
Real Analysis II

12 Fourier Series

12.0 Power Series Revisited

We say f is analytic on an open interval (a, b) if for any x0 ∈ (a, b), there is a power series centered at
x0 that represents f in some open interval containing x0. That is, there exists a ≤ c < x0 < d ≤ b such that
for all x ∈ (c, d)

f(x) =
∞∑

k=0

ak(x− x0)
k

Remark 1) If f(x) =
∑∞

k=0 ak(x− x0)
k, then

ak =
f (k)(x0)

k!
and hence f is infinitely differentiable. We write f ∈ C∞(a, b)

2) The Taylor Series for f at x0 is given by
∞∑

k=0

f (k)(x0)

k!
(x− x0)

k.

3) The nth Taylor Polynomial for f at x0 is given by

Pn(x) =
n∑

k=0

f (k)(x0)

k!
(x− x0)

k

4) The remainder term of order n is defined by Rn(x) = f(x) − Pn(x).

5) (Taylor’s Formula) If f is analytic in (a, b) and x0 ∈ (a, b), then there exists cx between x and c such
that

Rn(x) =
f (n+1)(cx)

(n+ 1)!
(x− x0)

n+1

6) (Lagrange) If f ∈ C∞(a, b), then for any x, x0 ∈ (a, b),

Rn(x) =
1

n!

∫ x

x0

(x− t)nf (n)(t) dt

7) If f ∈ C∞(a, b) and if
f (n)(x) ≥ 0 for all x ∈ (a, b),

then f is analytic on (a, b).

8) Suppose f and g are analytic on (a, b) and x0 ∈ (a, b). If f(x) = g(x) for all x ∈ (a, x0), then there
exists a δ > 0 such that

f(x) = g(x) for all x ∈ (x0 − δ, x0 + δ).

9) (Analytic Continuation) Suppose that I and J are open interval, that f is analytic on I and g
is analytic on J . If a < b are points in I∩J and f(x) = g(x) for all x ∈ (a, b), then f(x) = g(x) for all x ∈ I∩J .



Examples a) Polynomials are analytic.

b) All convergent power series are analytic.

c) The exponential function ex, the trig functions sinx and cos x are analytic on (−∞,∞). The rational
function 1/(1 − x) is analytic on (−1, 1). Furthermore, on the intervals of analyticity, we have

i) ex =
∑∞

j=0
xj

j!
ii) sinx =

∑∞
j=0

(−1)jx2j+1

(2j+1)!

iii) cos x =
∑∞

j=0
(−1)jx2j

(2j)!
iv) 1

1−x
=

∑∞
j=0 x

j

d) (Cauchy) The function

f(x) =





e−2/x2
, x 6= 0

0, x = 0

belongs to C∞(−∞,∞) but is not analytic on any open interval that contains x = 0. Find its Taylor series.

12.1 Definition of Fourier Series

Theorem 1 (Orthogonality Theorem)

(a)
∫ π
−π cos(kx) cos(nx) dx = 0 (n 6= k;n, k = 0, 1, 2, 3, · · ·)

(b)
∫ π
−π cos2(nx) dx =

{
π, n ≥ 1
2π, n = 0

(c)
∫ π
−π sin(kx) sin(nx) dx = 0, (k 6= n;n, k = 1, 2, 3, · · ·)

(d)
∫ π
−π sin2(nx) dx = π, (n = 1, 2, 3, · · ·)

(e)
∫ π
−π cos(kx) sin(nx) dx = 0, (n, k = 1, 2, 3, · · ·)

Proof Use the trig identities

cos(kx+ nx) = cos(kx) cos(nx) − sin(kx) sin(nx)

cos(kx− nx) = cos(kx) cos(nx) + sin(kx) sin(nx)

∫ π

−π
cos(ax) =

1

a
sin(ax)

∣∣∣
π

−π
= 0, (a = 1, 2, 3, · · ·)

∫ π

−π
sin(ax) =

−1

a
cos(ax)

∣∣∣
π

−π
= 0, (a = 1, 2, 3, · · ·)



Remark 1. Let f be a function defined on [−π, π]. Assume that, for each x ∈ [−π, π], f(x) can be
expressed as

f(x) =
a0

2
+

∞∑

k=1

[
ak cos(kx) + bk sin(kx)

]

Then using Theorem 1, we have the following
∫ π

−π
f(x) dx = πa0

For n ≥ 1, we have
∫ π

−π
f(x) cos(nx) dx =

a0

2

∫ π

−π
cos(nx) dx +

∞∑

k=1

[
ak

∫ π

−π
cos(nx) cos(kx) dx + bk

∫ π

−π
cos(nx) sin(kx) dx

]

= an

∫ π

−π
cos2(nx) dx = πan

Therefore,

an =
1

π

∫ π

−π
f(x) cos(nx) dx.

