
Real Analysis II

Chapter 9 Sequences and Series of Functions

9.1 Pointwise Convergence of Sequence of Functions

Definition 9.1 A Let {fn} be a sequence of functions defined on a set of real numbers E. We say that
{fn} converges pointwise to a function f on E for each x ∈ E, the sequence of real numbers {fn(x)}
converges to the number f(x). In other words, for each x ∈ E , we have

lim
x→∞

fn(x) = f(x).

Example 1) Let
fn(x) = xn, x ∈ [0, 1]

and let

f(x) =

{
0 if 0 ≤ x < 1
1 if x = 1.

Then {fn} converges to f pointwise on [0, 1].

2) Let

gn(x) =
x

1 + nx
, x ∈ [0,∞]

Then {gn} converges to g(x) = 0 pointwise on [0,∞].

3) Let

hn(x) =
nx

1 + n2x2
, x ∈ [0,∞]

Then {hn} converges to h(x) = 0 pointwise on [0,∞].

4) Let

χn(x) =

{
1 if x ∈ [−n, n]
0 otherwise.

Then {χn} converges to χ(x) = 1 pointwise on [−∞,∞].

Remark. Suppose {fn} converges pointwise to f on E. Then given ε > 0, and given x ∈ E, there exists
N = N(x, ε) ∈ I, such that

|fn(x) − f(x)| < ε, for all n ≥ N.

In general N depends on ε as well as x.

For example, consider the sequence of Example 1 above: f(x) = xn and f(x) = 0, (0 ≤ x < 1) and f(1) = 1.
If ε = 1/2, then, for each x ∈ [0, 1], there exists N such that

|fn(x)− f(x)| ≤ 1

2
. for all (n ≥ N) (∗)

For x = 0 or x = 1 , then (∗) holds with N = 1. For x = 3/4 = 0.75, (∗) holds with N = 3 and for x = 0.9
we need N = 7.



We claim that there is no N for which (∗) hold for all x ∈ [0, 1]. For if there is such an N , then for all
x ∈ [0, 1), (*) implies

xn <
1

2
.

In particular we would have

xN <
1

2
for all x ∈ [0, 1). Taking limit as x → 1− we would have 1 ≤ 1/2, which is a contradiction.

If gn is as given in Example 2 above :

gn(x) =
x

1 + nx
,

then we have

gn(x) ≤ 1

n
for all x ∈ [0,∞) and hence for a given ε > 0 , any N with N > 1/ε will imply that

|gn(x) − 0| < ε for all n > N and for all x ∈ [0,∞).

We leave to you to analyze the situations for the sequences in Examples 3 and 4 above.

9.2 Uniform Convergence of Sequence of Functions

Definition 9.2A Let {fn} be a sequence of functions on E. We say that {fn} converges uniformly to
f on E if for given ε > 0, there exists N = N(ε), depending on ε only, such that

|fn(x)− f(x)| < ε for all n > N and for all x ∈ E.

If {fn} converges to f uniformly to f on E, we write

fn → f uniformly on E.

Remark. 1) Unlike the pointwise converges, in the case of uniform convergence, we note N depends
only on ε and not on x.
2) If fn → f uniformly on E, then fn → f pointwise on E. The sequence fn(x) = xn on [0, 1] discussed in
Example 1 of the previous section shows that the converse of the above statement is not true.

Example The sequence

gn(x) =
x

1 + nx
converges uniformly to 0 on [0,∞). It is a good exercise to show whether the sequences of Examples 3 and 4
of the previous section are uniformly convergent or not.

The following corollary is a restatement of the definition of uniform converges. It is useful to show that a
sequence is not uniformly convergent.

Corollary 9.2B The sequence {fn} does not converge uniformly to f on E if and only if there exists an
ε > 0 such that there is no N > 0 for which

|fn(x)− f(x)|, ε for all n > N for all x ∈ E

holds.



Remark 1) If fn → f uniformly on E and ε > 0, then there exists N > 0 such that for all n > N , the
entire graph of y = fn(x) lies between the graphs of y = f(x) − ε and y = f(x) + ε.

2) If fn → 0 uniformly on E and ε > 0, then there exists N > 0 such that for all n > N and all x ∈ E,
|fn(x)| < ε. This implies that for all n > N ,

sup
x∈E

|fn(x)| ≤ ε and hence lim
n→∞

sup
x∈E

|fn(x)| ≤ ε.

