## Real Analysis II

## 12 Fourier Series

### 12.0 Power Series Revisited

We say $f$ is analytic on an open interval $(a, b)$ if for any $x_{0} \in(a, b)$, there is a power series centered at $x_{0}$ that represents $f$ in some open interval containing $x_{0}$. That is, there exists $a \leq c<x_{0}<d \leq b$ such that for all $x \in(c, d)$

$$
f(x)=\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}
$$

Remark 1) If $f(x)=\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}$, then

$$
a_{k}=\frac{f^{(k)}\left(x_{0}\right)}{k!}
$$

and hence $f$ is infinitely differentiable. We write $f \in C^{\infty}(a, b)$
2) The Taylor Series for $f$ at $x_{0}$ is given by

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}
$$

3) The $n$th Taylor Polynomial for $f$ at $x_{0}$ is given by

$$
P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}
$$

4) The remainder term of order $n$ is defined by $R_{n}(x)=f(x)-P_{n}(x)$.
5) (Taylor's Formula) If $f$ is analytic in $(a, b)$ and $x_{0} \in(a, b)$, then there exists $c_{x}$ between $x$ and $c$ such that

$$
R_{n}(x)=\frac{f^{(n+1)}\left(c_{x}\right)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

6) (Lagrange) If $f \in C^{\infty}(a, b)$, then for any $x, x_{0} \in(a, b)$,

$$
R_{n}(x)=\frac{1}{n!} \int_{x_{0}}^{x}(x-t)^{n} f^{(n)}(t) d t
$$

7) If $f \in C^{\infty}(a, b)$ and if

$$
f^{(n)}(x) \geq 0 \quad \text { for all } x \in(a, b)
$$

then $f$ is analytic on $(a, b)$.
8) Suppose $f$ and $g$ are analytic on $(a, b)$ and $x_{0} \in(a, b)$. If $f(x)=g(x)$ for all $x \in\left(a, x_{0}\right)$, then there exists a $\delta>0$ such that

$$
f(x)=g(x) \text { for all } x \in\left(x_{0}-\delta, x_{0}+\delta\right)
$$

9) (Analytic Continuation) Suppose that $I$ and $J$ are open interval, that $f$ is analytic on $I$ and $g$ is analytic on $J$. If $a<b$ are points in $I \cap J$ and $f(x)=g(x)$ for all $x \in(a, b)$, then $f(x)=g(x)$ for all $x \in I \cap J$.

Examples a) Polynomials are analytic.
b) All convergent power series are analytic.
c) The exponential function $e^{x}$, the trig functions $\sin x$ and $\cos x$ are analytic on $(-\infty, \infty)$. The rational function $1 /(1-x)$ is analytic on $(-1,1)$. Furthermore, on the intervals of analyticity, we have
i) $\quad e^{x}=\sum_{j=0}^{\infty} \frac{x^{j}}{j!}$
ii) $\quad \sin x=\sum_{j=0}^{\infty} \frac{(-1)^{j} x^{2 j+1}}{(2 j+1)!}$
iii) $\quad \cos x=\sum_{j=0}^{\infty} \frac{(-1)^{j} x^{2 j}}{(2 j)!}$
iv) $\frac{1}{1-x}=\sum_{j=0}^{\infty} x^{j}$
d) (Cauchy) The function

$$
f(x)= \begin{cases}e^{-2 / x^{2}}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

belongs to $C^{\infty}(-\infty, \infty)$ but is not analytic on any open interval that contains $x=0$. Find its Taylor series.

### 12.1 Definition of Fourier Series

## Theorem 1 (Orthogonality Theorem)

(a) $\quad \int_{-\pi}^{\pi} \cos (k x) \cos (n x) d x=0(n \neq k ; n, k=0,1,2,3, \cdots)$
(b) $\quad \int_{-\pi}^{\pi} \cos ^{2}(n x) d x= \begin{cases}\pi, & n \geq 1 \\ 2 \pi, & n=0\end{cases}$
(c) $\quad \int_{-\pi}^{\pi} \sin (k x) \sin (n x) d x=0, \quad(k \neq n ; n, k=1,2,3, \cdots)$
(d) $\quad \int_{-\pi}^{\pi} \sin ^{2}(n x) d x=\pi, \quad(n=1,2,3, \cdots)$
(e) $\quad \int_{-\pi}^{\pi} \cos (k x) \sin (n x) d x=0, \quad(n, k=1,2,3, \cdots)$

Proof Use the trig identities

$$
\begin{gathered}
\cos (k x+n x)=\cos (k x) \cos (n x)-\sin (k x) \sin (n x) \\
\cos (k x-n x)=\cos (k x) \cos (n x)+\sin (k x) \sin (n x) \\
\int_{-\pi}^{\pi} \cos (a x)=\left.\frac{1}{a} \sin (a x)\right|_{-\pi} ^{\pi}=0, \quad(a=1,2,3, \cdots) \\
\int_{-\pi}^{\pi} \sin (a x)=\left.\frac{-1}{a} \cos (a x)\right|_{-\pi} ^{\pi}=0, \quad(a=1,2,3, \cdots)
\end{gathered}
$$

Remark 1. Let $f$ be a function defined on $[-\pi, \pi]$. Assume that, for each $x \in[-\pi, \pi], f(x)$ can be expressed as

$$
f(x)=\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left[a_{k} \cos (k x)+b_{k} \sin (k x)\right]
$$

Then using Theorem 1, we have the following

$$
\int_{-\pi}^{\pi} f(x) d x=\pi a_{0}
$$

For $n \geq 1$, we have

$$
\begin{aligned}
\int_{-\pi}^{\pi} f(x) \cos (n x) d x & =\frac{a_{0}}{2} \int_{-\pi}^{\pi} \cos (n x) d x+\sum_{k=1}^{\infty}\left[a_{k} \int_{-\pi}^{\pi} \cos (n x) \cos (k x) d x+b_{k} \int_{-\pi}^{\pi} \cos (n x) \sin (k x) d x\right] \\
& =a_{n} \int_{-\pi}^{\pi} \cos ^{2}(n x) d x=\pi a_{n}
\end{aligned}
$$

Therefore,

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x
$$

Similarly,

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (n x) d x
$$

Definition If $f$ is Riemann integrable over $[-\pi, \pi]$, then the Fourier Series of $f$ is the series

$$
\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left[a_{k} \cos (k x)+b_{k} \sin (k x)\right]
$$

where

$$
a_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (k x) d x \quad(k=0,1,2,3, \cdots)
$$

and

$$
b_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (k x) d x, \quad(k=1,2,3, \cdots .)
$$

The $a_{k}$ and $b_{k}$ are called the Fourier Coefficients of $f$. For the purpose of clarity, we will write $a_{k}(f)$ instead of $a_{k}$ and $b_{k}(f)$ instead of $b_{k}$.

