Real Analysis II

Chapter 9 Sequences and Series of Functions

9.1 Pointwise Convergence of Sequence of Functions

Definition 9.1 A Let $\left\{f_{n}\right\}$ be a sequence of functions defined on a set of real numbers E. We say that $\left\{f_{n}\right\}$ converges pointwise to a function f on E for each $x \in E$, the sequence of real numbers $\left\{f_{n}(x)\right\}$ converges to the number $f(x)$. In other words, for each $x \in E$, we have

$$
\lim _{x \rightarrow \infty} f_{n}(x)=f(x)
$$

Example 1) Let

$$
f_{n}(x)=x^{n}, \quad x \in[0,1]
$$

and let

$$
f(x)= \begin{cases}0 & \text { if } 0 \leq x<1 \\ 1 & \text { if } x=1\end{cases}
$$

Then $\left\{f_{n}\right\}$ converges to f pointwise on $[0,1]$.
2) Let

$$
g_{n}(x)=\frac{x}{1+n x}, \quad x \in[0, \infty]
$$

Then $\left\{g_{n}\right\}$ converges to $g(x)=0$ pointwise on $[0, \infty]$.
3) Let

$$
h_{n}(x)=\frac{n x}{1+n^{2} x^{2}}, \quad x \in[0, \infty]
$$

Then $\left\{h_{n}\right\}$ converges to $h(x)=0$ pointwise on $[0, \infty]$.
4) Let

$$
\chi_{n}(x)= \begin{cases}1 & \text { if } x \in[-n, n] \\ 0 & \text { otherwise }\end{cases}
$$

Then $\left\{\chi_{n}\right\}$ converges to $\chi(x)=1$ pointwise on $[-\infty, \infty]$.
Remark. Suppose $\left\{f_{n}\right\}$ converges pointwise to f on E. Then given $\epsilon>0$, and given $x \in E$, there exists $N=N(x, \epsilon) \in \mathbf{I}$, such that

$$
\left|f_{n}(x)-f(x)\right|<\epsilon, \quad \text { for all } n \geq N
$$

In general N depends on ϵ as well as x.
For example, consider the sequence of Example 1 above: $f(x)=x^{n}$ and $f(x)=0,(0 \leq x<1)$ and $f(1)=1$. If $\epsilon=1 / 2$, then, for each $x \in[0,1]$, there exists N such that

$$
\begin{equation*}
\left|f_{n}(x)-f(x)\right| \leq \frac{1}{2} . \quad \text { for all } \quad(n \geq N) \tag{*}
\end{equation*}
$$

For $x=0$ or $x=1$, then $(*)$ holds with $N=1$. For $x=3 / 4=0.75,(*)$ holds with $N=3$ and for $x=0.9$ we need $N=7$.

We claim that there is no N for which $(*)$ hold for all $x \in[0,1]$. For if there is such an N, then for all $x \in[0,1),\left({ }^{*}\right)$ implies

$$
x^{n}<\frac{1}{2} .
$$

In particular we would have

$$
x^{N}<\frac{1}{2}
$$

for all $x \in[0,1)$. Taking limit as $x \rightarrow 1^{-}$we would have $1 \leq 1 / 2$, which is a contradiction.
If g_{n} is as given in Example 2 above :

$$
g_{n}(x)=\frac{x}{1+n x},
$$

then we have

$$
g_{n}(x) \leq \frac{1}{n}
$$

for all $x \in[0, \infty)$ and hence for a given $\epsilon>0$, any N with $N>1 / \epsilon$ will imply that

$$
\left|g_{n}(x)-0\right|<\epsilon \quad \text { for all } n>N \quad \text { and for all } \quad x \in[0, \infty)
$$

We leave to you to analyze the situations for the sequences in Examples 3 and 4 above.