Similarly,

bn =
1

π

∫ π

−π
f(x) sin(nx) dx.

Definition If f is Riemann integrable over [−π, π], then the Fourier Series of f is the series

a0

2
+

∞∑

k=1

[
ak cos(kx) + bk sin(kx)

]
,

where

ak =
1

π

∫ π

−π
f(x) cos(kx) dx (k = 0, 1, 2, 3, · · ·)

and

bk =
1

π

∫ π

−π
f(x) sin(kx) dx, (k = 1, 2, 3, · · · .)

The ak and bk are called the Fourier Coefficients of f . For the purpose of clarity, we will write ak(f)
instead of ak and bk(f) instead of bk .

It is also common to write

f ∼ a0

2
+

∞∑

k=1

[
ak cos(kx) + bk sin(kx)

]
.

We shall also write Snf for the nth partial sum of the Fourier series of f . Thus,

S0f(x) =
a0

2
and for n ≥ 1,

(Snf)(x) =
a0

2
+

n∑

k=1

[
ak cos(kx) + bk sin(kx)

]



Example Show that the Fourier series for f(x) = x is

2
∞∑

k=1

(−1)k+1

k
sin(kx)

Since x cos(kx) is odd and x sin(kx) is even, we see that

ak =
1

π

∫ π

−π
f(x) cos(kx) dx = 0, k = 0, 1, 2, 3, · · ·

bk =
1

π

∫ π

−π
f(x) sin(kx) dx =

2

π

∫ π

0
f(x) sin(kx) dx k = 1, 2, 3, · · · .

Integration by parts yields

bk =
2

π

(
−x cos(kx)

k

∣∣∣∣∣

π

0

+
1

k

∫ π

0
cos(kx) dx

)
=

2(−1)k+1

k
.

Example Show that the Fourier series for f(x) = |x| is

π

2
+

4

π

∞∑

k=1

cos((2k − 1)x)

(2k − 1)2

Since |x| cos(kx) is even and |x| sin(kx) is odd, we have

bk =
1

π

∫ π

−π
f(x) sin(kx) dx = 0 k = 1, 2, 3, · · · .

ak =
1

π

∫ π

−π
f(x) cos(kx) dx =

2

π

∫ π

0
x cos(kx) dx k = 0, 1, 2, 3, · · · .

If k = 0, then we have

a0 =
2

π

∫ π

0
x dx =

2

π

(
π2

2

)
= π

and if k ≥ 1, integration by parts yields

ak =
2

πk2
(cos(kπ) − 1) =

{
0 if k is even
− 4

πk2 if k is odd.

12.2 Formulation of Convergence and Summability Problems

Convergence Question. Given a function f periodic on R and integrable on [−π, π], does the Fourier
series of f converge to f?

Uniqueness Question. If a trigonometric series converges to f , is the series the Fourier series of f?



Theorem 2. If the trigonometric series

a0

2
+

∞∑

k=1

[
ak cos(kx) + bk sin(kx)

]

converges to f uniformly, then it is the Fourier series of f . That is,

ak =
1

π

∫ π

−π
f(x) cos(kx) dx, k = 0, 1, 2, 3, · · ·

bk =
1

π

∫ π

−π
f(x) sin(kx) dx, k = 1, 2, 3, · · · .

Proof This follows from Remark 1 and the fact that the series converges uniformly.

Definition. 1) A Dirichlet kernel of order n is the function defined by

D0(x) =
1

2
, Dn(x) =

1

2
+

n∑

k=1

cos(kx).

2) The Fejer kernel of order n is defined by

K0(x) =
1

2
, Kn(x) =

1

2
+

n∑

k=1

(
1 − k

n+ 1

)
cos(kx).

Lemma 1.

Kn(x) =
D0(x) +D1(x) + · · · +Dn(x)

n+ 1
.

