
Real Analysis II

Chapter 8. Elementary Functions

8.1 Hyperbolic Functions

Let

U(x) =
∫ x

0

1√
1 + t2

dt (−∞ < x ∞)

U(x) has the following properties.

1) U(−x) = −U(x) for allx ∈ R.

Proof. Let u = −t. Then

U(−x) =
∫ −x

0

1√
1 + t2

dt =
∫ x

0

1√
1 + (−u)2

(−1)du = −U(x)

2)
lim
x→∞

U(x) = ∞ and lim
x→−∞

U(x) = −∞.

Proof. Clearly , U(x) ≥ 0 for all x ≥ 0. Hence U(x) < 0 for all x < 0. For all t ≥ 1,

1√
1 + t2

≥ 1√
2t2

=
1√
2t

.

It follows that
∫∞
1

1√
1+t2

dt diverges and hence limx→∞ U(x) = ∞. The second limit follows by replacing

x by −x and using 1).

3)

U ′(x) =
1√

1 + x2
for all x ∈ R

Proof. This is the Fundamental Theorem of Calculus.

4) U is continuous and 1-1 on (−∞,∞).

Proof. A differentiable function is continuous. From 3) we note that U is strictly increasing. Hence it is
one-to-one.

5) If S is the inverse of U and if b = S(a), then a = U(b) and

S ′(a) =

√
1 +

[
S(a)

]2

Proof. Use the chain rule at x = a and the fact that U(S(x)) = x to get U ′(S(a)) · S ′(a) = 1. Solve for
S ′(a) and use 3).



6) S ′′(x) = S(x) for all x ∈ R

Proof. Differentiate both sides of 5) with respect to a.

7) Define

C(x) =

√
1 +

[
S(x)

]2
.

Then C(x) = S ′(x) and C ′(x) = S(x) for all x ∈ R.

Proof. Follows from 5).

Definition. We define sinh−1(x) to be U(x). That is,

sinh−1(x) =
∫ x

0

1√
1 + t2

dt (−∞ < x ∞)

Then
S(x) = sinh x and C(x) = cosh x

are the hyperbolic sine and hyperbolic cosine functions.

Remark. (i) Many of the properties of the hyperbolic sine and hyperbolic cosine functions can be
deduced from properties 1 to 7 above. For example we can easily see that

cosh2 x− sinh2 x = 1

(ii) The other hyperbolic trig functions can be obtained from these by taking ratios:

tanh x =
sinhx

cosh x
, cothx =

1

tanh x

sech x =
1

cosh x
csch x =

1

sinhx

8.2 The Exponential Function

We define E(x) = C(x) + S(x) (−∞ < x < ∞)

Remarks E(x) has the following properties.

1) E is continuous on R and E(0) = 1.

Proof. S(x) is continuous and hence C(x) =
√

1 + (S(x))2 is also continuous. U(x) =
∫ x
0

1√
1+t2

dt implies

U(0) = 0 and so S(0) = S(U(0)) = 0. But then C(0) =

√
1 +

[
S(0)

]2
= 1.

2) E(−x) = C(x) − S(x) for all x ∈ R.

Proof. −x = U(S(−x)) implies x = −U(S(−x)) = U(−S(−x)). Apply S to get S(x) = −S(−x)

and hence S(−x) = −S(x). Clearly C(−x) =

√
1 +

[
S(−x)

]2
=

√
1 +

[
S(x)

]2
= C(x). Thus E(−x) =

C(−x) + S(−x) = C(x)− S(x).



3) E(x)E(−x) = 1.

Proof. Using the definition and 2), we have

E(x) · E(−x) = (C(x) + S(x))(C(x)− S(x))

= (C(x))2 − (S(x))2 = 1.

4) E(x) > 0 for all x ∈ R.

Proof. From 3), we conclude that E(x) is never zero. Since it is continuous, it must always be positive
or always negative. Since E(0) = 1, the result follows.

5) E′(x) = E(x) for all x ∈ R.

Proof. E′(x) = C ′(x) + S ′(x) = S(x) + C(x) = E(x).

6) E is increasing and hence one-to-one on R.

Proof. Follows from 4) and 5).

7) E(x + y) = E(x)E(y) for all x, y ∈ R.

Proof. Fix y. Let F (x) = E(x + y)E(−x). Then

F ′′(x) = E′(x + y)E(−x) + E(x + y)E′(−x)(−1)

= E(x + y)E(−x)− E(x + y)E(−x) = 0

and hence F (x) is a constant. But then F (x) = F (y) for all x ∈ R. In other words,

E(x + y)E(−x) = E(y).

The result follows from 3).

8.3 The Logarithmic Function

Recall that E(x) is continuous and one-to-one on R and its range is (0,∞). We define L(x) to be the
inverse of E(x). Thus

E(L(x)) = x for all x ∈ (−∞,∞)

and
L(E(x)) = x for all x ∈ (0,∞).

Remark. L(x) has the following properties.

1) L(1) = 0.

Proof. E(0) = 1 implies L(1) = L(E(0)) = 0.