It is also common to write

$$
f \sim \frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left[a_{k} \cos (k x)+b_{k} \sin (k x)\right] .
$$

We shall also write $S_{n} f$ for the $n t h$ partial sum of the Fourier series of $f$. Thus,

$$
S_{0} f(x)=\frac{a_{0}}{2}
$$

and for $n \geq 1$,

$$
\left(S_{n} f\right)(x)=\frac{a_{0}}{2}+\sum_{k=1}^{n}\left[a_{k} \cos (k x)+b_{k} \sin (k x)\right]
$$

Example Show that the Fourier series for $f(x)=x$ is

$$
2 \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} \sin (k x)
$$

Since $x \cos (k x)$ is odd and $x \sin (k x)$ is even, we see that

$$
\begin{gathered}
a_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (k x) d x=0, \quad k=0,1,2,3, \cdots \\
b_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (k x) d x=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin (k x) d x \quad k=1,2,3, \cdots
\end{gathered}
$$

Integration by parts yields

$$
b_{k}=\frac{2}{\pi}\left(-\left.\frac{x \cos (k x)}{k}\right|_{0} ^{\pi}+\frac{1}{k} \int_{0}^{\pi} \cos (k x) d x\right)=\frac{2(-1)^{k+1}}{k} .
$$

Example Show that the Fourier series for $f(x)=|x|$ is

$$
\frac{\pi}{2}+\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{\cos ((2 k-1) x)}{(2 k-1)^{2}}
$$

Since $|x| \cos (k x)$ is even and $|x| \sin (k x)$ is odd, we have

$$
\begin{gathered}
b_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (k x) d x=0 \quad k=1,2,3, \cdots \\
a_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (k x) d x=\frac{2}{\pi} \int_{0}^{\pi} x \cos (k x) d x \quad k=0,1,2,3, \cdots
\end{gathered}
$$

If $k=0$, then we have

$$
a_{0}=\frac{2}{\pi} \int_{0}^{\pi} x d x=\frac{2}{\pi}\left(\frac{\pi^{2}}{2}\right)=\pi
$$

and if $k \geq 1$, integration by parts yields

$$
a_{k}=\frac{2}{\pi k^{2}}(\cos (k \pi)-1)= \begin{cases}0 & \text { if } k \text { is even } \\ -\frac{4}{\pi k^{2}} & \text { if } k \text { is odd } .\end{cases}
$$

### 12.2 Formulation of Convergence and Summability Problems

Convergence Question. Given a function $f$ periodic on $\mathbf{R}$ and integrable on $[-\pi, \pi]$, does the Fourier series of $f$ converge to $f$ ?

Uniqueness Question. If a trigonometric series converges to $f$, is the series the Fourier series of $f$ ?

Theorem 2. If the trigonometric series

$$
\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left[a_{k} \cos (k x)+b_{k} \sin (k x)\right]
$$

converges to $f$ uniformly, then it is the Fourier series of $f$. That is,

$$
\begin{array}{rlrl}
a_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (k x) d x, & k & =0,1,2,3, \cdots \\
b_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (k x) d x, & k=1,2,3, \cdots
\end{array}
$$

Proof This follows from Remark 1 and the fact that the series converges uniformly.
Definition. 1) A Dirichlet kernel of order $n$ is the function defined by

$$
D_{0}(x)=\frac{1}{2}, \quad D_{n}(x)=\frac{1}{2}+\sum_{k=1}^{n} \cos (k x)
$$

2) The Fejer kernel of order $n$ is defined by

$$
K_{0}(x)=\frac{1}{2}, \quad K_{n}(x)=\frac{1}{2}+\sum_{k=1}^{n}\left(1-\frac{k}{n+1}\right) \cos (k x)
$$

## Lemma 1.

$$
K_{n}(x)=\frac{D_{0}(x)+D_{1}(x)+\cdots+D_{n}(x)}{n+1} .
$$

Proof. The formula is trivially true if $n=0$. Suppose $n \geq 1$. Then

$$
\begin{aligned}
K_{n}(x) & =\frac{1}{n+1}\left(\frac{n+1}{2}+\sum_{k=1}^{n}(n-k+1) \cos (k x)\right)=\frac{1}{n+1}\left(\frac{1}{2}+\frac{n}{2}+\sum_{k=1}^{n} \sum_{j=k}^{n} 1 \cdot \cos (k x)\right) \\
& =\frac{1}{n+1}\left(\frac{1}{2}+\sum_{j=1}^{n}\left[\frac{1}{2}+\sum_{k=1}^{j} \cos (k x)\right]\right)=\frac{D_{0}(x)+D_{1}(x)+D_{2}(x)+\cdots+D_{n}(x)}{n+1}
\end{aligned}
$$

Lemma 2. If $x \in \mathbf{R}, x \neq 2 k \pi$ for $k \in \mathbf{I}$, then for each $n=0,1,2, \cdots$,

$$
D_{n}(x)=\frac{\sin \left(n+\frac{1}{2}\right) x}{2 \sin \left(\frac{x}{2}\right)} \quad \text { and } \quad K_{n}(x)=\frac{2}{n+1}\left(\frac{\sin \left(\frac{n+1}{2}\right) x}{2 \sin \left(\frac{x}{2}\right)}\right)^{2}
$$

Proof. For $n=0$, the lemma is trivial.
Fix $n \geq 1$ and apply the sum-angle and telescoping to get

$$
\begin{aligned}
{\left[D_{n}(x)-\frac{1}{2}\right] \sin \left(\frac{x}{2}\right) } & =\sum_{k=1}^{n} \cos (k x) \sin \left(\frac{x}{2}\right)=\frac{1}{2} \sum_{k=1}^{n}\left[\sin \left(k+\frac{1}{2}\right) x-\sin \left(k-\frac{1}{2}\right) x\right] \\
& =\frac{1}{2}\left[\sin \left(n+\frac{1}{2}\right) x-\sin \left(\frac{x}{2}\right)\right]
\end{aligned}
$$

and hence

$$
D_{n}(x)=\frac{\sin \left(n+\frac{1}{2}\right) x}{2 \sin \left(\frac{x}{2}\right)}
$$

