
LOG-POLYNOMIAL PERIOD FUNCTIONS FOR NONDISCRETE HECKE GROUPS

ABDULKADIR HASSEN

Abstract. Existence of automorphic integrals associated with nondiscrete Hecke groups will be considered.
Multiplier systems for some of these groups will be discussed.

1. INTRODUCTION

Let λ > 0. The Hecke group G (λ) is the group generated by

Sλ =
(

1 λ
0 1

)
and T =

(
0 −1
1 0

)
.

G (λ) acts on H by Mz = az+b
cz+d , where M =

(
a b
c d

)
∈ G (λ) and z ∈ H. In this case, we identify M with

its negative −M and consider the elements of G (λ) as fractional linear transformations.
Marvin Knopp in [6] and Knopp and Mark Sheingorn in [7] showed that there are inifinitely many linearly

independent Dirichlet series with preassigned poles of a given order which satisfy functional equations for
the theta group G(2). This shows that in Hamburger’s Theorem (see [2]) one cannot relax the assumption
about the pole of the Dirichlet series to arrive at the conclusion of the uniqueness of the Riemann zeta
function. In [2] the author showed that for the full modular group the only Dirichlet series with functional
equation are those associated with modular forms. Also, for many of the discrete Hecke groups similar
results were obtained. These results were obtained by applying Hecke’s Lemma, which enables one to switch
from Dirichlet series with functional equations to automorphic integrals with log-polynomial period functions.

The question we consider in this article is the following. If there is a nontrivial automorphic integral
associated with a Hecke group, is the group discrete?

It is well-known (see [1] and [3]) that the only discrete Hecke groups are those for which

λ ≥ 2 or λ = 2 cos (π/p) , p ∈ Z, p ≥ 3.

Thus we shall be dealing with Hecke groups for which λ = 2 cos (θπ) , 0 < θ < 1/2, θ 6= 1/p, p ∈ Z.
In Section 2, we give the definitions of multiplier systems for Hecke groups and give a generalization of a

characterization of multiplier systems given in [2]. We also define automorphic integrals and log-polynomial
period functions. In Section 3, we deal with the case when θ is rational. In this case, we will show that
the groups admit an elliptic element of finite order 6= 2 and apply the methods used in [2] to show that the
nondiscrete groups of this type do not support automorphic integrals.

We close this section by stating Hecke’s Lemma as generalized by Weil in [9].

Date: 2/20/98.
1991 Mathematics Subject Classification. 11F66.
Key words and phrases. Dirichlet series with functional equation, Automorphic integrals , Hecke groups.

1



2 ABDULKADIR HASSEN

Lemma 1.1. (Riemann-Hecke-Bochner-Weil Correspondence) Let f and g be continuous functions
on (0,∞) such that

f (y) , g (1/y) = O
(
e−ay

)
, y → ∞, a > 0

f (y) , g (1/y) = O
(
y−b

)
, y → 0, b > 0.

Throughout, we shall write s = σ + it where σ and t are real numbers. Define

Φ (s) =
∫ ∞

0

f (y) ys−1dy and Ψ (s) =
∫ ∞

0

g (y) ys−1dy.

Assume that for some σ0 > b, σ′
o < −b,

Φ (σ0 + it) = O
(
|t|−2

)
and Ψ (σ′

0 + it) = O
(
|t|−2

)
as |t| → ∞.

Let Q (s) be a rational function which vanishes at infinity and let s1, · · · , sm be the poles of Q. Assume that
σ′

0 ≤ Re(sν) ≤ σ0 for each ν.
Then the following are equivalent:
(A) f (y) − g (y) =

∑m
ν=1Res (Q (s) y−s, sν) ;

(B) Φ (s) − Q (s) and Ψ (s) − Q (s) can be continued to the same entire function F (s) which is
bounded in every vertical strip.

Here Res (Q (s) y−s, sν) is the residue of Q (s) y−s at sν .

Remark 1.1. Let Q (z) =
∑m

ν=1

{
b(ν,0)

(z−sν)nν + · · · + b(ν,nν−1)
(z−sν)

}
be a rational function with b(ν, 0) 6= 0. Then

it can easily be seen that

m∑

ν=1

Res
(
Q (z) y−z, sν

)
=

m∑

ν=1

nν−1∑

j=0

(−1)j

j!
b (ν, nν − j − 1) (log y)j

y−sν . (1)

We apply the following corollary of Hecke’s Lemma in the case when λ1 = λ2 = λ and G = v̄ (T )F .

