by L’Hospital’s Rule,
!
lin (4 A) foy (2) = lim L2 ) iy S &) a7 —an,
2—00 zZ—00 PR Z2—00 (z+A)2 z2—00
we have
2
i — (o) +« a(l —«o
lim {g1(2) (2 4+ A) faw (2) + g (2)} = ) T _all=a)
zZ—00 v v

(Note that Re (o) < 0 or Re () =0, o # 0.) Thus if VI holds, then

i Per @) (W) fan () h(z) fo, (2)

Z—00 (;50’H (Z) Z—00 f(/)7u (Z) fé,u (Z)
= zlggo 2% (log 2)” " g1 (2) (24 A) faw (2) + 92 (2)}
e ) (1; @) Zlirgo 2 (log z)" ~# !
= 0.

Case 4. « =0 and 8 =0. Then
lim Jow (2) =Y

z—00 fo,u (2) a ;

In this case we must have v # 0 and p # 0 and hence, if v < p, we have
lim Yo (2)
zZ—00 ¢07N (Z)

This completes the proof of the lemma.

=0.

The following three lemmas are immediate consequences of the above two lem-
mas.

Lemma 3.3. Suppose Kk =0. Then Co =1 and we have
. [0, 4fIII holds
(@ Mo ar (=9 o0 i 1V holds.

(b) Suppose B # 2k. If V' holds, then

tim Yor ) g
=00 Y (2)

(¢) IfRe(a) <2k, vyu€Z orif Re(a) =2k, v < pu—1, then
lim o) _ g

=00 Yok (2)
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Lemma 3.4. Suppose k > 0. Then
. |0, if I holds
(@) Aimemoo @aw (2) = 3 17 hotds.
(b) If V holds or if 3 = 0,Re(a) < 0,v,u € Z or if 3 =0,Re(a) = 0,v < p,
then

. o (2)
1 3
=550 S (2)

Lemma 3.5. Suppose k > 0. Then
. |0, if I holds
(@) limemoothay (2) = 0o, if IT holds.
(b) If V holds or if 8 =0,Re (a) < 0,v,u € Z orif 6 =0,Re(a) =0,v < p,
then

=0.

tim Lo ) g
200 P, (2)
Lemma 3.6. Let ay,...,an be distinct complex numbers and Py (z), -+, Py (x)
be polynomials. If
N
ZPj (x)e*® =0, then P;=0 forall j.
j=1
Proof : The proof is a simple induction on N. For N = 1, the lemma is trivial.
So suppose the lemma is true for N and assume that Z;V:ll P; (x) e** = 0, where
ai,...,an41 are distinet. Put 8; = aj —anvy1. Then, dividing the above equation

by e*N+17we get

N
Py (2) + ZPJ (z) % =0.
j=1

If Pyy1 (z) =0, then the rest of the polynomials are also zero by the induction
hypothesis. So suppose Pni1(z) # 0 and let m be the degree of Pyyq. If we
differentiate the last equation m + 1 times, we obtain

N m—+1
ZQj (z) e’ =0, where Q;(z)= Z ( mt 1 ) ﬂ;Pj(mH_T) (x).
j=1

r
r=0

Here P®) (z) is the t** derivative of P (z).

Since §; are distinct we have, by the induction assumption, that Q; () = 0 for
each j=1,...,N.

However, no nonzero polynomial P satisfies a nontrivial differential equation of
the form >__, ¢, P (x) = 0, with ¢, # 0 for all r. For if P (z) = apa™ + -+ +
ag, Gy, # 0, is a polynomial, then

PO(z) =m(m —1)---(m — 7+ 1)amaz™ " + --- + rla, and hence the leading
coefficient of >°1'_, ¢, P(") () is coay,, which is nonzero. Therefore, P cannot satisfy
the differential equation.

Thus P; = 0 for each j = 1,...,N and hence Py4; = 0. This completes the
proof of the lemma.
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Corollary 3.1. If v1,...,vn are distinct complex numbers and if
N my
Z Z ¢(j,t) 2% (log 2)" =0,
j=11=0

then

c(4,t) =0 for all j and all t.

Lemma 3.7. Ifcy,...,cny are complex numbers not all zero and if uy,...,un are
distinct real numbers, then lim,_, ., Zjvzl c;jz™i exists if and only if N = 1 and
Uy = 0.