To prove the second formula we use the formula just proved and sum-angle formula we have

$$
D_{k}(x) \sin ^{2}\left(\frac{x}{2}\right)=\frac{1}{2} \sin \left(\frac{x}{2}\right) \sin \left(k+\frac{1}{2}\right) x=\frac{1}{4}[\cos (k x)-\cos (k+1) x]
$$

By Lemma 1 and telescoping, we get

$$
\begin{aligned}
(n+1) K_{n}(x) \sin ^{2}\left(\frac{x}{2}\right) & =\sum_{k=0}^{n} D_{k}(x) \sin ^{2}\left(\frac{x}{2}\right)=\frac{1}{4} \sum_{k=0}^{n}[\cos (k x)-\cos (k+1) x] \\
& =\frac{1}{4}[1-\cos (n+1) x]=\frac{1}{2} \sin ^{2}\left(\frac{x}{2}\right)
\end{aligned}
$$

and the second formula of the lemma follows by dividing.
Definition. A series $\sum_{k=0}^{\infty} a_{k}$ with partial sums $s_{n}=\sum_{k=0}^{n} a_{k}$ is said to be Cesaro summable to a finite number $L$ if and only if

$$
\sigma_{n}=\frac{s_{0}+s_{1}+s_{2}+\cdots+s_{n}}{n+1}
$$

converges to $L$. Cesaro summable is also called $(C, 1)$ summable and we write

$$
\sum_{k=0}^{\infty} a_{k}=L \quad(C, 1)
$$

(Sections 2.11, and 3.9 of the text have more on this.)
Example The series

$$
\sum_{k=0}^{\infty}(-1)^{k}=1-1+1-1+1-1+\cdots
$$

is divergent, since

$$
s_{n}= \begin{cases}0 & \text { if } n \text { is odd } \\ 1 & \text { if } n \text { is even }\end{cases}
$$

However,

$$
\sigma_{n}= \begin{cases}\frac{n+2}{2(n+1)} & \text { if } n \text { is even } \\ \frac{1}{2} & \text { if } n \text { is odd }\end{cases}
$$

Hence

$$
\lim _{n \rightarrow \infty} \sigma_{n}=\frac{1}{2}, \quad \text { and so } \quad \sum_{k=0}^{\infty}(-1)^{k}=\frac{1}{2} \quad(C, 1)
$$

Definition. The Cesaro means of a Fourier series of $f$ is denoted by $\sigma_{n} f$ and is given by

$$
\left(\sigma_{n} f\right)(x)=\frac{\left(S_{0} f\right)(x)+\left(S_{1} f\right)(x)+\cdots+\left(S_{n} f\right)(x)}{n+1}
$$

where $S_{k} f$ is the $k$ partial sum of the Fourier series of $f$.
Lemma 3. If $f$ is periodic on $\mathbf{R}$ and integrable on $[-\pi, \pi]$, then for all $x \in \mathbf{R}$ and $n=0,1,2,3 \cdots$, we have

$$
\left(\sigma_{n} f\right)(x)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x-t) K_{n}(t) d t
$$

Proof For simplicity, let us write $a_{k}$ for $a_{k}(f)$ and $b_{k}$ for $b_{k}(f)$. For each $j$, we have

$$
\begin{aligned}
a_{j} \cos (j x)+b_{j} \sin (j x) & =\frac{1}{\pi} \int_{-\pi}^{\pi} f(u) \cos (j u) \cos (j x) d u+\frac{1}{\pi} \int_{-\pi}^{\pi} f(u) \sin (j u) \sin (j x) d u \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} f(u)[\cos (j u) \cos (j x)+\sin (j u) \sin (j x)] d u \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} f(u) \cos (j(u-x)) d u
\end{aligned}
$$

Summing over $j=1,2, \cdots, k$ and adding $a_{0} / 2$, we have

$$
\begin{aligned}
\left(S_{k} f\right)(x) & =\frac{a_{0}}{2}+\sum_{j=1}^{n} a_{j} \cos (j x)+b_{j} \sin (j x)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(u)\left(\frac{1}{2}+\sum_{j=1}^{k} \cos (j(x-u))\right) \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} f(u) D_{k}(x-u) d u
\end{aligned}
$$

We now use the fact that $f$ and $D_{k}$ are periodic and make change of variables $t=x-u$ to obtain

$$
S_{k} f(f)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x-t) D_{k}(t) d t
$$

Using Lemma 2 we have

$$
\begin{aligned}
\left(\sigma_{n} f\right)(x) & =\frac{1}{n+1} \sum_{k=0}^{n}\left(S_{k} f\right)(x)=\frac{1}{n+1} \sum_{k=0}^{n} \frac{1}{\pi} \int_{-\pi}^{\pi} f(x-t) D_{k}(t) d t \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x-t) K_{n}(t) d t
\end{aligned}
$$

Lemma 4. For $n=0,1,2,3, \cdots$, we have
(i) $\quad K_{n}(t) \geq 0, \quad$ for all $t \in \mathbf{R}$,
(ii) $\frac{1}{\pi} \int_{-\pi}^{\pi} K_{n}(x) d x=1$,
(iii) $\lim _{n \rightarrow \infty} \int_{\delta}^{\pi}\left|K_{n}(x)\right| d x=0$ for any $0<\delta<\pi$.

Proof. (i) follows from

$$
K_{n}(x)=\frac{2}{n+1}\left(\frac{\sin \left(\frac{n+1}{2}\right) x}{2 \sin \left(\frac{x}{2}\right)}\right)^{2}
$$

To prove (ii), note that

$$
\int_{-\pi}^{\pi} K_{( }(x) d x=\int_{-\pi}^{\pi}\left(\frac{1}{2}+\sum_{k=1}^{n}\left(1-\frac{k}{n+1}\right) \cos (k x)\right) d x=\pi .
$$

To prove (iii), note that if $0<\delta<t<\pi$, then $\sin (\delta / 2)<\sin (t / 2)$ and using Lemma 2 we get

$$
\int_{\delta}^{\pi} \left\lvert\, K_{n}(x) d x \leq \frac{2}{n+1} \int_{\delta}^{\pi}\left(\frac{\sin \left(\frac{n+1}{2}\right) x}{2 \sin \left(\frac{\delta}{2}\right)}\right)^{2} d t \leq \frac{\pi}{2(n+1)} \frac{1}{\sin ^{2}\left(\frac{\delta}{2}\right)}\right.
$$

and then take limit as $n \rightarrow \infty$.
Theorem 3. (Fejer) Suppose $f$ is periodic on $\mathbf{R}$ and integrable on $[-\pi, \pi]$.