Proof. The formula is trivially true if n = 0. Suppose n ≥ 1. Then

Kn(x) =
1

n+ 1

(
n+ 1

2
+

n∑

k=1

(n− k + 1) cos(kx)

)
=

1

n+ 1


1

2
+
n

2
+

n∑

k=1

n∑

j=k

1 · cos(kx)




=
1

n+ 1


1

2
+

n∑

j=1


1

2
+

j∑

k=1

cos(kx)




 =

D0(x) +D1(x) +D2(x) + · · · +Dn(x)

n+ 1

Lemma 2. If x ∈ R, x 6= 2kπ for k ∈ I, then for each n = 0, 1, 2, · · ·,

Dn(x) =
sin

(
n + 1

2

)
x

2 sin
(

x
2

) and Kn(x) =
2

n + 1




sin
(

n+1
2

)
x

2 sin
(

x
2

)




2



Proof. For n = 0, the lemma is trivial.

Fix n ≥ 1 and apply the sum-angle and telescoping to get
[
Dn(x) − 1

2

]
sin

(
x

2

)
=

n∑

k=1

cos(kx) sin
(
x

2

)
=

1

2

n∑

k=1

[
sin

(
k +

1

2

)
x− sin

(
k − 1

2

)
x
]

=
1

2

[
sin

(
n+

1

2

)
x− sin

(
x

2

)]

and hence

Dn(x) =
sin

(
n+ 1

2

)
x

2 sin
(

x
2

)

To prove the second formula we use the formula just proved and sum-angle formula we have

Dk(x) sin2
(
x

2

)
=

1

2
sin

(
x

2

)
sin

(
k +

1

2

)
x =

1

4
[cos(kx)− cos(k + 1)x]

By Lemma 1 and telescoping, we get

(n+ 1)Kn(x) sin2
(
x

2

)
=

n∑

k=0

Dk(x) sin2
(
x

2

)
=

1

4

n∑

k=0

[cos(kx) − cos(k + 1)x]

=
1

4
[1 − cos(n + 1)x] =

1

2
sin2

(
x

2

)

and the second formula of the lemma follows by dividing.

Definition. A series
∑∞

k=0 ak with partial sums sn =
∑n

k=0 ak is said to be Cesaro summable to a finite
number L if and only if

σn =
s0 + s1 + s2 + · · · + sn

n+ 1
converges to L. Cesaro summable is also called (C, 1) summable and we write

∞∑

k=0

ak = L (C, 1).

(Sections 2.11, and 3.9 of the text have more on this.)

Example The series
∞∑

k=0

(−1)k = 1 − 1 + 1 − 1 + 1 − 1 + · · ·

is divergent, since

sn =

{
0 if n is odd
1 if n is even

However,

σn =

{
n+2

2(n+1)
if n is even

1
2

if n is odd.

Hence

lim
n→∞

σn =
1

2
, and so

∞∑

k=0

(−1)k =
1

2
(C, 1).



Definition. The Cesaro means of a Fourier series of f is denoted by σnf and is given by

(σnf)(x) =
(S0f)(x) + (S1f)(x) + · · · + (Snf)(x)

n + 1
,

where Skf is the k partial sum of the Fourier series of f .

Lemma 3. If f is periodic on R and integrable on [−π, π], then for all x ∈ R and n = 0, 1, 2, 3 · · ·, we
have

(σnf)(x) =
1

π

∫ π

−π
f(x− t)Kn(t) dt.

Proof For simplicity, let us write ak for ak(f) and bk for bk(f). For each j, we have

aj cos(jx) + bj sin(jx) =
1

π

∫ π

−π
f(u) cos(ju) cos(jx) du +

1

π

∫ π

−π
f(u) sin(ju) sin(jx) du

=
1

π

∫ π

−π
f(u)

[
cos(ju) cos(jx) + sin(ju) sin(jx)

]
du

=
1

π

∫ π

−π
f(u) cos(j(u− x)) du.

Summing over j = 1, 2, · · · , k and adding a0/2, we have

(Skf)(x) =
a0

2
+

n∑

j=1

aj cos(jx) + bj sin(jx) =
1

π

∫ π

−π
f(u)


1

2
+

k∑

j=1

cos(j(x− u))




=
1

π

∫ π

−π
f(u)Dk(x− u) du

We now use the fact that f and Dk are periodic and make change of variables t = x− u to obtain

Skf(f) =
1

π

∫ π

−π
f(x− t)Dk(t) dt.

Using Lemma 2 we have

(σnf)(x) =
1

n + 1

n∑

k=0

(Skf)(x) =
1

n+ 1

n∑

k=0

1

π

∫ π

−π
f(x− t)Dk(t) dt

=
1

π

∫ π

−π
f(x − t)Kn(t) dt.