Proof : Suppose N > 1 and the limit exists and is equal to L. Let us assume
that u; # 0 for all j. Fix ¢ and let

. 2tn

zZp = rpe'¥ where 1, =elul.

Claim. There exist a subsequence {z,, } of {z,} and complex numbers &;,..., &N,
independent of ¢ and of absolute value 1, such that

lim zf;:i =¢&e % forall j=1,...,N.
m— 00

Assume the claim for a moment. Then, since z,, — 0o as n — oo, we have
Zn,, — 00 as m — 00, and hence

N N N
L = lim Cjzpd = cj lim 2z = cj&je” "%,
m_’w; J ; o ; Y

With ¢ = ¢, Py (p) = —L and P; (¢) = ¢;&; for j =1--- N, and recalling that the
u; are distinct and nonzero, we apply Lemma 3.6 to conclude that L = ¢; = ¢ =

- =cny = 0. (Note that {; # 0.) But this is contrary to the hypothesis of the
lemma. Thus if the limit exists, then N = 1. In this case if u; # 0, then the above
choice of z, yields L = c1&1e~“1¥ which is impossible unless ¢; = L = 0.

To complete the proof of the lemma we need only prove the claim. To this end,

we first observe that when z, = r,e*#, then

iuj eiuj log zn _ eiuj(logrn+i<p) _ e_uﬁae%milu;\n.

Zn

Put & = 1. Then 281 — £1e~“1% as n — oo. Consider the sequence

27i2-m
e futl .

Since it is a sequence of numbers with absolute value 1, it has a convergent subse-
quence, say,
271'1’"—271,,
e”Tul™ — £ as v — o0.

We repeat this procedure with the sequence

{ 273, }
e [url .
This yields a convergent subsequence, say ,

u

; u3
PRUL ry CINN 3 as pu — oo.

Note then that

U
Ny,

Zpd — &e "% as p— oo for j=1,2,3.
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We proceed in this manner to get the subsequence and the complex numbers of the
claim.

We are now in a position to prove a proposition which is essential in determining
the LPPF’s of positive weight for the discrete Hecke groups.

Proposition 3.2.

(a)

lim, oo F'(2) # 0 or the limit does not exist.

(b) lim, oo H (2) 0 or the limit does not exist.
Proof : (a) Suppose, to the contrary, that
ZILII;OF(Z) = 0. (47)
Recall that F' is given by
F(z) = iv: ZJ:a (4, %) (fﬁj’t (? + i/[: i b(l,t) et (2) :
arrmar (2) Panrnar (2)

tm 2Pt G
Zo0 ¢(1]W7"1v1 (Z)

for all j and all t. By the same lemmas, we also have

lim Pant(2) (2)
Z—00 ¢aN1,nA1 (Z)

for each [ and each t such that (i) Re(o) < Re(apr) and any ¢ or (i)
Re (oy) = Re(apr), and t < ny < nys. Thus

0,

-~ Parn (2)
lim F(2) = lim l;;b(z,n) m (48)

where n = n; = nys and Re (ag) = Re (apr) for all 1 > .
Let ay — apy = 1y for I =1y, ..., M. Then we have

¢0¢L7" (Z) — Ziyl fOélJl (Z)

Gans,n (2) fornin (2)
Note that Re (oy) > 0 for each I, so that «; # 0, and hence by ( 44), we have

T fal,n(z) o %a k=0
fri=lim Farm (2) { 1, k#0. (49)

As 2" is bounded for each [, ( 49) yields

lim 2 <fl _ Jan(2) ) = 0

Z—oo Jann (2)
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and hence

M
Zan;OZb(l,t) PRL (fl - m> = 0.

I=lo

The last equation can be rewritten as

S N i S (2)
lim (Y (b(1,1) fi) 2 = b(1,t) 2 S| =0, (50)
Feo =l =l Janrn (2)
Combining ( 47), ( 48) and ( 50), we obtain
lim Z (L) f;) 2% =0,
z~>ool o
contrary to Lemma 3.7.
(b)  Suppose lim,_,o H (z) = 0, where
N mj M ng
Z a t 7/’67 + Z ’ b t = al,t(z) .
j=1t=0 wﬁNymN =1 t=0 wﬁNymN (Z)