2) L(xy) = L(x) + L(y) for all x, y ∈ (0,∞).

Proof. Let a = L(x) and b = L(y). Then E(a+b) = E(a)E(b) implies a+b = L[E(a)E(b)]. But E(a) = x
and E(b) = y. Hence L(x) + L(y) = L(xy).

3) L(xn) = nL(x) for all x ∈ (0,∞) and all n ∈ N.

Proof. Use 2) with y = x and induction.

4) For all x ∈ (0,∞), L
(

1
x

)
= −L(x).

Proof. This follows from 0 = L(1) = L
(
x · 1

x

)
= L(x) + L

(
1
x

)

5) For all x, y ∈ (0,∞), L
(

x
y

)
= L(x) − L(y).

Proof. Immediate from 2) and 4).

6) For all x ∈ (0,∞), L′(x) 1
x
.

Proof. Use chain rule and E(L(x)) = x.

7) For all x ∈ (0,∞),

L(x) =
∫ x

1

1

t
dt.

Proof. By the Fundamental Theorem of Calculus and the fact that L(1) = 0, we have

L(x) = L(x) − L(1) =
∫ x

1
L′(t) dt =

∫ x

1

1

t
dt.

8)

lim
h→0

L(1 + h)

h
= 1.

Proof. By 6), L′(1) = 1. We also have L(1) = 0. Thus, by limit definition of derivative, we have

1 = lim
h→o

L(1 + h) − L(1)

h
= lim

h→o

L(1 + h)

h
.

9)

E(1) = lim
n→∞

(
1 +

1

n

)n

Proof In 8), replace h by 1/n and write

lim
n→∞

L
(
1 + 1

n

)

1/n
= 1

which implies

lim
n→∞

nL
(
1 +

1

n

)
= lim

n→∞
L

[(
1 +

1

n

)n]
= 1.

Since E(x) is continuous, we see that

lim
n→∞

E
(
L

[(
1 +

1

n

)n])
= E(1).



Definition E(x) is called the natural exponential function. E(1) is denoted by e and we write

E(x) = ex for all x ∈ R.

L(x) is called the natural logarithmic function and we write

L(x) = log x for all x ∈ (0,∞).

We also define xa to be
xa = ea logx x ∈ (0,∞) a ∈ R.

8.4 The Trigonometric Function

Define the real number π by
π

2
=

∫ 1

0

1√
1 − t2

dt

and define the function u(x) by

u(x) =
∫ x

0

1√
1 − t2

dt.

The following properties of u(x) can be proved in the same manner as in the previous section.

1) u(1) = π/2 and u(−1) = −π/2.

2) u is continuous on [−1, 1].

3) For all x ∈ (−1, 1),

u′(x) =
1√

1 − x2
.

4) u is a one-to-one function on [−1, 1]. Hence it has an inverse.

5) If s(x) is the inverse of u, then s(x) is continuous on [−π/2, π/2].

6) We have s(−π/2) = −1, s(π/2) = 1, s(0) = 0.

7) For all π/2 ≤ x ≤ π/2, we have

s′(x) =
√

1 − (s(x))2

8) We define s(y) on π/2 < y < 3π/2, by s(y) = s(x + π) = −s(x), with −π/2 < x < π/2. Then
s′(x + π) = −s′(x) − π/2 < x < π/2. and (c(x))2 + (s(x))2 = 1.

9) In genreal we can extend s(x) to R by

s(y) = s(x + π) = −s(x) −∞ < x < ∞.

10) For all x ∈ R, we have s(−x) = −s(x).



11) For all x ∈ R, define c(x) by

c(x) =
√

1 − (s(x))2.

Then c(0) = 1, c(−π/20 = 0, c(π/2) = 0.

12) For all x ∈ R, c(x) = s′(x).

13) For all x ∈ R, c′(x) = s′′(x) = −s(x).

14) For all x, y ∈ R, s(x + y) = s(x)c(y) + c(x)s(y).
15) For all x, y ∈ R, c(x + y) = c(x)c(y)− s(x)s(y).

Proof of 14 and 15. Fix y and define F (x) by

F (x) = s(x + y)− s(x)c(y)− c(x)s(y).

Then F ′′(x) + F (x) = 0. Hence

d

dx

(
F 2 + (F ′)2

)
= 2F ′F + 2F ′F ′′ = 2F ′(F + F ′′) = 0

and so
[F (x)]2 + (F ′(x)]2 = const. = [F (0)]2 + (F ′(0)]2 = 0.

Thus F (x) = 0, which proves 14. Note also that the last equation implies

F ′(x) = c(x + y)− c(x)c(y) + s(x)s(y) = 0

which gives 15.

Definiton. The functions s(x) and c(x) is called the sine and cosine functions of x, respectively, and
we write

s(x) = sinx c(x) = cos x.

Thses are the basic trigonometic functions. The other four trigonometric functions are defined by

tan x =
sinx

cosx
cot x =

cos x

sinx

secx =
1

cosx
cscx =

1

sin x
Remark. For more on the trig functions and please read pages 233 and 234 of your text.