Corollary 1.1. Let λ1, λ2 > 0, k a real number, γj and c (j, t) be complex numbers and let t, j,m, and nj

be nonnegative integers. Let {an} and {bn} be sequences of complex numbers such that

an, bn = O (nc) as n→ ∞, for some c > 0.

Define

φ (s) =
∞∑

n=1

ann
−s, ψ (s) =

∞∑

n=1

bnn
−s;

Φ (s) =
(

2π
λ1

)−s

Γ (s)φ (s) , Ψ (s) =
(

2π
λ2

)−s

Γ (s)ψ (s) ;

F (z) =
∞∑

n=0

ane
2πiz/λ1 , G (z) =

∞∑

n=0

bne
2πiz/λ2 ;

Q (s) =
m∑

j=1

nj∑

t=0

d (j, t)

(s− γj)
nj−t+1 −

a0

s
+
e−πikb0
s− 2k

, q (z) =
m∑

j=1

nj−1∑

t=0

c (j, t) (log z)t zγj ,

where c (j, t) = (−1)t

t! d (j, nj − t− 1)
Then the following are equivalent:
(A) z−2kG (−1/z) = F (z) + q (z) ;
(B) Φ (s) − Q (s) and Ψ (s) − Q (s) can be continued to the same entire function which is bounded in
every lacunary vertical strip:

σ1 ≤ σ ≤ σ2, |Im (s) | ≥ t0 > 0,
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and they satisfy the functional equation

Φ (s) = e−πikΨ (2k − s) .

2. Multiplier Systems for the Nondiscrete Hecke Groups

In what follows, k will be a fixed real number. We shall denote by Z, C, and H, the set of integers, the
set of complex numbers and the upper half-plane, respectively. For z ∈ C, we assume that −π ≤ arg z < π
and define

(cz + d)r = |cz + d|r exp {ri arg (cz + d)} , (2)

where r, c, d are real numbers.
A multiplier system in weight 2k for G (λ) is a complex-valued function v defined on G (λ) such that the

following two properties hold:

|v (M) | = 1 ∀M ∈ G (λ) , (3)

v (M3) (c3z + d3)
2k = v (M1) v (M2) (c1M2z + d1)

2k (c2z + d2)
2k
, (4)

for all M1, M2 ∈ G (λ) , with M3 = M1M2, Mj =
(
aj bj
cj dj

)
, j = 1, 2, 3, and ∀z ∈ H.

Remark 2.1. (i) Condition ( 4) is sometimes called the consistency condition.
(ii) By taking M1 = M2 = I in ( 4), we get v (I) = v (I)2 and by ( 3) we conclude that v (I) = 1. If we
take M1 = M2 = −I in ( 4), we get v (−I) (−1)2k = ±1. It has been shown in [2] that the only multiplier
systems of significance are those for which v (−I) (−1)2k = 1 and hence we shall make this assumption for
the remainder of our discussion.
(iii) We define v (Sλ) = e2πiκ, 0 ≤ κ < 1. We record the following observations for future reference:

(a) v (T ) = ±e−πik, (b) v
(
TS−1

λ T
)

= e2πi(k−κ), (c) v
(
−TS−1

λ T
)

= e−2πiκ.

Lemma 2.1. Suppose λ is given by

λ = 2 cos (πr/p) , r, p ∈ Z, (r, p) = 1, 1 < r <
p

2
. (5)

Let v be a multiplier system in weight 2k for G (λ) .
(i) If v (T ) = e−πik or p is even, then (p− 2r) k − 2pκ is an even integer.
(ii) If v (T ) = −e−πik and p is odd, then (p− 2r) k − 2pκ is an odd integer.

Proof : First we show that there are two relations among the generators Sλ and T of G (λ); namely,

T 2 = −I and (SλT )p = (−1)rI. (6)

The first part of ( 6) is obvious. Let Vn = (SλT )n =
(
an bn
cn dn

)
. By induction we can show that

an =
sin (n+1)rπ

p

sin rπ
p

, bn = −
sin nrπ

p

sin rπ
p

, cn =
sin nrπ

p

sin rπ
p

, dn = −
sin (n−1)rπ

p

sin rπ
p

. (7)

The second part of ( 6) follows from this. Then by ( 6), Vp = (−1)rI = (SλT )p and for any z ∈ H, we have

1 = v (I) = v (−I) (−1)2k = v (Vp) (−1)2k = v (V1) v (Vp−1) (c1Vp−1z + d1)
2k (cp−1z + dp−1)

2k

= v (V1) v (Vp−1) (Vp−1z)
2k (cp−1z + dp−1)

2k
,
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since V1 = SλT =
(
λ −1
1 0

)
and hence c1 = 1 and d1 = 0. But Vp−1 = V1Vp−2. Hence we have

v (Vp−1) (cp−1z + dp−1)
2k = v (V1) v (Vp−1) (c1Vp−2z + d1)

2k (cp−2z + dp−2)
2k

= v (V1) v (Vp−2) (Vp−2z)
2k (cp−2z + dp−2)

2k
.