9.2 Uniform Convergence of Sequence of Functions

Definition 9.2A Let $\left\{f_{n}\right\}$ be a sequence of functions on E. We say that $\left\{f_{n}\right\}$ converges uniformly to f on E if for given $\epsilon>0$, there exists $N=N(\epsilon)$, depending on ϵ only, such that

$$
\left|f_{n}(x)-f(x)\right|<\epsilon \quad \text { for all } n>N \quad \text { and for all } \quad x \in E
$$

If $\left\{f_{n}\right\}$ converges to f uniformly to f on E, we write

$$
f_{n} \rightarrow f \text { uniformly on } E .
$$

Remark. 1) Unlike the pointwise converges, in the case of uniform convergence, we note N depends only on ϵ and not on x.
2) If $f_{n} \rightarrow f$ uniformly on E, then $f_{n} \rightarrow f$ pointwise on E. The sequence $f_{n}(x)=x^{n}$ on $[0,1]$ discussed in Example 1 of the previous section shows that the converse of the above statement is not true.

Example The sequence

$$
g_{n}(x)=\frac{x}{1+n x}
$$

converges uniformly to 0 on $[0, \infty)$. It is a good exercise to show whether the sequences of Examples 3 and 4 of the previous section are uniformly convergent or not.

The following corollary is a restatement of the definition of uniform converges. It is useful to show that a sequence is not uniformly convergent.

Corollary 9.2B The sequence $\left\{f_{n}\right\}$ does not converge uniformly to f on E if and only if there exists an $\epsilon>0$ such that there is no $N>0$ for which

$$
\left|f_{n}(x)-f(x)\right|, \epsilon \quad \text { for all } n>N \text { for all } x \in E
$$

holds.

Remark 1) If $f_{n} \rightarrow f$ uniformly on E and $\epsilon>0$, then there exists $N>0$ such that for all $n>N$, the entire graph of $y=f_{n}(x)$ lies between the graphs of $y=f(x)-\epsilon$ and $y=f(x)+\epsilon$.
2) If $f_{n} \rightarrow 0$ uniformly on E and $\epsilon>0$, then there exists $N>0$ such that for all $n>N$ and all $x \in E$, $\left|f_{n}(x)\right|<\epsilon$. This implies that for all $n>N$,

$$
\sup _{x \in E}\left|f_{n}(x)\right| \leq \epsilon \quad \text { and hence } \quad \lim _{n \rightarrow \infty} \sup _{x \in E}\left|f_{n}(x)\right| \leq \epsilon
$$

Since $\epsilon>0$ is an arbitrary positive number, we conclude that

$$
\text { If } f_{n} \rightarrow 0 \text { uniformly on } E \text {, then } \lim _{n \rightarrow \infty} \sup _{x \in E}\left|f_{n}(x)\right|=0 \text {. }
$$

The converse is also true and the proof is an exercise.
Example For the sequence

$$
h_{n}(x)=\frac{n x}{1+n^{2} x^{2}}
$$

we have

$$
\sup _{x \in[0, \infty)}\left|h_{n}(x)\right| \geq h_{n}\left(\frac{1}{n}\right)=\frac{1}{2} \quad \text { and hence } \quad \lim _{n \rightarrow \infty} \sup _{x \in[0, \infty)}\left|h_{n}(x)\right| \neq 0
$$

Thus $\left\{h_{n}\right\}$ does not converge uniformly to 0 on $[0, \infty)$.

Theorem 9.2E

$$
f_{n} \rightarrow f \quad \text { uniformly on } E \text { if and only if } \lim _{n \rightarrow \infty} \sup _{x \in E}\left|f_{n}(x)-f(x)\right|=0 \text {. }
$$

Theorem 9.2F (Cauchy Criterion for Uniform Convergence) A sequence $\left\{f_{n}\right\}$ converges uniformly on E if and only if for a given $\epsilon>0$, there exists $N>0$ such that for all $n \geq m>N$ and for all $x \in E$,

$$
\left|f_{n}(x)-f_{m}(x)\right|<\epsilon
$$

Theorem 9.2G If $\left\{f_{n}\right\}$ is a sequence of continuous functions on a bounded and closed interval $[a, b]$ and $\left\{f_{n}\right\}$ converges pointwise to a continuous function f on $[a, b]$, then $f_{n} \rightarrow f$ uniformly on $[a, b]$.

