Real Analysis II

Chapter 8. Elementary Functions

8.1 Hyperbolic Functions

Let

$$
U(x)=\int_{0}^{x} \frac{1}{\sqrt{1+t^{2}}} d t \quad(-\infty<x \infty)
$$

$U(x)$ has the following properties.

1) $U(-x)=-U(x)$ for all $x \in \mathbf{R}$.

Proof. Let $u=-t$. Then

$$
U(-x)=\int_{0}^{-x} \frac{1}{\sqrt{1+t^{2}}} d t=\int_{0}^{x} \frac{1}{\sqrt{1+(-u)^{2}}}(-1) d u=-U(x)
$$

2)

$$
\lim _{x \rightarrow \infty} U(x)=\infty \quad \text { and } \quad \lim _{x \rightarrow-\infty} U(x)=-\infty
$$

Proof. Clearly, $U(x) \geq 0$ for all $x \geq 0$. Hence $U(x)<0$ for all $x<0$. For all $t \geq 1$,

$$
\frac{1}{\sqrt{1+t^{2}}} \geq \frac{1}{\sqrt{2 t^{2}}}=\frac{1}{\sqrt{2} t}
$$

It follows that $\int_{1}^{\infty} \frac{1}{\sqrt{1+t^{2}}} d t$ diverges and hence $\lim _{x \rightarrow \infty} U(x)=\infty$. The second limit follows by replacing x by $-x$ and using 1).
3)

$$
U^{\prime}(x)=\frac{1}{\sqrt{1+x^{2}}} \quad \text { for all } x \in \mathbf{R}
$$

Proof. This is the Fundamental Theorem of Calculus.
4) $\quad U$ is continuous and $1-1$ on $(-\infty, \infty)$.

Proof. A differentiable function is continuous. From 3) we note that U is strictly increasing. Hence it is one-to-one.
5) If S is the inverse of U and if $b=S(a)$, then $a=U(b)$ and

$$
S^{\prime}(a)=\sqrt{1+[S(a)]^{2}}
$$

Proof. Use the chain rule at $x=a$ and the fact that $U(S(x))=x$ to get $U^{\prime}(S(a)) \cdot S^{\prime}(a)=1$. Solve for $S^{\prime}(a)$ and use 3).
6) $\quad S^{\prime \prime}(x)=S(x)$ for all $x \in \mathbf{R}$

Proof. Differentiate both sides of 5) with respect to a.
7) Define

$$
C(x)=\sqrt{1+[S(x)]^{2}}
$$

Then $C(x)=S^{\prime}(x) \quad$ and $\quad C^{\prime}(x)=S(x)$ for all $\quad x \in \mathbf{R}$.
Proof. Follows from 5).
Definition. We define $\sinh ^{-1}(x)$ to be $U(x)$. That is,

$$
\sinh ^{-1}(x)=\int_{0}^{x} \frac{1}{\sqrt{1+t^{2}}} d t \quad(-\infty<x \infty)
$$

Then

$$
S(x)=\sinh x \quad \text { and } \quad C(x)=\cosh x
$$

are the hyperbolic sine and hyperbolic cosine functions.
Remark. (i) Many of the properties of the hyperbolic sine and hyperbolic cosine functions can be deduced from properties 1 to 7 above. For example we can easily see that

$$
\cosh ^{2} x-\sinh ^{2} x=1
$$

(ii) The other hyperbolic trig functions can be obtained from these by taking ratios:

$$
\begin{array}{ll}
\tanh x=\frac{\sinh x}{\cosh x}, & \operatorname{coth} x=\frac{1}{\tanh x} \\
\operatorname{sech} x=\frac{1}{\cosh x} & \operatorname{csch} x=\frac{1}{\sinh x}
\end{array}
$$

8.2 The Exponential Function

$$
\text { We define } \quad E(x)=C(x)+S(x) \quad(-\infty<x<\infty)
$$

Remarks $E(x)$ has the following properties.

1) E is continuous on \mathbf{R} and $E(0)=1$.

Proof. $S(x)$ is continuous and hence $C(x)=\sqrt{1+(S(x))^{2}}$ is also continuous. $U(x)=\int_{0}^{x} \frac{1}{\sqrt{1+t^{2}}} d t$ implies $U(0)=0$ and so $S(0)=S(U(0))=0$. But then $C(0)=\sqrt{1+[S(0)]^{2}}=1$.
2) $E(-x)=C(x)-S(x)$ for all $x \in \mathbf{R}$.