1) If

$$
L=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)+f\left(x_{0}-h\right)}{2}
$$

exists for some $x_{0} \in \mathbf{R}$, then $\lim _{n \rightarrow \infty}\left(\sigma_{n} f\right)\left(x_{0}\right)=L$.
2 ) If $f$ is continuous on some closed interval $[a, b]$, then $\sigma_{n} f \rightarrow f$ uniformly on $[a, b]$
Proof. Since $f$ is periodic, we may assume that $x_{0} \in[-\pi, \pi]$. Fix $n \geq 1$. By Lemmas 2 and 3 and change of variables, we have

$$
\begin{aligned}
\left(\sigma_{n} f\right)\left(x_{0}\right)-L & =\frac{1}{\pi} \int_{-\pi}^{\pi} K_{n}(t)\left[f\left(x_{0}-t\right)-L\right] d t=\frac{2}{\pi} \int_{0}^{\pi} K_{n}(t)\left[\frac{f\left(x_{0}+t\right)+f\left(x_{0}-t\right)}{2}-L\right] d t \\
& =\frac{2}{\pi} \int_{0}^{\pi} K_{n}(t) F\left(x_{0}, t\right) d t
\end{aligned}
$$

where

$$
F\left(x_{0}, t\right)=\frac{f\left(x_{0}+t\right)+f\left(x_{0}-t\right)}{2}-L
$$

Let $\epsilon>0$. By definition of $L$, we can choose $\delta>0$ with $\delta<\pi$ such that if $|t|<\delta$, then $\left|F\left(x_{0}, t\right)\right|<\epsilon / 3$. Using Lemma 3, we get

$$
\left|\frac{2}{\pi} \int_{0}^{\delta} K_{n}(t) F\left(x_{0}, t\right) d t\right| \leq \frac{2 \epsilon}{3 \pi} \int_{0}^{\delta}\left|K_{n}(t)\right| d t<\frac{2 \epsilon}{3} .
$$

Let $M=\sup _{-\pi \leq x \leq \pi}|f(x)|$. Then $\left|F\left(x_{0}, t\right)\right| \leq M$. Using the third equation of Lemma 3, we can choose $N_{1}$ such that for all $n \geq N_{1}$,

$$
\left|\int_{\delta}^{\pi} K_{n}(t) d t\right|<\frac{\epsilon}{3 M} .
$$

Thus, we have

$$
\left|\frac{2}{\pi} \int_{\delta}^{\pi} K_{n}(t) F\left(x_{0}, t\right) d t\right| \leq M \int_{0}^{\delta}\left|K_{n}(t)\right| d t<\frac{\epsilon}{3}
$$

Therefore for $n \geq N_{1}$, we have

$$
\left|\left(\sigma_{n} f\right)\left(x_{0}\right)-L\right| \leq \frac{2}{\pi} \int_{0}^{\delta}\left|K_{n}(t) F\left(x_{0}, t\right)\right|+\frac{2}{\pi} \int_{\delta}^{\pi}\left|K_{n}(t) F\left(x_{0}, t\right)\right| \leq \frac{2 \epsilon}{3}+\frac{\epsilon}{3}=\epsilon .
$$

We proved the very definition of (i).

To prove (ii), we note that if $f$ is continuous on $[-\pi, \pi]$, then it is uniformly continuous on $[-\pi, \pi]$. The above inequalities are valid if we replace $x_{0}$ by any $x \in[-\pi, \pi]$. (You should cary out the details.)

Corollary 1. If $f$ is continuous and periodic on $\mathbf{R}$, then

$$
\sigma_{n} f \rightarrow f \quad \text { uniformly on } \quad \mathbf{R}
$$

Proof. Since $f$ is periodic, we may assume that $f$ is continuous on $-\pi, \pi]$ and apply Fejer's Theorem.
Corollary 2. (Completeness) If $f$ is continuous and periodic on $\mathbf{R}$, and if $a_{k}(f)=0$ and $b_{k}(f)=0$ for all $k=0,1,2,3, \cdots$, then $f(x)=0$ for all $x \in \mathbf{R}$

Proof. From the assumption we have $\sigma_{n} f(x)=0$ for all $x$. By Corollary 1, we have $f(x)=\lim _{n \rightarrow \infty}\left(\sigma_{n} f\right)(x)=$ 0.

Corollary 3. If $f$ is continuous and periodic on $\mathbf{R}$, then there is a sequence of trigonometric polynomials $T_{1}, T_{2}, \cdots$ such that

$$
T_{n} \rightarrow f \quad \text { uniformly on } \quad \mathbf{R}
$$

Proof $\quad S_{n} f$ is a trig polynomial implies $\sigma_{n} f$ is a trig polynomial. Take $T_{n}$ to be $\sigma_{n} f$ and apply Fejer's Theorem.

Theorem 4. (Weierstrass Approximation Theorem) Let f be continuous on a closed and bounded interval $[a, b]$. Given $\epsilon>0$, there exists a polynomial

$$
P(x)=\sum_{k=0}^{n} p_{k} x^{k}
$$

where $p_{k} \in \mathbf{R}$ such that for all $x \in[a, b]$,

$$
|f(x)-P(x)|<\epsilon
$$

### 12.3 Growth of Fourier Coefficients

Lemma 5. If $f$ is integrable on $[-\pi, \pi]$, then for $n=0,1,2,3, \cdots$,

$$
\begin{aligned}
\frac{1}{\pi} \int_{-\pi}^{\pi} f(x)\left(S_{n} f\right)(x) d x & =\frac{\left|a_{0}(f)\right|^{2}}{2}+\sum_{k=1}^{n}\left(\left|a_{k}(f)\right|^{2}+\left|b_{k}(f)\right|^{2}\right) \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi}\left|\left(S_{n} f\right)(x)\right|^{2} d x
\end{aligned}
$$

Theorem 5. (Bessel's Inequality) If $f$ is Riemann integrable on $[-\pi, \pi]$, then

$$
\sum_{k=1}^{\infty}\left|a_{k}(f)\right|^{2} \quad \text { and } \quad \sum_{k=1}^{\infty}\left|b_{k}(f)\right|^{2}
$$

are both convergent. Moreover,

$$
\frac{\left|a_{0}(f)\right|^{2}}{2}+\sum_{k=1}^{n}\left(\left|a_{k}(f)\right|^{2}+\left|b_{k}(f)\right|^{2}\right) \leq \frac{1}{\pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x
$$