Thus
1 = v (V1)

2 (Vp−1z)
2k (Vp−2z)

2k v (Vp−2) (cp−2z + dp−2)
2k .

Proceeding inductively, we obtain

1 = v (V1)
p (Vp−1z)

2k (Vp−2z)
2k · · · (V1z)

2k
z2k. (8)

If we put z = e
rπi

p , then we have Vp−1z = Vp−2z = · · · = V1z = z = e
rπi

p . Substituting this in ( 8) and
observing the fact that v (V1) = v (SλT ) = v (Sλ) v (T ) = e2πiκv (T ), we get

v (T )p
e2πipκe2πirk = 1. (9)

(i) If v (T ) = e−πik or p is an even integer, then v (T )p = e−πikp and ( 9) yields e−πipk+2πipκ+2πirk = 1;
that is, (p− 2r) k − 2pκ is an even integer.
(ii) If v (T ) = −e−πik and p is an odd integer, then v (T )p = −e−πikp and ( 9) gives e−πipk+2πipκ+2πirk =
−1; that is, (p− 2r) k − 2pκ is an odd integer. This completes the proof.

This lemma generalizes Lemma 2.2 of [2].

A log-polynomial sum is a function of the form

q (z) =
n∑

j=0

zγj

mj∑

t=0

c (j, t) (log z)t , (10)

where γ1, . . . , γn and the coefficients c (j, t) are complex numbers, n, j, mj and t are nonnegative integers.
Here zα is defined by eα log z, where log z is the principal branch of the logarithm function.

A log-polynomial sum q (z) is said to be a log-polynomial period function (LPPF) of weight 2k and
multiplier system v for the Hecke group G (λ) , if there exists a function F defined and holomorphic in H
such that:

e−2πiκF (z + λ) = F (z) , (11)

v̄ (T ) z−2kF

(
−1
z

)
= F (z) + q (z) , (12)

where e2πiκ = v (Sλ) .
A function F satisfying ( 11) and ( 12) is called an automorphic integral of weight 2k and multiplier system

v for G (λ), if it has an exponential series expansion:

F (z) =
∞∑

n=0

ane
2πi(n+κ)z/λ, (13)

where an ∈ C and satisfy the growth condition

an = O (nc) as n→ ∞, c > 0. (14)

In this case we say that q is the log-polynomial period function of the automorphic integral F .

If we use the slash operator |2k
v defined by

(
F |2k

v M
)
(z) = v̄ (M) (cz + d)−2k

F (Mz) ,
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where M =
(
a b
c d

)
∈ G (λ) and z ∈ H, then ( 11) and ( 12) become

F |2k
v Sλ = F and F |2k

v T = F + q, (15)

respectively. It can be shown easily that the consistency condition ( 4) for a multiplier system v in weight
2k for G (λ) is equivalent to

F |2k
v M1M2 =

(
F |2k

v M1

)
|2k
v M2, (16)

where M1,M2 ∈ G (λ). From now on we shall write F |M for F |2k
v M.

It is customary to denote by qM the period function associated with M ∈ G (λ). Thus F | M = F + qM
and from ( 16) we deduce that

qM1M2 = qM1 |M2 + qM2 . (17)

Clearly, qI = q−I ≡ 0. When λ is given by ( 5), we have (SλT )p = (−1)rI .(See ( 6).) Repeated application
of ( 17) yields

q + q | (SλT ) + q | (SλT )2 + · · · + q | (SλT )p−1 = 0. (18)

From T 2 = −I , we also conclude that

q + q | (T ) = 0. (19)

3. THE CASE θ RATIONAL

In this section we consider the case when λ = 2 cos(πr/p) where r and p are relatively prime integers and
2 ≤ r < p/2. As noted above, the group G (λ) is not discrete, in this case. We shall make use of ( 18) and
( 19) to determine the LPPF’s of positive weight for these groups. In what follows we shall assume that
k > 0 and q is an LPPF of weight 2k and multiplier system v for the Hecke group G (λ), where λ is given
by ( 5). Define

Mn = VnT = (SλT )n
T =

(
en fn

gn hn

)
.