Proof. $\quad-x=U(S(-x))$ implies $x=-U(S(-x))=U(-S(-x))$. Apply S to get $S(x)=-S(-x)$ and hence $S(-x)=-S(x)$. Clearly $\quad C(-x)=\sqrt{1+[S(-x)]^{2}}=\sqrt{1+[S(x)]^{2}}=C(x)$. Thus $E(-x)=$ $C(-x)+S(-x)=C(x)-S(x)$.
3) $E(x) E(-x)=1$.

Proof. Using the definition and 2), we have

$$
\begin{aligned}
E(x) \cdot E(-x) & =(C(x)+S(x))(C(x)-S(x)) \\
& =(C(x))^{2}-(S(x))^{2}=1 .
\end{aligned}
$$

4) $E(x)>0$ for all $x \in \mathbf{R}$.

Proof. From 3), we conclude that $E(x)$ is never zero. Since it is continuous, it must always be positive or always negative. Since $E(0)=1$, the result follows.
5) $\quad E^{\prime}(x)=E(x)$ for all $x \in \mathbf{R}$.

Proof. $\quad E^{\prime}(x)=C^{\prime}(x)+S^{\prime}(x)=S(x)+C(x)=E(x)$.
6) E is increasing and hence one-to-one on \mathbf{R}.

Proof. Follows from 4) and 5).
7) $\quad E(x+y)=E(x) E(y)$ for all $x, y \in \mathbf{R}$.

Proof. Fix y. Let $F(x)=E(x+y) E(-x)$. Then

$$
\begin{aligned}
F^{\prime \prime}(x) & =E^{\prime}(x+y) E(-x)+E(x+y) E^{\prime}(-x)(-1) \\
& =E(x+y) E(-x)-E(x+y) E(-x)=0
\end{aligned}
$$

and hence $F(x)$ is a constant. But then $F(x)=F(y)$ for all $x \in \mathbf{R}$. In other words,

$$
E(x+y) E(-x)=E(y)
$$

The result follows from 3).

8.3 The Logarithmic Function

Recall that $E(x)$ is continuous and one-to-one on \mathbf{R} and its range is $(0, \infty)$. We define $L(x)$ to be the inverse of $E(x)$. Thus

$$
E(L(x))=x \quad \text { for all } \quad x \in(-\infty, \infty)
$$

and

$$
L(E(x))=x \quad \text { for all } \quad x \in(0, \infty)
$$

Remark. $L(x)$ has the following properties.

1) $L(1)=0$.

Proof. $E(0)=1$ implies $L(1)=L(E(0))=0$.
2) $\quad L(x y)=L(x)+L(y)$ for all $x, y \in(0, \infty)$.

Proof. Let $a=L(x)$ and $b=L(y)$. Then $E(a+b)=E(a) E(b)$ implies $a+b=L[E(a) E(b)]$. But $E(a)=x$ and $E(b)=y$. Hence $L(x)+L(y)=L(x y)$.
3) $\quad L\left(x^{n}\right)=n L(x)$ for all $x \in(0, \infty)$ and all $n \in \mathbf{N}$.

Proof. Use 2) with $y=x$ and induction.
4) For all $x \in(0, \infty), \quad L\left(\frac{1}{x}\right)=-L(x)$.

Proof. This follows from $0=L(1)=L\left(x \cdot \frac{1}{x}\right)=L(x)+L\left(\frac{1}{x}\right)$
5) For all $x, y \in(0, \infty), \quad L\left(\frac{x}{y}\right)=L(x)-L(y)$.

Proof. Immediate from 2) and 4).
6) For all $x \in(0, \infty), L^{\prime}(x) \frac{1}{x}$.

Proof. Use chain rule and $E(L(x))=x$.
7) For all $x \in(0, \infty)$,

$$
L(x)=\int_{1}^{x} \frac{1}{t} d t
$$

Proof. By the Fundamental Theorem of Calculus and the fact that $L(1)=0$, we have

$$
L(x)=L(x)-L(1)=\int_{1}^{x} L^{\prime}(t) d t=\int_{1}^{x} \frac{1}{t} d t
$$

8)

$$
\lim _{h \rightarrow 0} \frac{L(1+h)}{h}=1
$$

Proof. By 6), $L^{\prime}(1)=1$. We also have $L(1)=0$. Thus, by limit definition of derivative, we have

$$
1=\lim _{h \rightarrow o} \frac{L(1+h)-L(1)}{h}=\lim _{h \rightarrow o} \frac{L(1+h)}{h} .
$$

$$
E(1)=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}
$$

Proof In 8), replace h by $1 / n$ and write

$$
\lim _{n \rightarrow \infty} \frac{L\left(1+\frac{1}{n}\right)}{1 / n}=1
$$

which implies

$$
\lim _{n \rightarrow \infty} n L\left(1+\frac{1}{n}\right)=\lim _{n \rightarrow \infty} L\left[\left(1+\frac{1}{n}\right)^{n}\right]=1
$$