Since ε > 0 is an arbitrary positive number, we conclude that

If fn → 0 uniformly on E, then lim
n→∞

sup
x∈E

|fn(x)| = 0.

The converse is also true and the proof is an exercise.

Example For the sequence

hn(x) =
nx

1 + n2x2

we have

sup
x∈[0,∞)

|hn(x)| ≥ hn

(
1

n

)
=

1

2
and hence lim

n→∞
sup

x∈[0,∞)
|hn(x)| 6= 0.

Thus {hn} does not converge uniformly to 0 on [0,∞).

Theorem 9.2E

fn → f uniformly on E if and only if lim
n→∞

sup
x∈E

|fn(x)− f(x)| = 0.

Theorem 9.2F (Cauchy Criterion for Uniform Convergence) A sequence {fn} converges uniformly
on E if and only if for a given ε > 0, there exists N > 0 such that for all n ≥ m > N and for all x ∈ E,

|fn(x)− fm(x)| < ε.

Theorem 9.2G If {fn} is a sequence of continuous functions on a bounded and closed interval [a, b] and
{fn} converges pointwise to a continuous function f on [a, b], then fn → f uniformly on [a, b].

9.3 Consequences of Uniform Convergence

Theorem 9.3A If fn → f uniformly on [a, b], if fn are continuous at c ∈ [a, b], then f is continuous at c.

Corollary 9.3B If fn → f uniformly on [a, b], if fn are continuous on [a, b], then f is continuous on [a, b].

Remark Does fn ∈ R[a, b] and f → f pointwise on [a, b] imply that f ∈ R[a, b]? The answer is no. For
example, let

A = {r1, r2, r3, · · ·}
be the set of all rational numbers in [0, 1], and let

An = {r1, r2, · · · , rn}.
Let χn be the characteristic function of An and χ be the characteristic of A. Since χn is discontinuous only at
a finite number of points (where ?), we see that χn ∈ R[a, b]. On the other hand, χ is not continuouos at any
point in [0, 1] and hence χ 6∈ R[a, b]. Clearly χn → χ on [0, 1] pointwise.



Theorem 9.3E If fn ∈ R[a, b] and if fn → f uniformly on [a, b], then f ∈ R[a, b].

Remark In Theorems 9.3A and 9.3E, uniform convergence is sufficient. The sequence hn(x) = nx
1+n2x2

for x ∈ [0,∞), converges to the continuous function h(x) = 0. Recall that the converges is not uniform. The
sequence fn(x) = xn on [0, 1] can be used to show that uniform convergence is not necessary for theorem 9.3E
(explain).

Remark When does fn → f imply
∫ b
a f →

∫ b
a f? To answer this question, we consider the following

example. Let

fn(x) =





2n if 1
n
≤ x ≤ 2

n

0 otherwise

Then ∫ 1

0
fn(x) dx =

∫ 2
n

1
n

2ndx = 2n
(

2

n
− 1

n

)
= 2 and hence lim

n→∞

∫ 1

0
fn(x) dx = 2.

On the other hand, for fixed x ∈ [0, 1], we can choose an N so that x > 2/N and hence fn(x) = 0 for all n ≥ N .
Therefore

fn → 0 pointwise and hence
∫ 1

0
lim

n→∞
fn(x) dx = 0.

Theorem 9.3G If fn ∈ R[a, b] and if fn → f uniformly on [a, b], then
∫ b

a
f →

∫ b

a
f.

Remark Let fn(x) = xn

n
on [0, 1] and let f(x) = 0. Then fn → f uniformly but f ′

n(1) = 1 while f ′(1) = 0.
Thus

lim
n→∞

f ′
n(x) = f ′(x)

does not hold at x = 1.

Theorem 9.3I If f ′
n(x) exists for each n and each x ∈ [a, b], if f ′

n is continuous on [a, b], if {fn} convegres
uniformly to f on [a, b], and if {f ′

n} convegres uniformly to g on [a, b], then g = f ′.

9.4 Convergence and Uniform Convergence of Series of Functions

Definiton 9.4A Let {un} be a sequence of functions and let sn(x) =
∑n

k=1 uk(x) be the nth partial sum
of the infintie series

∑∞
k=1 uk(x). We say

∑∞
k=1 uk converges pointwise to f on E if sn → f pointwise on E. In

this case we write
∞∑

k=1

uk = f pointwise on E

Example Let uk = xk, −1 < x < 1 and let f(x) x
1−x

. Then

∞∑

k=1

uk = f pointwise on (−1, 1).