Combining ( 18) and ( 19), we obtain

q | Mp−1 + q |Mp−2 + · · · + q |M1 − q = 0. (20)

From ( 7) we see that fn 6= 0 and hn 6= 0 for n = 1, . . . , p− 2. Thus we have

lim
z→0

(q |Mn) (z) = lim
z→0

v̄ (Mn) (gnz + hn)−2k
q

(
enz + fn

gnz + hn

)
= Ln, (21)

where

Ln = v̄ (Mn)h−2k
n q

(
fn

gn

)
, n = 1, . . . , p− 2.

Combining ( 20) and ( 21), we get

limz→0 (q |Mp−1 − q) (z) = L,

where

L = −
p−2∑

n=1

Ln = −
p−2∑

n=1

v̄ (Mn) d−2k
n q

(
bn
dn

)
. (22)
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Since Mp−1 = (SλT )p−1 T = TS−1
λ T =

(
−1 0
−λ −1

)
, and since by consistency condition ( 4) for v we

have

v̄
(
TS−1

λ T
)
(−λz − 1)−2k = v̄

(
−TS−1

λ T
)
(λz + 1)−2k = v (Sλ) (λz + 1)−2k

(where in the last equality we have used Remark 2.1 (iii) (c) ), we see that

(q |Mp−1) (z) = v (Sλ) (λz + 1)−2k
q

(
z

λz + 1

)
.

Consequently,

limz→0

{
v (Sλ) (λz + 1)−2k q

(
z

λz + 1

)
− q (z)

}
= L.

Replacing z by 1/z in the last limit yields

lim
z→∞

{
v (Sλ)

(
z + λ

z

)−2k

q

(
1

z + λ

)
− q

(
1
z

)}
= L. (23)

Taking limit as z → ∞ in ( 20) gives

lim
z→∞

{v̄ (Sλ) q (z + λ) − q (z)} = 0. (24)

We now rewrite q as:

q (z) =
N∑

j=1

mj∑

t=0

a (j, t) z−βj (log z)t +
M∑

l=1

nl∑

t=0

b (l, t) zαl (log z)t
, (25)

where

0 ≤ Re (β1) ≤ · · · ≤ Re (βN ) ; mj ≤ ml if Re (βj) = Re (βl) (j < l) ;
0 < Re (α1) ≤ · · · ≤ Re (αM ) ; nj ≤ nl if Re (αj) = Re (αl) (j < l) (26)

and introduce the following notations for further investigation of the limits in ( 23) and ( 24).

Let z, α ∈ C, z 6= 0, z 6= −λ, and ν ∈ Z. Then we define

φα,ν (z) = C1 (z + λ)α (log (z + λ))ν − zα (log z)ν ,

ψα,ν (z) = C2

(
z + λ

z

)−2k

(z + λ)α (log (z + λ))ν − zα (log z)ν .

In the above notations C1q (z + λ) − q (z) becomes

C1q (z + λ) − q (z) =
N∑

j=1

mj∑

t=0

a (j, t)φ−βj ,t (z) +
M∑

l=1

nl∑

t=0

b (l, t)φαl,t (z)

= φαM ,nM (z)F (z) ,

where C1 = v̄ (Sλ) = e−2πiκ and

F (z) =
N∑

j=1

mj∑

t=0

a (j, t)
φ−βj ,t (z)
φαM ,nM (z)

+
M∑

l=1

nl∑

t=0

b (l, t)
φαl,t (z)

φαM ,nM (z)
. (27)
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Similarly,

C2

(
z + λ

z

)−2k

q

(
1

z + λ

)
− q

(
1
z

)
=

N∑

j=1

mj∑

t=0

a (j, t) (−1)t ψβj ,t (z) +
M∑

l=1

nl∑

t=0

b (l, t) (−1)t ψ−αl,t (z)

= ψβN ,mN (z)G (z) ,

where C2 = v̄
(
−TS−1

λ T
)

= e2πiκ and

G (z) =
N∑

j=1

mj∑

t=0

a (j, t) (−1)t
ψβj ,t (z)

ψβN ,mN (z)
+

M∑

l=1

nl∑

t=0

b (l, t) (−1)t
ψ−αl,t (z)
ψβN ,mN (z)

. (28)

We record ( 23) and ( 24) in

Proposition 3.1. If q is an LPPF of weight 2k and multiplier system v for G (λ) , given by ( 25) and
( 26), then

lim
z→∞

φαM ,nM (z)F (z) = 0 and lim
z→∞

ψβN ,mN (z)G (z) = L, (29)

where F and G are given by ( 27) and ( 28), respectively, and L is as in ( 22).