Corollary (Riemann - Lebesgue Lemma) If $f$ is Riemann integrable on $[\pi, \pi]$, then

$$
\lim _{k \rightarrow \infty} a_{k}(f)=\lim _{k \rightarrow} b_{k}(f)=0
$$

Lemma 6. If $f$ is Riemann integrable on $[-\pi, \pi]$ and

$$
T_{n}=\frac{c_{0}}{2}+\sum_{k=1}^{n}\left[c_{k} \cos (k x)+d_{k} \sin (k x)\right]
$$

is any trigonometric polynomial of degree $n$, then

$$
\int_{-\pi}^{\pi}\left|f(x)-\left(S_{n} f\right)(x)\right|^{2} d x \leq \int_{-\pi}^{\pi}\left|f(x)-T_{n}(x)\right|^{2} d x
$$

Theorem 6. (Parseval's Identity) If $f$ is periodic and continuous on $\mathbf{R}$, then

$$
\frac{\left|a_{0}(f)\right|^{2}}{2}+\sum_{k=1}^{n}\left(\left|a_{k}(f)\right|^{2}+\left|b_{k}(f)\right|^{2}\right)=\frac{1}{\pi} \int_{-\pi}^{\pi}|f(x)|^{2} d x
$$

Theorem 7. (Riemann - Lebesgue Lemma) If $f^{(j)}$ exists and is Riemann integrable on $[\pi, \pi]$ and if $f^{(l)}$ is periodic for $1 \leq l<j$, then

$$
\lim _{k \rightarrow \infty} k^{j} a_{k}(f)=\lim _{k \rightarrow \infty} k^{j} b_{k}(f)=0
$$

### 12.4 A Digression:

## Functions of Bounded Variation

Definition Let $\phi:[a, b] \rightarrow \mathbf{R}$ be a function and let $P=\left\{x_{0}, x_{1}, \cdots x_{n}\right\}$ be a partition of $[a, b]$. Define

$$
V(\phi, P)=\sum_{k=1}^{n}\left|\phi\left(x_{k}\right)-\phi\left(x_{k-1}\right)\right| .
$$

The total variation of $\phi$ on $[a, b]$ is defined by

$$
\operatorname{Var}(\phi)=\sup \{V(\phi, P) \mid P \text { is a partition of }[a, b]\}
$$

A function $\phi$ is said to be of bounded variation if $V(\phi)<\infty$.
Lemma 7. If $\phi \in C^{1}[a, b]$, then $\phi$ is of bounded variation on $[a, b]$.
Proof: Let $P=\left\{x_{0}, x_{1}, \cdots x_{n}\right\}$ be a partition of $[a, b]$. Since $\phi^{\prime}$ is continuous on $[a, b]$, by Extreme Value Thereom, there exits $M$ such that

$$
\left|\phi^{\prime}(x)\right| \leq M \quad \text { for all } \quad x \in[a, b]
$$

On the other hand, by Mean Value Theorem, there exists $c_{k} \in\left[x_{k-1}, x_{k}\right]$ such that

$$
\phi\left(x_{k}\right)-\phi\left(x_{k-1}\right)=\phi^{\prime}\left(c_{k}\right)\left(x_{k}-x_{k-1}\right) .
$$

Adding these, using the previous inequality, and telescoping, we see that

$$
V(\phi, P)=\sum_{k=1}^{n}\left|\phi\left(x_{k}\right)-\phi\left(x_{k-1}\right)\right| \leq M(b-a) .
$$

Taking the sup over all partitions P we see that

$$
\operatorname{Var}(\phi) \leq M(b-a)
$$

Example Let $\phi(x)=x^{2} \sin (1 / x)$. Show that
a) $\phi$ is of bounded variation on $[0,1]$.
b) $\quad \phi \notin C^{1}[0,1]$

Solution. a) Consider a partition $P=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ of $[0,1]$.
Choose $n$ a large positive integer so that the values of $x_{k}$ that are close to zero are contained in the partition $Q=\{0 / n, 1 / n, 1 / n-1, \cdots, 1\}$

$$
\begin{aligned}
\operatorname{Var}(\phi, Q) & =\sum_{k=1}^{n} x_{k}^{2} \sin \left(1 / x_{k}\right)-x_{k-1}^{2} \sin \left(1 / x_{k-1}\right) \leq \sum_{k=1}^{n}\left(x_{k}^{2}+x_{k-1}^{2}\right) \\
& \leq 2 \sum_{j=1}^{n} \frac{1}{k^{2}} \leq 2+2 \sum_{k=1}^{n-1}\left(\frac{1}{k}-\frac{1}{k+1}\right)=4-\frac{2}{n} \leq 4 .
\end{aligned}
$$

Thus $V(\phi, P) \leq V(\phi, Q)<2$ and taking the sup we see that $\operatorname{Var}(\phi)<\infty$.
b) But note that for $x \neq 0$,

$$
\phi^{\prime}(x)=2 x \sin (1 / x)-\cos (1 / x)
$$

and hence

$$
\lim _{x \rightarrow 0} \phi^{\prime}(x)
$$

does not exist while

$$
\phi^{\prime}(0)=\lim _{h \rightarrow \infty} \frac{h^{2} \sin (1 / h)}{h}=\lim _{h \rightarrow \infty} h \sin (1 / h)=0 .
$$

Therefore $\phi \notin C^{1}[0,1]$.
Example Let $\phi(x)=x^{2} \sin \left(1 / x^{2}\right)$. Show that $\phi$ is not of bounded variation on $[0,1]$.
Lemma 8 If $\phi$ is monotone on $[a, b]$, then $\phi$ is of bounded variation on $[a, b]$.
Proof: Suppose $\phi$ is increasing and let $P=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ be a partition of $[a, b]$. Then

$$
\sum_{k=1}^{n}\left|\phi\left(x_{k}\right)-\phi\left(x_{k-1}\right)\right|=\sum_{k=1}^{n}\left(\phi\left(x_{k}\right)-\phi\left(x_{k-1}\right)\right)=\phi\left(x_{n}\right)-\phi\left(x_{0}\right)=\phi(b)-\phi(a)
$$

Since $M=\phi(b)-\phi(a)$ is finite, we see that the sup over all partitions P is also finite. Hence $\phi$ is of bounded variation.