Lemma 4. For n = 0, 1, 2, 3, · · ·, we have

(i) Kn(t) ≥ 0, for all t ∈ R,

(ii) 1
π

∫ π
−π Kn(x) dx = 1,

(iii) limn→∞
∫ π
δ |Kn(x)| dx = 0 for any 0 < δ < π.

Proof. (i) follows from

Kn(x) =
2

n+ 1




sin
(

n+1
2

)
x

2 sin
(

x
2

)




2



To prove (ii), note that
∫ π

−π
K(x) dx =

∫ π

−π

(
1

2
+

n∑

k=1

(
1 − k

n+ 1

)
cos(kx)

)
dx = π.

To prove (iii), note that if 0 < δ < t < π, then sin(δ/2) < sin(t/2) and using Lemma 2 we get

∫ π

δ
|Kn(x) dx ≤ 2

n + 1

∫ π

δ


sin

(
n+1

2

)
x

2 sin
(

δ
2

)



2

dt ≤ π

2(n+ 1)

1

sin2
(

δ
2

)

and then take limit as n→ ∞.

Theorem 3. (Fejer) Suppose f is periodic on R and integrable on [−π, π].

1) If

L = lim
h→0

f(x0 + h) + f(x0 − h)

2
exists for some x0 ∈ R, then limn→∞(σnf)(x0) = L.

2) If f is continuous on some closed interval [a, b], then σnf → f uniformly on [a, b]

Proof. Since f is periodic, we may assume that x0 ∈ [−π, π]. Fix n ≥ 1. By Lemmas 2 and 3 and change
of variables, we have

(σnf)(x0) − L =
1

π

∫ π

−π
Kn(t)[f(x0 − t) − L]dt =

2

π

∫ π

0
Kn(t)

[
f(x0 + t) + f(x0 − t)

2
− L

]
dt

=
2

π

∫ π

0
Kn(t)F (x0, t)dt

where

F (x0, t) =
f(x0 + t) + f(x0 − t)

2
− L.

Let ε > 0. By definition of L, we can choose δ > 0 with δ < π such that if |t| < δ, then |F (x0, t)| < ε/3.
Using Lemma 3, we get ∣∣∣∣∣

2

π

∫ δ

0
Kn(t)F (x0, t)dt

∣∣∣∣∣ ≤
2ε

3π

∫ δ

0
|Kn(t)| dt < 2ε

3
.

Let M = sup−π≤x≤π |f(x)|. Then |F (x0, t)| ≤ M . Using the third equation of Lemma 3, we can choose N1

such that for all n ≥ N1, ∣∣∣∣
∫ π

δ
Kn(t) dt

∣∣∣∣ <
ε

3M
.

Thus, we have ∣∣∣∣
2

π

∫ π

δ
Kn(t)F (x0, t)dt

∣∣∣∣ ≤M
∫ δ

0
|Kn(t)| dt < ε

3
.

Therefore for n ≥ N1, we have

|(σnf)(x0) − L| ≤ 2

π

∫ δ

0
|Kn(t)F (x0, t)| +

2

π

∫ π

δ
|Kn(t)F (x0, t)| ≤ 2ε

3
+
ε

3
= ε.

We proved the very definition of (i).



To prove (ii), we note that if f is continuous on [−π, π], then it is uniformly continuous on [−π, π]. The
above inequalities are valid if we replace x0 by any x ∈ [−π, π]. (You should cary out the details.)

Corollary 1. If f is continuous and periodic on R, then

σnf → f uniformly on R

Proof. Since f is periodic, we may assume that f is continuous on −π, π] and apply Fejer’s Theorem.

Corollary 2. (Completeness) If f is continuous and periodic on R, and if ak(f) = 0 and bk(f) = 0 for
all k = 0, 1, 2, 3, · · ·, then f(x) = 0 for all x ∈ R

Proof. From the assumption we have σnf(x) = 0 for all x. By Corollary 1, we have f(x) = limn→∞(σnf)(x) =
0.

Corollary 3. If f is continuous and periodic on R, then there is a sequence of trigonometric polynomials
T1, T2, · · · such that

Tn → f uniformly on R

Proof Snf is a trig polynomial implies σnf is a trig polynomial. Take Tn to be σnf and apply Fejer’s
Theorem.