In [2], we have proved that limz→∞ F (z) 6= 0 and limz→∞G (z) 6= 0 or the limits do not exist. Thus,
there are sequences {zν} and {wµ} such that

| F (zν) |≥ δ and | G (wµ) |≥ δ,

for some positive real number δ. This, together with ( 29), implies that

lim
ν→∞

φαM ,nM (zν) = 0 and {ψβN ,mN (wµ)} is bounded. (30)

The following theorem is a restatement of Theorem 3.1 of [2] and therefore the proof is omitted.

Theorem 3.1. Suppose λ = 2 cos(πr/p), with 2 ≤ r < p/2, (r, p) = 1. Let q be an LPPF of weight
2k, k > 0, and multiplier system v for the group G (λ). Also let v (Sλ) = e2πiκ.
We conclude:
(a) If κ > 0, then q ≡ 0.
(b) If κ = 0 and k ≥ 1, then q (z) = a

(
1 − v̄ (T ) z−2k

)
+ bz−1 , where b = 0 if k > 1.

Remark 3.1. In his first two papers on rational period functions [4] and [5], Knopp has shown that for
the full modular group Γ (1) the rational functions given by

q (z) =
{
a

(
1 − v̄ (T ) z−2k

)
, if k > 1

a
(
1 − v̄ (T ) z−2

)
+ bz−1, if k = 1

are rational period functions. Here we are assuming that k ∈ Z. In fact he showed that these are the only
rational period functions with rational poles. It can easily be seen that the functions given above are period
functions for Hecke groups G (λ).

We are now in a position to state and prove our main results.

Theorem 3.2. Suppose λ = 2 cos(πr/p) , with 2 ≤ r < p/2, (r, p) = 1. If κ > 0, then there is no nontrivial
automorphic integral of positive weight for the Hecke group G (λ) .
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Proof : For if there is an automorphic integral F of weight 2k, k > 0, then by Theorem 3.1 (a), its LPPF
q is given by q ≡ 0. But then, F would be an automorphic form of weight 2k, k > 0, and so must be
identically zero, since the group is nondiscrete.

Theorem 3.3. Suppose λ = 2 cos(πr/p) , with 2 ≤ r < p/2, (r, p) = 1. If κ = 0, then there is no nontrivial
automorphic integral of weight 2k, k ≥ 1 for the Hecke group G (λ).

Proof : First suppose k > 1. In this case the LPPF of an automorphic integral F is given by q (z) =
a

(
1 − v̄ (T ) z−2k

)
. Define G(z) = F (z) + a. Then, since κ = 0, we have

(G | Sλ) (z) = (F | Sλ) (z) + (a | Sλ) (z) = F (z) + a = G (z)

and

(G | T ) (z) = (F | T ) (z) + (a | T ) (z) = F (z) + q (z) + av̄ (T ) z−2k

= F (z) + a
(
1 − v̄ (T ) z−2k

)
+ av̄ (T ) z−2k = F (z) + a = G.

Thus we have an automorphic form G of positive weight. Once again G has to be identically zero, thereby
forcing F to be a constant, i.e., F ≡ −a.

Next suppose k = 1 and assume that there is an automorphic integral F of weight 2. First observe
that v̄ (T ) = ±1 (see Remark 2.1(iii)). Thus we may assume that v̄ (T ) = 1. The LPPF of F is given by
q (z) = a

(
1 − z−2

)
+ bz−1. Put G = F + a. Then G is an automorphic integral of weight 2 with LPPF

p(z) = bz−1. If b = 0, then G is an automorphic form, and hence it is identically zero. Thus F is a constant.
If b 6= 0, then we divide G by −b to get an automorphic integral with period function −1

z . Thus we may
assume that F is an automorphic integral with LPPF q given by q(z) = −1

z . Define

H (z) =
∫ z

i

F (τ) dτ.

Since F has an exponential series expansion of the form F (τ) =
∑∞

n=0 ane
2πinτ/λ, we see that

H (z) = a0z +
λ

2πi

∞∑

n=1

an

n
e2πinz/λ + C,

where C is a constant. Thus H (z + λ) = H (z) + a0λ. By a simple change of variable ( from τ to −1/τ),
we can easily see that

H

(
−1
z

)
= H (z) − log z +

πi

2
.

Now define I (z) = eH(z). Then

I (z + λ) = ρI (z) and I

(
−1
z

)
= eπi/2z−1I (z) ,

where ρ = ea0λ. Put

K (z) =
I (z)
I ′′ (z)

.

Then K (z + λ) = K (z) and K
(−1

z

)
= z−1K (z). Thus K is an automorphic form of weight −1. But this

is not possible. This completes the proof.
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