9.3 Consequences of Uniform Convergence

Theorem 9.3A If $f_{n} \rightarrow f$ uniformly on $[a, b]$, if f_{n} are continuous at $c \in[a, b]$, then f is continuous at c.
Corollary 9.3B If $f_{n} \rightarrow f$ uniformly on $[a, b]$, if f_{n} are continuous on $[a, b]$, then f is continuous on $[a, b]$.
Remark Does $f_{n} \in \mathcal{R}[a, b]$ and $f \rightarrow f$ pointwise on $[a, b]$ imply that $f \in \mathcal{R}[a, b]$? The answer is no. For example, let

$$
A=\left\{r_{1}, r_{2}, r_{3}, \cdots\right\}
$$

be the set of all rational numbers in $[0,1]$, and let

$$
A_{n}=\left\{r_{1}, r_{2}, \cdots, r_{n}\right\} .
$$

Let χ_{n} be the characteristic function of A_{n} and χ be the characteristic of A. Since χ_{n} is discontinuous only at a finite number of points (where ?), we see that $\chi_{n} \in \mathcal{R}[a, b]$. On the other hand, χ is not continuouos at any point in $[0,1]$ and hence $\chi \notin \mathcal{R}[a, b]$. Clearly $\chi_{n} \rightarrow \chi$ on [0,1] pointwise.

Theorem 9.3E If $f_{n} \in \mathcal{R}[a, b]$ and if $f_{n} \rightarrow f$ uniformly on $[a, b]$, then $f \in \mathcal{R}[a, b]$.
Remark In Theorems 9.3A and 9.3E, uniform convergence is sufficient. The sequence $h_{n}(x)=\frac{n x}{1+n^{2} x^{2}}$ for $x \in[0, \infty)$, converges to the continuous function $h(x)=0$. Recall that the converges is not uniform. The sequence $f_{n}(x)=x^{n}$ on $[0,1]$ can be used to show that uniform convergence is not necessary for theorem 9.3E (explain).

Remark When does $f_{n} \rightarrow f$ imply $\int_{a}^{b} f \rightarrow \int_{a}^{b} f$? To answer this question, we consider the following example. Let

$$
f_{n}(x)= \begin{cases}2 n & \text { if } \frac{1}{n} \leq x \leq \frac{2}{n} \\ 0 & \text { otherwise }\end{cases}
$$

Then

$$
\int_{0}^{1} f_{n}(x) d x=\int_{\frac{1}{n}}^{\frac{2}{n}} 2 n d x=2 n\left(\frac{2}{n}-\frac{1}{n}\right)=2 \quad \text { and hence } \quad \lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) d x=2
$$

On the other hand, for fixed $x \in[0,1]$, we can choose an N so that $x>2 / N$ and hence $f_{n}(x)=0$ for all $n \geq N$. Therefore

$$
f_{n} \rightarrow 0 \text { pointwise and hence } \int_{0}^{1} \lim _{n \rightarrow \infty} f_{n}(x) d x=0
$$

Theorem 9.3G If $f_{n} \in \mathcal{R}[a, b]$ and if $f_{n} \rightarrow f$ uniformly on $[a, b]$, then

$$
\int_{a}^{b} f \rightarrow \int_{a}^{b} f
$$

Remark Let $f_{n}(x)=\frac{x^{n}}{n}$ on $[0,1]$ and let $f(x)=0$. Then $f_{n} \rightarrow f$ uniformly but $f_{n}^{\prime}(1)=1$ while $f^{\prime}(1)=0$. Thus

$$
\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)=f^{\prime}(x)
$$

does not hold at $x=1$.
Theorem 9.3I If $f_{n}^{\prime}(x)$ exists for each n and each $x \in[a, b]$, if f_{n}^{\prime} is continuous on $[a, b]$, if $\left\{f_{n}\right\}$ convegres uniformly to f on $[a, b]$, and if $\left\{f_{n}^{\prime}\right\}$ convegres uniformly to g on $[a, b]$, then $g=f^{\prime}$.

9.4 Convergence and Uniform Convergence of Series of Functions

Definiton 9.4A Let $\left\{u_{n}\right\}$ be a sequence of functions and let $s_{n}(x)=\sum_{k=1}^{n} u_{k}(x)$ be the nth partial sum of the infintie series $\sum_{k=1}^{\infty} u_{k}(x)$. We say $\sum_{k=1}^{\infty} u_{k}$ converges pointwise to f on E if $s_{n} \rightarrow f$ pointwise on E. In this case we write