Theorem 4.(Weierstrass Approximation Theorem) Let f be continuous on a closed and bounded
interval [a, b]. Given ε > 0, there exists a polynomial

P (x) =
n∑

k=0

pkx
k,

where pk ∈ R such that for all x ∈ [a, b],
|f(x) − P (x)| < ε.



12.3 Growth of Fourier Coefficients

Lemma 5. If f is integrable on [−π, π], then for n = 0, 1, 2, 3, · · · ,

1

π

∫ π

−π
f(x)(Snf)(x) dx =

|a0(f)|2

2
+

n∑

k=1

(
|ak(f)|2 + |bk(f)|2

)

=
1

π

∫ π

−π
|(Snf)(x)|2 dx

Theorem 5. (Bessel’s Inequality) If f is Riemann integrable on [−π, π], then
∞∑

k=1

|ak(f)|2 and
∞∑

k=1

|bk(f)|2

are both convergent. Moreover,

|a0(f)|2

2
+

n∑

k=1

(
|ak(f)|2 + |bk(f)|2

)
≤ 1

π

∫ π

−π
|f(x)|2 dx

Corollary (Riemann - Lebesgue Lemma) If f is Riemann integrable on [π, π], then

lim
k→∞

ak(f) = lim
k→

bk(f) = 0.

Lemma 6. If f is Riemann integrable on [−π, π] and

Tn =
c0
2

+
n∑

k=1

[
ck cos(kx) + dk sin(kx)

]

is any trigonometric polynomial of degree n, then
∫ π

−π
|f(x) − (Snf)(x)|2 dx ≤

∫ π

−π
|f(x) − Tn(x)|2 dx

Theorem 6. (Parseval’s Identity) If f is periodic and continuous on R, then

|a0(f)|2

2
+

n∑

k=1

(
|ak(f)|2 + |bk(f)|2

)
=

1

π

∫ π

−π
|f(x)|2 dx

Theorem 7. (Riemann - Lebesgue Lemma) If f (j) exists and is Riemann integrable on [π, π] and if
f (l) is periodic for 1 ≤ l < j, then

lim
k→∞

kjak(f) = lim
k→∞

kjbk(f) = 0.



12.4 A Digression:
Functions of Bounded Variation

Definition Let φ : [a, b] → R be a function and let P = {x0, x1, · · · xn} be a partition of [a, b]. Define

V (φ, P ) =
n∑

k=1

|φ(xk) − φ(xk−1)| .

The total variation of φ on [a, b] is defined by

V ar(φ) = sup{V (φ, P )|P is a partition of [a, b]}
A function φ is said to be of bounded variation if V (φ) <∞.

Lemma 7. If φ ∈ C1[a, b], then φ is of bounded variation on [a, b].

Proof: Let P = {x0, x1, · · ·xn} be a partition of [a, b]. Since φ′ is continuous on [a, b], by Extreme Value
Thereom, there exits M such that

|φ′(x)| ≤M for all x ∈ [a, b].

On the other hand, by Mean Value Theorem, there exists ck ∈ [xk−1, xk] such that

φ(xk) − φ(xk−1) = φ′(ck)(xk − xk−1).

Adding these, using the previous inequality, and telescoping, we see that

V (φ, P ) =
n∑

k=1

|φ(xk) − φ(xk−1)| ≤M(b− a).

Taking the sup over all partitions P we see that

V ar(φ) ≤M(b− a).

Example Let φ(x) = x2 sin(1/x). Show that

a) φ is of bounded variation on [0, 1].

b) φ 6∈ C1[0, 1]

Solution. a) Consider a partition P = {x0, x1, · · · , xn} of [0, 1].

Choose n a large positive integer so that the values of xk that are close to zero are contained in the partition
Q = {0/n, 1/n, 1/n − 1, · · · , 1}

V ar(φ,Q) =
n∑

k=1

x2
k sin(1/xk) − x2

k−1 sin(1/xk−1) ≤
n∑

k=1

(
x2

k + x2
k−1

)

≤ 2
n∑

j=1

1

k2
≤ 2 + 2

n−1∑

k=1

(
1

k
− 1

k + 1

)
= 4 − 2

n
≤ 4.

Thus V (φ, P ) ≤ V (φ,Q) < 2 and taking the sup we see that V ar(φ) <∞.



b) But note that for x 6= 0,
φ′(x) = 2x sin(1/x) − cos(1/x)

and hence
lim
x→0

φ′(x)

does not exist while

φ′(0) = lim
h→∞

h2 sin(1/h)

h
= lim

h→∞
h sin(1/h) = 0.