We will consider two cases:
Case 1. By # 2k or k > 0.
Since Re (—a;) < 0 < Re(8n), by Lemmas 3.3(b) or 3.5(b), we have

lim Y=ewt (2) 0,
200 Yy my (2)

for all [ and all ¢t. Also
lim 7¢ﬁj’t (2) 0,

2= Ygy my (2)
for all j and ¢ such that (i) Re(8;) < Re(fn)and any tor (ii) Re(3;)
and t < my. Thus we have

i H( ) li f: ( 1)m ( ) wﬁj,m (Z)
im z) = lim — a(j,m) ——=,
z—00 z—»ooj:jo wﬁNﬁn (z)
where m = m; = my and Re (8;) = Re (On) for all j > jo.
Let 8; — By = iu; for j = jo,..., N. Then we have
¥s,m (2) — iy 98,m (2)
wﬁNﬂn (Z) 9Bn,m (Z)
Since By — 2k # 0 or k > 0, we see that

B,—2k _
gj = lim 98;,m (2) :{ o2k K=

2= ggym (2)

= Re (BN)
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As in (a) above, we conclude then that

N
lim Y (=)™ (a(j,m) g;) =" =0,
J=jo

contrary to Lemma 3.7.

Case 2. By =2k and k = 0.

In this case we first observe that m = my > 0 and that lim,_, o, Az) _ .

log z

Next we note that

m log(z+A) m 1
it (Y1) (=522 -1

200 log z 200 _1
zlog z

m—1
log(z+A) 7(2)
. m ( gi-Og z ) z(z+A) log 2
= lim =

i <log(z+/\)>m_1 zlog z
(z+A) (logz+1)

200 _ logz+1 200
(zlog 2)*?

Also
A a—2k 1 A t
hm((Z*) (st 0) 1> a2,
Z2—00 z lOgZ
Thus,
z B—2k (log(z+\ t
() () 1)
: Vst (2) I B—2k t—m
lim Tog 0o (3] lim 2 (log z) e
z—0o0 10 m zZ— 00 ogl(z
o o (R
— 2k —m
_f lim 2772 (log2)"™™ =0,
m 2—00
if Re(B) < 2k or if Re () =2k and t < m. Hence
N
1 =1 -1 —
v log 2 zglgoj; (=1)"a(Gm) log 2vok.m (2)’
=J1

where m = m; = my and Re (8;) = 2k for all j > j;.
We now proceed as in Case 1 and arrive at the same contradiction. This com-
pletes the proof of the proposition.

Remark 3.2: It follows from Proposition 3.2 that there are sequences {z,} and
{w,} such that

|F(2) 28 and | H(w,)|>3,

for some positive real number §. This, together with ( 43), implies that

=m.
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Bm oy nay (20) =0 and  {¥gy my (wy)} is bounded. (51)

Remark 3.3: In his first two papers on rational period functions [10] and [11],
Knopp has shown that for the full modular group I" (1) the rational functions given
by

fa(l-0(T)7%*), if k>1
a(z) = { a(1—5(T)z"2) +b27", ifk=1
are rational period functions. Here we are assuming that k& € Z which is the case
if Kk = 0. In fact he showed that these are the only rational period functions with
rational poles. It can easily be seen that the functions given above are period
functions for the Hecke groups G (\). With this in mind we now state and prove
our main results.

Theorem 3.1. Suppose q(z) given by ( 39) and ( 40), is an LPPF of weight
2k, k > 0 and multiplier system v for the Hecke group G (X\), where A = 2 cos (%)

2K

Suppose also that v (Sy) = e =1, de, k=0.
(a) If k > 1, then q(2) is of the form

q(z)=a(l—0v(T)z"%").
(b) If k =1, then q (z) reduces to the form

q(z)=a(l—v(T)z"?) +bz"".

Proof: Ifwv(Sy) =1, then C; = Cy = 1. Note that if Re (o) = 1 and v = 0, then
from the proof of Lemma 3.3 (a) we have lim. o0 ¢ap (2) = lim, oo A (z + A)* 7 =
A if a =1, and the limit does not exist otherwise. Thus lim, o ¢a . (2) # 0.
From Lemma 3.3 (a) and the first part of ( 51), we conclude that Re (aps) < 1.
On the other hand, from Lemma 3.4 (a) and the second part of ( 51), we see that
Re (OBn) < 1or Re(fBn) =1, my = 0. Noting the fact that 1950 = 0 and using
( 39), we conclude that ¢ (z) takes the form:

K

N M
q(z)=a+cz7 2k ¢ Z bjz it 4 Z 2Py (2) + Z 2Ry (%),
=0 j=1 1=1

where

0<Re(f1)<---<Re(Bn) <1, 0<Re(a)<---<Re(apy)<l,

m; n
Pi(z) =Y a(jt)(logz)", Ri(2) =) b(l,t)(log2)",
t=0 t=0
and ug, ..., ux are real numbers.