Lemma 9. If $\phi$ is of bounded variation on $[a, b]$, then $\phi$ is bounded on $[a, b]$.
Proof: For any $x \in[a, b]$, we have

$$
|\phi(x)-\phi(a)| \leq|\phi(x)-\phi(a)|+|\phi(b)-\phi(x)| \leq \operatorname{Var}(\phi) .
$$

Thus

$$
|\phi(x) \leq|\phi(x)-\phi(a)|+|\phi(a)| \leq \operatorname{Var}(\phi)+|\phi(a)|
$$

and hence $\phi$ is bounded.
Example The function

$$
\phi(x)= \begin{cases}\sin (1 / x), & x \neq 0 \\ 0, & x=0\end{cases}
$$

is bounded (by 1 ).
But it is not of bounded variation.For if

$$
x_{j}= \begin{cases}0, & x=0 \\ \frac{2}{(n-j) \pi}, & 0<j<n-1 .\end{cases}
$$

then, as $n \rightarrow \infty$,

$$
\sum_{j=1}^{n}\left|\phi\left(x_{j}\right)-\phi\left(x_{j-1}\right)\right|=2 n \rightarrow \infty
$$

Thus $\phi$ is not of bounded variation on $[0,2 / \pi]$.

Theorem 8. If $\phi$ and $\psi$ are functions of bounded variation on $[a, b]$, then so are $\phi \pm \psi$, and $\phi \cdot \psi$. If there exists $\epsilon_{0}>0$ such that $\psi(x) \geq \epsilon_{0}$, then $\phi / \psi$ is also of bounded variation.

Proof: Let $P=\left\{x_{0}, x_{1}, x_{2}, \cdots, x_{n}\right\}$ be a partition of $[a, b]$. Then

$$
\begin{aligned}
\sum_{k=1}^{n}\left|\left(\phi\left(x_{j}\right) \pm \psi\left(x_{j}\right)\right)-\left(\phi\left(x_{j-1}\right) \pm \psi\left(x_{j-1}\right)\right)\right| & \leq \sum_{k=1}^{n}\left|\phi\left(x_{j}\right)-\phi\left(x_{j-1}\right)\right|+\sum_{k=1}^{n}\left|\psi\left(x_{j}\right)-\psi\left(x_{j-1}\right)\right| \\
& \leq \operatorname{Var}(\phi)+\operatorname{Var}(\psi)
\end{aligned}
$$

Therefore,

$$
\operatorname{Var}(\phi \pm \psi) \leq \operatorname{Var}(\phi)+\operatorname{Var}(\psi)
$$

By Lemma 8, there are constants $M_{1}$ and $M_{2}$ such that

$$
|\phi(x)| \leq M_{1} \quad \text { and } \quad|\psi(x)| \leq M_{2} \quad \text { for all } \quad x \in[a, b] .
$$

But then

$$
\begin{aligned}
& \sum_{j=1}^{n}\left|\phi\left(x_{j}\right) \psi\left(x_{j}\right)-\phi\left(x_{j-1}\right) \psi\left(x_{j-1}\right)\right| \\
= & \left.\sum_{k=1}^{n} \mid \phi\left(x_{j}\right) \psi\left(x_{j}\right)\right)-\phi\left(x_{j-1}\right) \psi\left(x_{j}\right)+\phi\left(x_{j-1)} \psi\left(x_{j}\right)-\phi\left(x_{j-1}\right) \psi\left(x_{j-1}\right) \mid\right. \\
\leq & M_{2} \sum_{k=1}^{n}\left|\phi\left(x_{j}\right)-\phi\left(x_{j-1}\right)\right|+M_{1} \sum_{k=1}^{n}\left|\psi\left(x_{j}\right)-\psi\left(x_{j-1}\right)\right| \\
\leq & M_{2} \operatorname{Var}(\phi)+M_{1} \operatorname{Var}(\psi)
\end{aligned}
$$

Therefore,

$$
\operatorname{Var}(\phi \psi) \leq M_{2} \operatorname{Var}(\phi)+M_{1} \operatorname{Var}(\psi) .
$$

To prove the $\phi / \psi$ is also of bounded variation, we write

$$
\begin{aligned}
\sum_{j=1}^{n}\left|\frac{\phi\left(x_{j}\right)}{\psi\left(x_{j}\right.}-\frac{\phi\left(x_{j-1}\right)}{\psi\left(x_{j-1}\right)}\right| & =\sum_{j=1}^{n}\left|\frac{\phi\left(x_{j}\right) \psi\left(x_{j}\right)-\phi\left(x_{j-1}\right) \psi\left(x_{j-1}\right)}{\psi\left(x_{j}\right) \psi\left(x_{j-1}\right)}\right| \\
& \leq \frac{1}{\epsilon^{2}}\left(M_{2} \sum_{k=1}^{n}\left|\phi\left(x_{j}\right)-\phi\left(x_{j-1}\right)\right|+M_{1} \sum_{k=1}^{n}\left|\psi\left(x_{j}\right)-\psi\left(x_{j-1}\right)\right|\right)
\end{aligned}
$$

Therefore,

$$
\operatorname{Var}\left(\frac{\phi}{\psi}\right) \leq \frac{M_{2}}{\epsilon_{0}^{2}} \operatorname{Var}(\phi)+\frac{M_{1}}{\epsilon_{0}^{2}} \operatorname{Var}(\psi) .
$$

Definition. Let $\phi$ be of bounded variation on $[a, b]$. The total variation of $\phi$ is the function defined by

$$
\Phi(x)=\sup \left\{\sum_{k=1}^{n}\left|\phi\left(x_{j}\right)-\phi\left(x_{j-1}\right)\right|\right\}
$$

where the sup is over all partitions $P=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ of $[a, x]$.

Theorem 9. Let $\phi$ be of bounded variation and $\Phi$ be its total variation. Then
(i) $\quad|\phi(y)-\phi(x)| \leq \Phi(y)-\Phi(x)$ for all $a \leq x \leq y \leq b$
(ii) $\Phi$ and $\Phi-\phi$ are increasing on $[a, b]$
(iii) $\operatorname{Var}(\phi) \leq \operatorname{Var}(\Phi)$.