Therefore φ 6∈ C1[0, 1].

Example Let φ(x) = x2 sin(1/x2). Show that φ is not of bounded variation on [0, 1].

Lemma 8 If φ is monotone on [a, b], then φ is of bounded variation on [a, b].

Proof: Suppose φ is increasing and let P = {x0, x1, · · · , xn} be a partition of [a, b]. Then
n∑

k=1

|φ(xk) − φ(xk−1)| =
n∑

k=1

(φ(xk) − φ(xk−1)) = φ(xn) − φ(x0) = φ(b) − φ(a)

Since M = φ(b) − φ(a) is finite, we see that the sup over all partitions P is also finite. Hence φ is of bounded
variation.

Lemma 9. If φ is of bounded variation on [a, b], then φ is bounded on [a, b].

Proof: For any x ∈ [a, b], we have

|φ(x) − φ(a)| ≤ |φ(x) − φ(a)|+ |φ(b)− φ(x)| ≤ V ar(φ).

Thus
|φ(x) ≤ |φ(x)− φ(a)|+ |φ(a)| ≤ V ar(φ) + |φ(a)|

and hence φ is bounded.

Example The function

φ(x) =

{
sin(1/x), x 6= 0
0, x = 0

is bounded (by 1).

But it is not of bounded variation.For if

xj =

{
0, x = 0

2
(n−j)π

, 0 < j < n− 1.

then, as n→ ∞,
n∑

j=1

|φ(xj) − φ(xj−1)| = 2n→ ∞.

Thus φ is not of bounded variation on [0, 2/π].



Theorem 8. If φ and ψ are functions of bounded variation on [a, b], then so are φ ± ψ, and φ · ψ. If
there exists ε0 > 0 such that ψ(x) ≥ ε0, then φ/ψ is also of bounded variation.

Proof: Let P = {x0, x1, x2, · · · , xn} be a partition of [a, b]. Then
n∑

k=1

|(φ(xj) ± ψ(xj)) − (φ(xj−1) ± ψ(xj−1))| ≤
n∑

k=1

|φ(xj) − φ(xj−1)| +
n∑

k=1

|ψ(xj) − ψ(xj−1)|

≤ V ar(φ) + V ar(ψ)

Therefore,
V ar(φ± ψ) ≤ V ar(φ) + V ar(ψ).

By Lemma 8, there are constants M1 and M2 such that

|φ(x)| ≤M1 and |ψ(x)| ≤M2 for all x ∈ [a, b].

But then

n∑

j=1

|φ(xj)ψ(xj) − φ(xj−1)ψ(xj−1)|

=
n∑

k=1

|φ(xj)ψ(xj)) − φ(xj−1)ψ(xj) + φ(xj−1)ψ(xj) − φ(xj−1)ψ(xj−1)|

≤ M2

n∑

k=1

|φ(xj) − φ(xj−1)| +M1

n∑

k=1

|ψ(xj) − ψ(xj−1)|

≤ M2V ar(φ) +M1V ar(ψ)

Therefore,
V ar(φψ) ≤M2V ar(φ) +M1V ar(ψ).

To prove the φ/ψ is also of bounded variation, we write
n∑

j=1

∣∣∣∣∣
φ(xj)

ψ(xj
− φ(xj−1)

ψ(xj−1)

∣∣∣∣∣ =
n∑

j=1

∣∣∣∣∣
φ(xj)ψ(xj) − φ(xj−1)ψ(xj−1)

ψ(xj)ψ(xj−1)

∣∣∣∣∣

≤ 1

ε2

(
M2

n∑

k=1

|φ(xj) − φ(xj−1)| +M1

n∑

k=1

|ψ(xj) − ψ(xj−1)|
)

Therefore,

V ar

(
φ

ψ

)
≤ M2

ε20
V ar(φ) +

M1

ε20
V ar(ψ).

Definition. Let φ be of bounded variation on [a, b]. The total variation of φ is the function defined by

Φ(x) = sup{
n∑

k=1

|φ(xj) − φ(xj−1)|}

where the sup is over all partitions P = {x0, x1, · · · , xn} of [a, x].



Theorem 9. Let φ be of bounded variation and Φ be its total variation. Then

(i) |φ(y) − φ(x)| ≤ Φ(y) − Φ(x) for all a ≤ x ≤ y ≤ b
(ii) Φ and Φ − φ are increasing on [a, b]
(iii) V ar(φ) ≤ V ar(Φ).

