Real Analysis I1
Chapter 8. Elementary Functions

8.1 Hyperbolic Functions

Let

U(x):/om ! dt (—o0 < x 0)

U(z) has the following properties.
1) U(—z)=—-U(z) forallr € R.

Proof. Let u = —t. Then
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U(—z :/ 7dt:/ —— (—1)du=-U(x
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lim U(z) =co  and im U(zr) = —oc.
Proof. Clearly , U(z) > 0 for all z > 0. Hence U(x) <0 for all x < 0. For all t > 1,
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It follows that [ —— dt diverges and hence lim, .., U(z) = 0o. The second limit follows by replacing
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x by —z and using 1).

3)
1
U'lz) = for all z € R
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Proof. This is the Fundamental Theorem of Calculus.

4) U is continuous and 1-1 on (—o0, 00).

Proof. A differentiable function is continuous. From 3) we note that U is strictly increasing. Hence it is
one-to-one.

5) If S is the inverse of U and if b = S(a), then a = U(b) and

S'(a) = /1 + [S(a)]”

Proof. Use the chain rule at x = a and the fact that U(S(z)) = = to get U'(S(a)) - S’(a) = 1. Solve for
S’(a) and use 3).



6) S"(x)=S(z)forallz € R

Proof. Differentiate both sides of 5) with respect to a.

Cla) =1+ [S@)]"

Then Cf(z)=S5'(z) and C'(x)=S(z) forall z¢€R.

7) Define

Proof. Follows from 5).

Definition. We define sinh™(z) to be U(x). That is,

(—o0 < x 0)

x 1
-1 .
sinh™ (z) —/0 e dt

Then
S(z) =sinhz and C(x) = coshz

are the hyperbolic sine and hyperbolic cosine functions.
Remark. (i) Many of the properties of the hyperbolic sine and hyperbolic cosine functions can be

deduced from properties 1 to 7 above. For example we can easily see that

cosh?z —sinh?z =1

(ii) The other hyperbolic trig functions can be obtained from these by taking ratios:

sinh z
tanh x = , cothz =
cosh z tanh x
1
sech x = csch z =
cosh z sinh z

8.2 The Exponential Function

We define  E(x) =C(x)+ S(z) (—o00o<z < 00)
Remarks F(z) has the following properties.

1) FE is continuous on R and E(0) = 1.

Proof. S(z) is continuous and hence C(x) = /1 + (S(z))? is also continuous. U(z) = [; ﬁ dt implies

U(0) = 0 and so 5(0) = S(U(0)) = 0. But then C(0) = /1 + [S(0)] = 1.

2) E(—z)=C(x)— S(z) for all z € R.

Proof. —x = U(S(—x)) implies x = —U(S(—z)) = U(—=S(—x)). Apply S to get S(x) = —S(—x)

and hence S(—z) = —S(x). Clearly C(—x) = {/1+ [S(—a:)r =4/1+ [S(:E)]z = C(z). Thus E(—z) =

C(—z)+ S(—z) = C(z) — S(z).



3) B(x)E(~z) = 1.

Proof. Using the definition and 2), we have
E(z)-E(-z) = (C(x)+5())(C(z) - S(x))
= (C(x)) ’
4) FE(z)> 0 for all x € R.

Proof. From 3), we conclude that E(z) is never zero. Since it is continuous, it must always be positive
or always negative. Since F(0) = 1, the result follows.

5) E'(x) = E(x) for all x € R.

Proof. FE'(z)=C'(z)+ S'(z) = S(z) + C(z) = E(x).
6) FE is increasing and hence one-to-one on R.
Proof. Follows from 4) and 5).

7) E(x+vy)=E(x)E(y) for all z,y € R.

Proof. Fixy. Let F(z) = E(x + y)E(—x). Then
F'(z) = E(x+y)E(—x)+ E(x+y)E'(—x)(—1)
= Elx+yFE(—z)—FE@+y)E(—x)=0
and hence F'(z) is a constant. But then F'(x) = F(y) for all z € R. In other words,
E(x+y)E(-r) = E(y).

The result follows from 3).

8.3 The Logarithmic Function

Recall that E(x) is continuous and one-to-one on R and its range is (0,00). We define L(x) to be the
inverse of F(z). Thus
E(L(z)) =z forall z & (—o0,00)
and
L(E(z)) =a forall z € (0,00).

Remark. L(x) has the following properties.
1) L(1)=0.