Recall that lim. . ¥, ¢ (2) = 0 for all j and ¢, and that lim. .o ¥, (2) =0
for all [ and t¢.
Thus
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L = lim

zZ—00

VRS

24+ A\ 2 1 1
z q Z+ A 9 z
A\ 2kl ‘ ‘
Z—00 4 z

J

~

Il
o

= lim ijziiuj hj (Z) y

J=0

where

hj(z) =z <<Z er A>_2k+l_mj - 1) .

But then lim, . hj(2) = (—2k+ 1 —iu;) A = ¢; # 0. We conclude from this
and the above limit that

K
lim g bjciz™"™ =L,
Z—00

=0

which implies that b; = 0 unless u; = 0. Thus ¢ takes the form :

N M
q(z)=a+bz" +ez 4 2P (2) + > 2R (2), (52)
=1

j=1

where

0<Re(B1) <---<Re(Bn) <1, 0 < Re(ay) <---<Relay) <1,

my ny

Pj(z) = Z a(j,t)(logz)" and R;(z) = b(l,t) (log z)" . (53)
t=0 t=0

As an LPPF recall that ¢ should satisfy the relation ¢ + ¢ | 7' = 0; that is,

¢ (2) +5(T) =g (1) —0.

z
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+§:@(T) L2k (j) o P; (;1> + i@(T) zm2F (j)m it (j)

where
46 =0 0 E (2, B =em e (2.

Consequently,
(a+ (-1 en (1)) + (a8 (T) +¢) = 4 b= — b (1) 241+

N

N M M
Z Z*ﬁjpj (2) + Z Zf2k+ﬁjAj (z) + Z 2Ry (2) + Z 272 B (2) = 0. (54)
j=1 j=1 =1 1=1
4)

Note then that the left-hand side of ( 5

L rj
DO c(it) 2 (logz)" =0,

j=1t=0

is a sum of the form

where the powers v; of z are
0, =2k, =1, =2k+1, —B;, —2k+05;, o, —2k-—q. (55)

Suppose k > 1. Then by ( 53) the numbers in ( 55) are all distinct and we apply
Corollary 3.1 to conclude that all the coefficients of ( 54) are zero. In particular,
we have

—2k _

a+(-1)""c0(T)=0, av(T)+c=0, bj=0 P;(2)=0, and R;(z)=0.
By Lemma 2.1 we have o (T)? (—1)"%* =1, and so ¢ = —a® (T'). Therefore,
¢(z) =a(l-v(T)z7%),
and (a) is proved.
Next suppose k& = 1. Then the list in ( 55) becomes

Oa 727 713 717 7ﬁj7 -2+ 6]'7 ag, -2 - Q.
Here all powers of z except —1 are distinct and we must have 1 — o (T) =0orb=0
and hence ¢ takes the form as stated in (b) . This completes the proof of the theorem.

Remark 3.4: Suppose £ = 0 and A is given by ( 15). Then by Lemma 2.2, we
have (p — 2)k € Z, which is even when p is even. In particular, for p = 3 and
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p = 4, we see that k£ € Z and hence the assumption that £ > 1 in Theorem 3.1
is no restriction of generality. For p = 6, that is, for the group G (\/g), there is
one possible case that is not covered by Theorem 3.1, for in this case we can have
2k =1 as a weight. In general for weight 2k < 2 we have the following theorem.