Proof: (i) Let x < y and let P = {x0, x1, · · · , xn} be a partition of [a, x]. Then Q = {x0, x1, · · · , xn, y}is
a partition of [a, y]. By definition of Φ we have

n∑

j=1

|φ(xj) − φ(xj−1)|

≤
n∑

j=1

|φ(xj) − φ(xj−1)|+ |φ(y)− φ(x)

≤ Φ(y)

Taking the sup over all such partitions P of [a, x] we see that

Φ(x) ≤ Φ(x) − |φ(y)− φ(x) ≤ Φ(y)

and (i) follows.

(ii) Since Φ is defined as the sup, it is clearly increasing.

By part (i), we have
φ(y)− φ(x) ≤ |φ(y)− φ(x)| ≤ Φ(y) −Φ(x)

and hence Φ(x) − φ(x) ≤ Φ(y) − φ(y). Therefore, Φ − φ is also increasing.

(iii) Let P = {x0, x1, · · · , xn} be a partition of [a, b]. By part (i) and the definition of Φ, we have
n∑

k=1

|φ(xk) − φ(xk−1)| ≤
∑

)k = 1n|Φ(xk) − Φ(xk−1)|

≤ V ar(Φ)

Taking the sup over all such P we get (iii).

Corollary φ is of bounded variation on [a, b] if and only if there exists increasing functions f and g on
[a, b] such that

φ(x) = f(x) − g(x), for all x ∈ [a, b].

Proof: If φ is of bounded variation, let Φ be its total variation. Then by Theorem 9, the functions f = Φ
and g = Φ − φ are increasing and φ = f − g.

Conversely, if f and g are monotone, then both are of bounded variation by Lemma 9. But then by Thereom
8 φ = f − g is of bounded variation.



Remarks. 1) If f is monotone on [a, b], then the set points x in [a, b] at which f is discontinuous is at
most countable.
Thus if φ is of bounded variation on [a, b], then it has at most a countable set of discontinuity on [a, b].

2) If f is monotone, then for any x0 ∈ (a, b], the limit limx→x−
0
f(x) exists. This limit is denoted by f(x0−).

Similarly, for any x0 ∈ [a, b), the limit limx→x+
0
f(x) exists. This limit is denoted by f(x0+).

Thus if φ is of bounded variation on [a, b], then the limits limx→x+
0
φ(x) and limx→x+

0
φ(x) both exist for all

x0 ∈ (a, b).

3) Monotone functions are Riemann integrable over [a, b].

Thus, if φ is of bounded variation on [a, b], then φ is Riemann integrable. .

12.5 Convergence of Fourier Series

Lemma 10. If
∑∞

k=0 ak converges to L, then it is Cesaro summable to L.

Proof: Let ε > 0. Choose N1 such that if k ≥ N1 then |sk − L| < ε
2
. Use the Archimedean Property to

choose N2 > N1 such that
∑N1

k=0 |sk − L| < εN2

2
. If n > N2, then

|σn − L| ≤ 1

n+ 1

N1∑

k=0

|sk − L| +
1

n+ 1

n∑

k=N1+1

|sk − L|

≤ εN2

2(n+ 1)
+

ε

2

(
n −N2

n+ 1

)
<

ε

2
+
ε

2
= ε.

Theorem 10. (Tauberian Theorem) Let ak ≥ 0 and let L ∈ R. If
∞∑

k=0

ak = L (C, 1), then ;
∞∑

k=0

ak = L.

In other words, if a series of nonnegative terms is Cesaro summable to L, then it converges to L.

Proof: If we show the series converges, then by Lemma 8, we know that it must converge to L. Thus we
need only show that

∑∞
k=0 ak < ∞. Suppose to the contrary that

∑∞
k=0 ak = ∞. Then given M > 0, there

exists n0 > 1 such that if n ≥ n0, then sn =
∑n

k=0 ak ≥M. Let n ≥ n0. Then

σn =
s0 + s1 + s2 + · · · + sn

n + 1

=
s0 + s1 + · · · + sn0

n+ 1
+

sn0+1 + sn0+2 + · · · + sn

n+ 1

≥ 0 +
n− n0

n+ 1
·M

If we take the limit as n→ ∞, we see that L ≥M for all M > 0. This is a contradiction. ( Take M = L+10)



Corollary Let f be periodic on R and Riemann integrable on [−π, π]. If ak(f) = 0 and bk(f) ≥ 0 for all
k ≥ 1, then

∞∑

k=1

bk(f)

k
< ∞.