Proof. FE(0) =1 implies L(1) = L(E(0)) = 0.



2)  L(zy) = L(z) + L(y) for all z,y € (0,00).

Proof. Leta = L(z) and b = L(y). Then E(a+0b) = E(a)E(b) implies a+b = L[E(a)E(b)]. But E(a) =z
and E(b) = y. Hence L(z) + L(y) = L(xy).

3) L(z™) =nL(x) for all z € (0,00) and all n € N.
Proof. Use 2) with y = 2 and induction.

4) Forall z € (0,00), L (l) = —L(x).
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Proof. This follows from 0 = L(1) = L (a: %) = L(x)+ L (%)

5) Forall z,y € (0,00), L (E) = L(x) — L(y).

Y

Proof. Immediate from 2) and 4).
6) Forall z € (0,00), L'(z)x.
Proof. Use chain rule and E(L(z)) = x.

7) Forall x € (0,00),

L(z) = /lm%dt.

Proof. By the Fundamental Theorem of Calculus and the fact that L(1) = 0, we have
x x 1
L(z) = L(z) — L(1) = / L(t)dt = / St
1 1
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Proof. By 6), L'(1) = 1. We also have L(1) = 0. Thus, by limit definition of derivative, we have

o LR L) L(+h)
h—o h h—o h

= 1.

E(1) = lim (1 4 l>n

n—oQ n

Proof In 8), replace h by 1/n and write

lim 7[/ (1 - %)

=1
n—oo  1/n

which implies

1 1\"
lian(l—l——)z limL[(l—l——) ]:1.

Since E(x) is continuous, we see that

ma(e[(1+2)) = 20



Definition FE(z) is called the natural exponential function. E(1) is denoted by e and we write
E(x)=¢€" for all x € R.
L(z) is called the natural logarithmic function and we write
L(x) =logz for all x € (0, 00).

We also define z to be
% =8 € (0,00) ac€R.

8.4  The Trigonometric Function

Define the real number 7 by
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and define the function u(z) by

u(z) = /Om ﬁdt.

The following properties of u(x) can be proved in the same manner as in the previous section.
1) w(l)=n/2and u(—1) = —7/2.
2)  w is continuous on [—1,1].

3) Forallze (—1,1),
1
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4)  wu is a one-to-one function on [—1, 1]. Hence it has an inverse.

U (z) =

5) If s(x) is the inverse of u, then s(x) is continuous on [—7/2, 7/2].
6) We have s(—7/2) = —1, s(7/2) =1, s(0) =0.

7) Forall /2 <z < 7/2, we have

8)  We define s(y) on /2 < y < 37/2, by s(y) = s(z + 7) = —s(x), with —7/2 < = < 7/2. Then
s(z+m)=-5(x) —n/2<x<7/2. and (c(x))?+ (s(x))* =
9) In genreal we can extend s(x) to R by
s(y) = s(x+7m) = —s(x) —00 < < o0.
10) For all x € R, we have s(—z) = —s(z).



11)  For all x € R, define ¢(z) by

Then ¢(0) =1, ¢(—7/20=0, c(n/2) =0.
12) Forallz e R, ¢(x) = s(x).
13) Forallz e R, d(x)=¢"(z)=—s(z).

14) Forall z,y € R, s(z+y)=s(x)c(y) + c(x)s(y).
15) Forall z,y € R, c(x+y)=c(z)c(y) — s(x)s(y).

Proof of 14 and 15. Fix y and define F(z) by
F(z) = s(x+y) — s(x)c(y) — c(x)s(y).
Then F"(z)+ F(x)=0. Hence

d

. (F?+ (F')?) = 2F'F + 2F'F" = 2F'(F + F") = 0
X

and so
[F(2)]* + (F'(x)]? = const. = [F(0)]* + (F'(0)]* = 0.
Thus F(z) = 0, which proves 14. Note also that the last equation implies
F'(x) = c(x +y) — c(x)e(y) + s(z)s(y) = 0
which gives 15.

Definiton. The functions s(x) and c(z) is called the sine and cosine functions of x, respectively, and

we write
s(z) =sinz c(x) = cosz.

Thses are the basic trigonometic functions. The other four trigonometric functions are defined by

sin x CoS T
tanx = cotx = —
COs ¥ sin x
1 1
secT = csCx = —
COs ¥ sin x

Remark. For more on the trig functions and please read pages 233 and 234 of your text.