Theorem 3.2. Under the assumptions of Theorem 3.1, if 1 < 2k < 2, then g
reduces to the form:

N
N=a(l-0(T)z"Y) +> Pi(2)z % —5(T 5"P-<_1>22k+ﬁj,
where
0<Re(f1) <Re(f2)<---<Re(fn)<1
If 0 < 2k < 1, then q takes the same form as above with

0< Re(f1) LRe(f2) <---<Re(fBy) <2k <Re(Byqy1)<---<Re(Bn) <1

Proof: If 1 < 2k < 2, then the list in ( 55) becomes

0, —2k, —1, —2k+1, —ﬂj, —2k + 6]‘, o, —2k — . (56)

In ( 56) repetition occurs if and only if —8; = —2k+ (3, for some j and r. By the

assumptions made on the real parts of the §’s it follows that —3; = —2k+ Gn_j41

for j=1,...,J, where J = N/2 or J = (N — 1)/2. We now substitute this in the

equation for ¢ + ¢ | T = 0. In this rearranged sum the powers of z are distinct, so
we can apply Corollary 3.1. Thus ¢ (z) has the form

_ _ f2k 2B 5 S B op (T ke
q(z)=a(1 ZP v (1)) (=)™ P — )= .

j=1

This completes the proof of the theorem.
Theorem 3.3. Suppose q (z) given by ( 39) and ( 40), is an LPPF of weight
2k, k > 0 and multiplier system v for the Hecke group G (X\), where A = 2 cos (%
Suppose also that v (Sy) = 2™ #£ 1, d.e., k > 0, then q(z) = 0.

Proof : If v(Sy) # 1, then Cy # 1 and Cs # 1. By Lemma 3.4 (a) and the first
part of ( 51), we must have Re (aps) < 0. But this contradicts ( 40). Hence it must
be that b(l,t) = 0 for all I and all ¢. On the other hand, combining Lemma 3.5 (a)
and the second part of ( 51), we see that Re (8) < 0 or Re (Bx) = 0,my = 0. Since
Re (Bn) < 0 is contrary to ( 40), it must be that Re (8x) = 0,my = 0. But then
(again by ( 40)) we have m; = --- = my = 0. Consequently ¢ (z) takes the form

N
=D bz
j=1
where the u; are distinct real numbers. But then
(q+q|T)(z Zb 7 +Zb’ —2kctiug

and Corollary 3.1 implies that b; = 0 for each j and hence ¢ (z) = 0. This completes
the proof of the theorem.
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3.3. Log-Polynomial Period Functions of Negative Weight. Finally
we shall determine the LPPF’s of negative integral weight for the Hecke groups and
give the general form of the LPPF’s for nonintegral negative weight. First we will
discuss the negative integral weights. For this we shall apply an observation made
by G. Bol in [2], which we state as

Lemma 3.8. (Bol’s Theorem). Suppose r € Z,r > 0 and a,b,c,d € C such
that ad — be = 1. If f is a differentiable function, then

D“*”(@z+d¥f<jji§)>::@z+d)T2f“*”<ijiz>. (57)

Proof : Induction on r. See also [8].

We now apply this Lemma to prove

Theorem 3.4. Suppose q is an LPPF of weight 2k € Z,k < 0 and multiplier
system v for G (X\) where X\ is given by ( 15). Then

a () B (T) 2 42 ) 4 (2), k< 0,8=0
a(z’l—l—i‘)(T)z)—i—blogz—i—c, k=0,k=0
P (2), k<0,k>0,

q(z) =

where a,b,c € C and py, (2) is a polynomial of degree at most —2k.

Proof : If ¢ is a log-polynomial sum, then it can easily be seen that ¢(") (z) is
also
a log-polynomial sum for any r € Z, » > 0. But then by Bol’s Theorem we see
that ¢(=2¢*1) is an LPPF of weight —2k + 2 and multiplier system v for G ()).
Now by Theorem 3.1 (if kK = 0) and by Theorem 3.3 (if x > 0), we obtain

A(1—9(T)22+2), k<0,k=0
q(—2k+1) (2) = A 1—17(T)z_2)+BZ_1, k=0,k=0
0, k<0,k>0.

The theorem now follows from integrating this (—2k + 1)-times.

Remark 3.5: When k=0, x =0, we have v (T) = 1 and v (S)) = 1. Suppose
f(2) is an entire modular form of weight r and multiplier system v = 1 for the
Hecke group G () such that f never vanishes in the upper half-plane. Define

F () =log f(2).
Then
F(-1/z)=F (z) +rlogz.
Thus

q(z)=a(z"'+0(T)z) +blogz+c
is indeed an LPPF of weight 0 for the Hecke group provided such an f exists. That
such an f exists was proved by Knopp and Smart in [14] (Theorem 2, page 135).
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Next we consider the LPPF’s of nonintegral negative weights. Suppose k£ < 0

and 2k is not an integer and let ¢ be an LPPF of weight 2k and multiplier system
v for G (\), where A is given by ( 15). Then ( 36) holds, that is, we have

{2 () o))

ZLn _ S r ) dg (%)

n=1

where

and

Mn:VnT:(S,\T)"T:(Z" Z”) for m=1,....p.