Proof: (i) Let $x<y$ and let $P=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ be a partition of $[a, x]$. Then $Q=\left\{x_{0}, x_{1}, \cdots, x_{n}, y\right\}$ is a partition of $[a, y]$. By definition of $\Phi$ we have

$$
\begin{aligned}
& \sum_{j=1}^{n}\left|\phi\left(x_{j}\right)-\phi\left(x_{j-1}\right)\right| \\
\leq & \sum_{j=1}^{n}\left|\phi\left(x_{j}\right)-\phi\left(x_{j-1}\right)\right|+\mid \phi(y)-\phi(x) \\
\leq & \Phi(y)
\end{aligned}
$$

Taking the sup over all such partitions P of $[a, x]$ we see that

$$
\Phi(x) \leq \Phi(x)-\mid \phi(y)-\phi(x) \leq \Phi(y)
$$

and (i) follows.
(ii) Since $\Phi$ is defined as the sup, it is clearly increasing.

By part (i), we have

$$
\phi(y)-\phi(x) \leq|\phi(y)-\phi(x)| \leq \Phi(y)-\Phi(x)
$$

and hence $\Phi(x)-\phi(x) \leq \Phi(y)-\phi(y)$. Therefore, $\Phi-\phi$ is also increasing.
(iii) Let $P=\left\{x_{0}, x_{1}, \cdots, x_{n}\right\}$ be a partition of $[a, b]$. By part (i) and the definition of $\Phi$, we have

$$
\begin{aligned}
\sum_{k=1}^{n}\left|\phi\left(x_{k}\right)-\phi\left(x_{k-1}\right)\right| & \left.\leq \sum\right) k=1^{n}\left|\Phi\left(x_{k}\right)-\Phi\left(x_{k-1}\right)\right| \\
& \leq \operatorname{Var}(\Phi)
\end{aligned}
$$

Taking the sup over all such P we get (iii).
Corollary $\quad \phi$ is of bounded variation on $[a, b]$ if and only if there exists increasing functions $f$ and $g$ on $[a, b]$ such that

$$
\phi(x)=f(x)-g(x), \quad \text { for all } \quad x \in[a, b] .
$$

Proof: If $\phi$ is of bounded variation, let $\Phi$ be its total variation. Then by Theorem 9 , the functions $f=\Phi$ and $g=\Phi-\phi$ are increasing and $\phi=f-g$.

Conversely, if $f$ and $g$ are monotone, then both are of bounded variation by Lemma 9. But then by Thereom $8 \phi=f-g$ is of bounded variation.

Remarks. 1) If $f$ is monotone on $[a, b]$, then the set points $x$ in $[a, b]$ at which $f$ is discontinuous is at most countable.
Thus if $\phi$ is of bounded variation on $[a, b]$, then it has at most a countable set of discontinuity on $[a, b]$.
2) If $f$ is monotone, then for any $x_{0} \in(a, b]$, the limit $\lim _{x \rightarrow x_{0}^{-}} f(x)$ exists. This limit is denoted by $f\left(x_{0}-\right)$.

Similarly, for any $x_{0} \in[a, b)$, the limit $\lim _{x \rightarrow x_{0}^{+}} f(x)$ exists. This limit is denoted by $f\left(x_{0}+\right)$.
Thus if $\phi$ is of bounded variation on $[a, b]$, then the limits $\lim _{x \rightarrow x_{0}^{+}} \phi(x)$ and $\lim _{x \rightarrow x_{0}^{+}} \phi(x)$ both exist for all $x_{0} \in(a, b)$.
3) Monotone functions are Riemann integrable over $[a, b]$.

Thus, if $\phi$ is of bounded variation on $[a, b]$, then $\phi$ is Riemann integrable. .

### 12.5 Convergence of Fourier Series

Lemma 10. If $\sum_{k=0}^{\infty} a_{k}$ converges to L , then it is Cesaro summable to L .
Proof: Let $\epsilon>0$. Choose $N_{1}$ such that if $k \geq N_{1}$ then $\left|s_{k}-L\right|<\frac{\epsilon}{2}$. Use the Archimedean Property to choose $N_{2}>N_{1}$ such that $\sum_{k=0}^{N_{1}}\left|s_{k}-L\right|<\frac{\epsilon N_{2}}{2}$. If $n>N_{2}$, then

$$
\begin{aligned}
\left|\sigma_{n}-L\right| & \leq \frac{1}{n+1} \sum_{k=0}^{N_{1}}\left|s_{k}-L\right|+\frac{1}{n+1} \sum_{k=N_{1}+1}^{n}\left|s_{k}-L\right| \\
& \leq \frac{\epsilon N_{2}}{2(n+1)}+\frac{\epsilon}{2}\left(\frac{n-N_{2}}{n+1}\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon .
\end{aligned}
$$

Theorem 10. (Tauberian Theorem) Let $a_{k} \geq 0$ and let $L \in \mathbf{R}$. If

$$
\sum_{k=0}^{\infty} a_{k}=L \quad(C, 1), \quad \text { then } \quad ; \sum_{k=0}^{\infty} a_{k}=L
$$

In other words, if a series of nonnegative terms is Cesaro summable to $L$, then it converges to $L$.
Proof: If we show the series converges, then by Lemma 8, we know that it must converge to $L$. Thus we need only show that $\sum_{k=0}^{\infty} a_{k}<\infty$. Suppose to the contrary that $\sum_{k=0}^{\infty} a_{k}=\infty$. Then given $M>0$, there exists $n_{0}>1$ such that if $n \geq n_{0}$, then $s_{n}=\sum_{k=0}^{n} a_{k} \geq M$. Let $n \geq n_{0}$. Then

$$
\begin{aligned}
\sigma_{n} & =\frac{s_{0}+s_{1}+s_{2}+\cdots+s_{n}}{n+1} \\
& =\frac{s_{0}+s_{1}+\cdots+s_{n_{0}}}{n+1}+\frac{s_{n_{0}+1}+s_{n_{0}+2}+\cdots+s_{n}}{n+1} \\
& \geq 0+\frac{n-n_{0}}{n+1} \cdot M
\end{aligned}
$$

If we take the limit as $n \rightarrow \infty$, we see that $L \geq M$ for all $M>0$. This is a contradiction. ( Take $M=L+10$ )