Since $E(x)$ is continuous, we see that

$$
\lim _{n \rightarrow \infty} E\left(L\left[\left(1+\frac{1}{n}\right)^{n}\right]\right)=E(1)
$$

Definition $\quad E(x)$ is called the natural exponential function. $E(1)$ is denoted by e and we write

$$
E(x)=e^{x} \quad \text { for all } x \in \mathbf{R} .
$$

$L(x)$ is called the natural logarithmic function and we write

$$
L(x)=\log x \quad \text { for all } x \in(0, \infty)
$$

We also define x^{a} to be

$$
x^{a}=e^{a \log x} \quad x \in(0, \infty) \quad a \in \mathbf{R} .
$$

8.4 The Trigonometric Function

Define the real number π by

$$
\frac{\pi}{2}=\int_{0}^{1} \frac{1}{\sqrt{1-t^{2}}} d t
$$

and define the function $u(x)$ by

$$
u(x)=\int_{0}^{x} \frac{1}{\sqrt{1-t^{2}}} d t
$$

The following properties of $u(x)$ can be proved in the same manner as in the previous section.

1) $u(1)=\pi / 2$ and $u(-1)=-\pi / 2$.
2) u is continuous on $[-1,1]$.
3) For all $x \in(-1,1)$,

$$
u^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}} .
$$

4) u is a one-to-one function on $[-1,1]$. Hence it has an inverse.
5) If $s(x)$ is the inverse of u, then $s(x)$ is continuous on $[-\pi / 2, \pi / 2]$.
6) We have $s(-\pi / 2)=-1, s(\pi / 2)=1, s(0)=0$.
7) For all $\pi / 2 \leq x \leq \pi / 2$, we have

$$
s^{\prime}(x)=\sqrt{1-(s(x))^{2}}
$$

8) We define $s(y)$ on $\pi / 2<y<3 \pi / 2$, by $s(y)=s(x+\pi)=-s(x)$, with $-\pi / 2<x<\pi / 2$. Then $s^{\prime}(x+\pi)=-s^{\prime}(x) \quad-\pi / 2<x<\pi / 2 . \quad$ and $(c(x))^{2}+(s(x))^{2}=1$.
9) In genreal we can extend $s(x)$ to \mathbf{R} by

$$
s(y)=s(x+\pi)=-s(x) \quad-\infty<x<\infty .
$$

10) For all $x \in \mathbf{R}$, we have $s(-x)=-s(x)$.
11) For all $x \in \mathbf{R}$, define $c(x)$ by

$$
c(x)=\sqrt{1-(s(x))^{2}}
$$

Then $c(0)=1, \quad c(-\pi / 20=0, \quad c(\pi / 2)=0$.
12) For all $x \in \mathbf{R}, \quad c(x)=s^{\prime}(x)$.
13) For all $x \in \mathbf{R}, \quad c^{\prime}(x)=s^{\prime \prime}(x)=-s(x)$.
14) For all $x, y \in \mathbf{R}, \quad s(x+y)=s(x) c(y)+c(x) s(y)$.
15) For all $x, y \in \mathbf{R}, \quad c(x+y)=c(x) c(y)-s(x) s(y)$.

Proof of 14 and 15. Fix y and define $F(x)$ by

$$
F(x)=s(x+y)-s(x) c(y)-c(x) s(y)
$$

Then $F^{\prime \prime}(x)+F(x)=0$. Hence

$$
\frac{d}{d x}\left(F^{2}+\left(F^{\prime}\right)^{2}\right)=2 F^{\prime} F+2 F^{\prime} F^{\prime \prime}=2 F^{\prime}\left(F+F^{\prime \prime}\right)=0
$$

and so

$$
[F(x)]^{2}+\left(F^{\prime}(x)\right]^{2}=\text { const. }=[F(0)]^{2}+\left(F^{\prime}(0)\right]^{2}=0 .
$$

Thus $F(x)=0$, which proves 14 . Note also that the last equation implies

$$
F^{\prime}(x)=c(x+y)-c(x) c(y)+s(x) s(y)=0
$$

which gives 15 .
Definiton. The functions $s(x)$ and $c(x)$ is called the sine and cosine functions of x, respectively, and we write

$$
s(x)=\sin x \quad c(x)=\cos x
$$

Thses are the basic trigonometic functions. The other four trigonometric functions are defined by

$$
\begin{array}{ll}
\tan x=\frac{\sin x}{\cos x} & \cot x=\frac{\cos x}{\sin x} \\
\sec x=\frac{1}{\cos x} & \csc x=\frac{1}{\sin x}
\end{array}
$$

Remark. For more on the trig functions and please read pages 233 and 234 of your text.