Definiton 9.4B We say that
∑∞

k=1 uk converges to f uniformly on E if sn → f uniformly on E. We write
∞∑

k=1

uk = f uniformly on E



Theorem 9.4C If
∑∞

k=1 uk = f uniformly on E, and if {uk} is continuous on E, then f is continuous on E.

Exnaple Let

un(x) = x(1 − xn), (0 ≤ x ≤ 1, n = 0, 1, 2, · · ·), and let f(x) =

{
1, if 0 < x ≤ 1
0, if x = 0.

Then
∑

un = f pointwise on [0, 1].(Verify this) Clearly f is not continuous at x = 0 while un is continuous
for each n.

Theorem 9.4E (Weierstrass M-Test) If {uk} is a sequence of continuous functions such that |uk(x)| ≤
Mk for all x ∈ E and if

∑
Mk is convergent, then

∞∑

k=1

uk = f uniformly on E

Notation if {ak} and {bk} are two sequences, and if ak ≤ bk, we write
∞∑

k=1

ak <<
∞∑

k=1

bk

Thus Weierstrass’ Theorem states that

if
∞∑

k=1

uk <<
∞∑

k=1

Mk < ∞, then, for some functionf,
∞∑

k=1

uk = f uniformly on E

Example Since
∞∑

n=1

sin(nx)

n2
<<

∞∑

n=1

1

n2
< ∞,

Weierstrass’Theorem implies that
∞∑

n=1

sin(nx)

n2

converges uniformly on R.

Theorem 9.4F If the power series
∑∞

k=0 akx
k converges for x = x0 (with x0 6= 0), then the power series

converges uniformly on [−x1, x1] for any x1 ∈ [0, |x0|].

Theorem 9.4G Let {uk} is a sequence of continouous nonnegative functions on [a, b] and if
∑∞

k=0 uk

convgres pointwise to a continuous function f on [a, b], then
∞∑

k=1

uk = f uniformly on [a, b].



9.5 Integration and Differentiation of Series of Functions

Theorem 9.5A Let {uk} be sequence of fucntions in R[a, b]. and suppose
∑∞

k=1 uk = f uniformly on
[a, b]. Then f ∈ R[a, b] and

∫ b

a
f(x) dx =

∫ b

a

( ∞∑

k=1

uk(x)

)
dx =

∞∑

k=1

(∫ b

a
uk(x) dx

)

Theorem 9.5B If {uk} is differentiable on [a, b], if {u′
k} is continuous on [a, b], if

∑
uk = f uniformly,

and if
∑

u′
k converges uniformly on [a, b], then

∞∑

k=1

u′
k(x) = f ′(x)

Example 1)

1 − x + x2 − x3 + · · · =
1

1 + x
uniformly on (0, 1)

implies that for any y ∈ (0, 1),
∫ y

0
1dx −

∫ y

0
xdx +

∫ y

0
x2dx −

∫ y

0
x3dx + · · · =

∫ y

0

1

1 + x
dx

from which we conclude that

y − y2

2
+

y3

3
− y4

4
+ · · · = log(1 + y).

2)

1 + x + x2 + x3 + · · · =
1

1 − x
uniformly on (0, 1)

implies that for all x ∈ (−1, 1),

1 + 2x + 3x2 + 4x3 + · · · =
1

(1 − x)2
.

Theorem 9.5C If the power series
∑∞

k=0 akx
k convegres to f(x) on [−b, b] for some b > 0, then for any

x ∈ [−b, b],

f ′(x) =
∞∑

k=1

kakx
k−1.

Corollary 9.5D

If f(x) =
∞∑

k=0

akx
k, then f (n)(x) =

∞∑

k=n

k(k − 1)(k − 2) · · · (k − n + 1)akx
k−n.

Example (A Continuous Nowhere Differentiable Function)

Let f0(x) = the distance from x to the nearest integer. (Thus f0(0.45) = 0.45 and f0(3.67) = 0.33)
Define fk(x) = fk(10

kx) and

F (x) =
∞∑

k=0

fk(x)

10k
.

Then F is continouos everywhere and differentiable nowhere.

Example Another example of everywhere continuous and nowhere differentiable function is due to
Weierstrass and is given by

G(x) =
∞∑

k=0

cos (3nx)

2n
.