Corollary Let $f$ be periodic on $\mathbf{R}$ and Riemann integrable on $[-\pi, \pi]$. If $a_{k}(f)=0$ and $b_{k}(f) \geq 0$ for all $k \geq 1$, then

$$
\sum_{k=1}^{\infty} \frac{b_{k}(f)}{k}<\infty
$$

Proof: Assume $a_{0}(f)=0$. Otherwise take $g(x)=f(x)-a_{0}(f)$. Let

$$
F(x)=\int_{0}^{x} f(t) d t
$$

Then $F$ is continuous and periodic (note that $a_{0}(f)=0$ ) on $\mathbf{R}$. Hence by Fejer's Theorem $\left(\sigma_{n} F\right)(0) \rightarrow F(0)=$ 0 as $n \rightarrow \infty$. Integrating by parts we get

$$
a_{k}(F)=\frac{b_{k}(f)}{k} \geq 0 \quad \text { and } \quad b_{k}(F)=\frac{a_{k}(f)}{k}=0 .
$$

Hence

$$
\sum_{k=1}^{\infty} \frac{b_{k}(f)}{k}
$$

Cesaro summable. Since the terms are nonnegative, the corollary follows from Tauber's Theorem.
Theorem 11. (Hardy) Let $E \subset \mathbf{R}$ and suppose the $\left\{f_{k}\right\}$ is a sequence of functions on $E$ that satisfies

$$
\left|k f_{k}(x)\right| \leq M
$$

for all $x \in E$ and all $k \in \mathbf{N}$, and some $M>0$. If $\sum_{k=0}^{\infty} f_{k}$ is uniformly Cesaro summable to a function $f$ on $E$, then $\sum_{k=0}^{\infty} f_{k}$ converges uniformly to $f$ on $E$.

Proof: Let $x \in E$ and assume, without loss of generality, that $M \geq 1$. For each $n=0,1,2, \cdots$, set

$$
s_{n}(x)=\sum_{k=0}^{n} f_{k}(x)
$$

and

$$
\sigma_{n}(x)=\frac{s_{0}(x)+s_{1}(x)+s_{2}(x)+\cdots+s_{n}(x)}{n+1}
$$

Consider (the delayed average) defined for $n, k \geq 0$ by

$$
\sigma_{n, k}(x)=\frac{s_{n}(x)+s_{n+1}(x)+\cdots+s_{n+k}(x)}{k+1} .
$$

Let $0<\epsilon<1$. For each $n$ choose $k=k(n)$ such that

$$
k+1 \leq \frac{\epsilon n}{2 M}<k+2
$$

But then

$$
\frac{n-1}{k+1}<\frac{n}{k+1}<\frac{2 M}{\epsilon}<\infty .
$$

Note also that

$$
\begin{aligned}
\sigma_{n, k}(x)-s_{n}(x) & =\frac{\left(s_{n}(x)-s_{n}(x)\right)+\left(s_{n+1}(x)-s_{n}(x)\right)+\cdots+\left(s_{n+k}(x)-s_{n}(x)\right)}{k+1} \\
& =\sum_{j=n}^{k+n}\left(1-\frac{j-n}{k+1}\right) f_{j}(x) .
\end{aligned}
$$

By assumption $k\left|f_{k}(x)\right| \leq M$ and by choice of $k=k(n)$, we have

$$
\begin{aligned}
\left|\sigma_{n, k}(x)-s_{n}(x)\right| & \leq \sum_{j=n+1}^{n+k}\left|f_{j}(x)\right| \\
& \leq M \sum_{j=n+1}^{n+k} \frac{1}{j}<\frac{M(k+1)}{n+1}<\frac{\epsilon}{2}
\end{aligned}
$$

Since $\sigma_{n} \rightarrow f$ uniformly on $E$, we choose $N$ so that for all $n \geq N$ and for all $x \in E$,

$$
\left|\sigma_{n}(x)-f(x)\right|<\frac{\epsilon^{2}}{12 M}
$$

Since

$$
\sigma_{n, k}=\left(1+\frac{n-1}{k+1}\right) \sigma_{n+k}-\left(\frac{n-1}{k+1}\right) \sigma_{n-1},
$$

it follows that

$$
\begin{aligned}
\left|s_{n}(x)-f(x)\right| & \leq\left|s_{n}(x)-\sigma_{n, k}(x)\right|+\left|\sigma_{n, k}(x)-f(x)\right| \\
& \leq \frac{\epsilon}{2}+\left(1+\frac{n-1}{k+1}\right)\left|\sigma_{n+k}(x)-f(x)\right|+\left(\frac{n-1}{k+1}\right)\left|\sigma_{n-1}(x)-f(x)\right| \\
& \leq \frac{\epsilon}{2}+\left(1+\frac{n-1}{k+1}\right)\left(\frac{\epsilon^{2}}{12 M}\right)+\frac{2 M}{\epsilon}\left(\frac{\epsilon^{2}}{12 M}\right) \\
& =\frac{\epsilon}{2}+\frac{\epsilon^{2}}{12 M}+\frac{\epsilon}{3} \\
& <\frac{\epsilon}{2}+\frac{\epsilon}{12}+\frac{\epsilon}{3}<\epsilon .
\end{aligned}
$$

Therefore, $\sum_{k=0}^{\infty} f_{k} \rightarrow f$ uniformly on $E$.

Theorem 12. (Dirichlet-Jordan) If $f$ is periodic on $\mathbf{R}$ and continuous on some closed interval $[a, b]$, then

$$
S_{n} f \rightarrow f \quad \text { uniformly on } \quad ;[a, b]
$$

Remark For the uniqueness question posed earlier we have the following theorems, whose proofs can be found on pages 536 of William R. Wade's An Introduction to Analysis 3rd edition, published by Prentice Hall.

Theorem 13. (Cantor - Lebesgue Lemma) If

$$
S=\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left[a_{k} \cos (k x)+b_{k} \sin (k x)\right]
$$

is a trigonometric series that converges pointwise on some interval $[a, b]$, then

$$
\lim _{k \rightarrow \infty} a_{k}=0 \quad \text { and } \quad \lim _{k \rightarrow \infty} b_{k}=0
$$

Theorem 14. ( Cantor) Suppose

$$
S=\frac{a_{0}}{2}+\sum_{k=1}^{\infty}\left[a_{k} \cos (k x)+b_{k} \sin (k x)\right]
$$

is a trigonometric series that converges pointwise on $[-\pi, \pi]$ to a periodic continuous function $f$. Then $S$ is the Fourier series of $f$, that is

$$
\begin{aligned}
& a_{k}=a_{k}(f)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (k x) d x, \quad k=0,1,2,3, \cdots \\
& b_{k}=b_{k}(f)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (k x) d x, \quad k=1,2,3, \cdots
\end{aligned}
$$