Note that ( 38) does not hold as —2k > 0. However, if we multiply both sides of
( 33) by 22*, we obtain

2 (q | Mp1) (2) + 2% (g | Myp—2) (2) + -+ 2% (¢ | M1) (2) = 2%q (2) = 0. (59)
We now make use of ( 32)
and take the limit as z — oo in ( 59), to obtain

lim 2% {5(S)) q(z+ \) — q(2)} = K, (60)

Z— 00

where

p—1
K=-S"o(M,)c2q (%)
> o)t (2
The Limit-Lemmas of Section 3.2 are applicable for any k and we apply them to
obtain the following result.

Proposition 3.3. Suppose q(z), as given by ( 39) and ( 40), is an LPPF of weight
2k, k < 0, and multiplier system v for the Hecke group G (X\), where X is given by
( 15). Suppose also that v (Sy) = 2™ 0< Kk < 1.

(1) Ifk=0, then

N mj M n
q(z)=A(1—0( _2k —1—2 a( Bi (log z)* ZZ “ (log 2)*,

j=1t=0 =1 t=0
(61)

0< Re (1) << Re(On) <1 my <muif Re (8;) = Re (8) (j < 1)
0<Re(a) <---<Re(am)<—-2k+1; nj <ngifRe(aj)=Re(ay)(j<l).
(#6) Ifk >0, then
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ng

M
= Z b(l logz) ,

=1 t=0

[

where

0<Re(o) <---<Re(am) < —2k; nj; <n; if Re(a;)=Re(a)(j<l).

4. CONCLUDING REMARKS

As mentioned in Section 1, the Riemann-Hecke-Bochner-Weil correspondence
applies to automorphic integrals on the Hecke groups G (). Suppose that ¢ given
is by ( 39) and ( 40), that is,

m; M n

N
Z a( i (log 2)" ZZ  (log z)"
1=1 t=0

]:1 =0

~+

where

0<Re(f1) <---<Re(fn); my <my if Re(B;)=Re(B)(j <I);
0 < Re(ar) <---<Re(am); n; <n if Re(a;)= Re(a;)(j<l).
If ¢ is an LPPF, then there exists a function F' defined and holomorphic in the

upper half-plane satisfying ( 20), ( 21) , ( 22) and ( 23).
Let us define

00 =3 o™ B (s) = (i”) I'(s) 6 (5);
N m; M n
9=y cl:b LA 1)
o) jz::lf:() (s+ ;)™ +;t:0 (s —a)™ ! 0 ( 2k—5>

c(j,t) = (=1)Y5la(jm; —t+1) and d(l,t) = (-1 (l,n —t+1).
Then Hecke’s Lemma states that @ (s)—Q (s) can be continued to an entire function
which is bounded in every lacunary vertical strip:

o1 <o <oy, |Im(s)]|>ty>0,
and @ (s) satisfies the functional equation
D (s) = e "kG (T) D (2k — 5).

When k& > 0 and x > 0, it follows from Theorem 3.3 that ¢ (z) = 0 and hence
® (s) is holomorphic in the entire s-plane except for possible simple poles at s = 0
and s = 2k. In fact Theorem 3.3 asserts that the only automorphic integrals with
log-polynomial period function are the automorphic forms. If £ > 1 and x = 0,
then from Theorem 3.1 we conclude that @ (s) has at worst simple poles at s = 0
and s = 2k.
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Finally, suppose F; and Fy are two linearly independent automorphic integrals
of weight 2k, k > 1 and multiplier system v with LPPF’s ¢; and ¢, respectively. If
& > 0, then F}, j = 1,2 are automorphic forms. If, on the other hand, x = 0, then
by Theorem 3.1 the ¢’s are of the form

c (1 —o(T) z_%). Thus for a suitable choice of constants a and b, aF} + bFy is
an automorphic form of weight 2k.

(8]

[9]
[10]
[11]
[12]
[13]
(14]
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