Proof: Assume a0(f) = 0. Otherwise take g(x) = f(x) − a0(f). Let

F (x) =
∫ x

0
f(t)dt.

Then F is continuous and periodic (note that a0(f) = 0) on R. Hence by Fejer’s Theorem (σnF )(0) → F (0) =
0 as n→ ∞. Integrating by parts we get

ak(F ) =
bk(f)

k
≥ 0 and bk(F ) =

ak(f)

k
= 0.

Hence
∞∑

k=1

bk(f)

k

Cesaro summable. Since the terms are nonnegative, the corollary follows from Tauber’s Theorem.

Theorem 11. (Hardy) Let E ⊂ R and suppose the {fk} is a sequence of functions on E that satisfies

|kfk(x)| ≤M

for all x ∈ E and all k ∈ N, and some M > 0. If
∑∞

k=0 fk is uniformly Cesaro summable to a function f on E,
then

∑∞
k=0 fk converges uniformly to f on E.

Proof: Let x ∈ E and assume, without loss of generality, that M ≥ 1. For each n = 0, 1, 2, · · ·, set

sn(x) =
n∑

k=0

fk(x)

and

σn(x) =
s0(x) + s1(x) + s2(x) + · · · + sn(x)

n+ 1
.

Consider (the delayed average) defined for n, k ≥ 0 by

σn,k(x) =
sn(x) + sn+1(x) + · · · + sn+k(x)

k + 1
.

Let 0 < ε < 1. For each n choose k = k(n) such that

k + 1 ≤ εn

2M
< k + 2.

But then
n − 1

k + 1
<

n

k + 1
<

2M

ε
<∞.

Note also that

σn,k(x)− sn(x) =
(sn(x)− sn(x)) + (sn+1(x) − sn(x)) + · · · + (sn+k(x) − sn(x))

k + 1

=
k+n∑

j=n

(
1 − j − n

k + 1

)
fj(x).



By assumption k|fk(x)| ≤M and by choice of k = k(n), we have

|σn,k(x)− sn(x)| ≤
n+k∑

j=n+1

|fj(x)|

≤ M
n+k∑

j=n+1

1

j
<
M(k + 1)

n+ 1
<
ε

2

Since σn → f uniformly on E, we choose N so that for all n ≥ N and for all x ∈ E,

|σn(x)− f(x)| < ε2

12M
.

Since

σn,k =
(
1 +

n− 1

k + 1

)
σn+k −

(
n− 1

k + 1

)
σn−1,

it follows that

|sn(x) − f(x)| ≤ |sn(x) − σn,k(x)| + |σn,k(x) − f(x)|

≤ ε

2
+
(
1 +

n− 1

k + 1

)
|σn+k(x)− f(x)| +

(
n− 1

k + 1

)
|σn−1(x) − f(x)|

≤ ε

2
+
(
1 +

n− 1

k + 1

)(
ε2

12M

)
+

2M

ε

(
ε2

12M

)

=
ε

2
+

ε2

12M
+
ε

3

<
ε

2
+

ε

12
+
ε

3
< ε.

Therefore,
∑∞

k=0 fk → f uniformly on E.



Theorem 12. (Dirichlet - Jordan) If f is periodic on R and continuous on some closed interval [a, b],
then

Snf → f uniformly on ; [a, b]

Remark For the uniqueness question posed earlier we have the following theorems, whose proofs can
be found on pages 536 of William R. Wade’s An Introduction to Analysis 3rd edition, published by Prentice Hall.

Theorem 13. (Cantor - Lebesgue Lemma) If

S =
a0

2
+

∞∑

k=1

[
ak cos(kx) + bk sin(kx)

]

is a trigonometric series that converges pointwise on some interval [a, b], then

lim
k→∞

ak = 0 and lim
k→∞

bk = 0.

Theorem 14. ( Cantor) Suppose

S =
a0

2
+

∞∑

k=1

[
ak cos(kx) + bk sin(kx)

]

is a trigonometric series that converges pointwise on [−π, π] to a periodic continuous function f . Then S is
the Fourier series of f , that is

ak = ak(f) =
1

π

∫ π

−π
f(x) cos(kx) dx, k = 0, 1, 2, 3, · · ·

bk = bk(f) =
1

π

∫ π

−π
f(x) sin(kx) dx, k = 1, 2, 3, · · · .