$$
\sum_{k=1}^{\infty} u_{k}=f \text { pointwise on } E
$$

Example Let $u_{k}=x^{k},-1<x<1$ and let $f(x) \frac{x}{1-x}$. Then

$$
\sum_{k=1}^{\infty} u_{k}=f \text { pointwise on }(-1,1)
$$

Definiton 9.4B We say that $\sum_{k=1}^{\infty} u_{k}$ converges to f uniformly on E if $s_{n} \rightarrow f$ uniformly on E. We write

$$
\sum_{k=1}^{\infty} u_{k}=f \quad \text { uniformly on } E
$$

Theorem 9.4C If $\sum_{k=1}^{\infty} u_{k}=f$ uniformly on E, and if $\left\{u_{k}\right\}$ is continuous on E, then f is continuous on E.
Exnaple Let

$$
u_{n}(x)=x\left(1-x^{n}\right), \quad(0 \leq x \leq 1, \quad n=0,1,2, \cdots), \quad \text { and let } \quad f(x)= \begin{cases}1, & \text { if } 0<x \leq 1 \\ 0, & \text { if } x=0\end{cases}
$$

Then $\sum u_{n}=f$ pointwise on $[0,1]$.(Verify this) Clearly f is not continuous at $x=0$ while u_{n} is continuous for each n.

Theorem 9.4E (Weierstrass M-Test) If $\left\{u_{k}\right\}$ is a sequence of continuous functions such that $\left|u_{k}(x)\right| \leq$ M_{k} for all $x \in E$ and if $\sum M_{k}$ is convergent, then

$$
\sum_{k=1}^{\infty} u_{k}=f \quad \text { uniformly on } E
$$

Notation if $\left\{a_{k}\right\}$ and $\left\{b_{k}\right\}$ are two sequences, and if $a_{k} \leq b_{k}$, we write

$$
\sum_{k=1}^{\infty} a_{k} \ll \sum_{k=1}^{\infty} b_{k}
$$

Thus Weierstrass' Theorem states that

$$
\text { if } \sum_{k=1}^{\infty} u_{k} \ll \sum_{k=1}^{\infty} M_{k}<\infty, \quad \text { then, for some function } f, \quad \sum_{k=1}^{\infty} u_{k}=f \text { uniformly on } E
$$

Example Since

$$
\sum_{n=1}^{\infty} \frac{\sin (n x)}{n^{2}} \ll \sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty
$$

Weierstrass'Theorem implies that

$$
\sum_{n=1}^{\infty} \frac{\sin (n x)}{n^{2}}
$$

converges uniformly on \mathbf{R}.
Theorem 9.4F If the power series $\sum_{k=0}^{\infty} a_{k} x^{k}$ converges for $x=x_{0}$ (with $x_{0} \neq 0$), then the power series converges uniformly on $\left[-x_{1}, x_{1}\right]$ for any $x_{1} \in\left[0,\left|x_{0}\right|\right]$.

Theorem 9.4G Let $\left\{u_{k}\right\}$ is a sequence of continouous nonnegative functions on $[a, b]$ and if $\sum_{k=0}^{\infty} u_{k}$ convgres pointwise to a continuous function f on $[a, b]$, then

$$
\sum_{k=1}^{\infty} u_{k}=f \quad \text { uniformly on }[a, b] .
$$

9.5 Integration and Differentiation of Series of Functions

Theorem 9.5A Let $\left\{u_{k}\right\}$ be sequence of fucntions in $\mathcal{R}[a, b]$. and suppose $\sum_{k=1}^{\infty} u_{k}=f$ uniformly on $[a, b]$. Then $f \in \mathcal{R}[a, b]$ and

$$
\int_{a}^{b} f(x) d x=\int_{a}^{b}\left(\sum_{k=1}^{\infty} u_{k}(x)\right) d x=\sum_{k=1}^{\infty}\left(\int_{a}^{b} u_{k}(x) d x\right)
$$

Theorem 9.5B If $\left\{u_{k}\right\}$ is differentiable on $[a, b]$, if $\left\{u_{k}^{\prime}\right\}$ is continuous on $[a, b]$, if $\sum u_{k}=f$ uniformly, and if $\sum u_{k}^{\prime}$ converges uniformly on $[a, b]$, then

$$
\sum_{k=1}^{\infty} u_{k}^{\prime}(x)=f^{\prime}(x)
$$

Example 1)

$$
1-x+x^{2}-x^{3}+\cdots=\frac{1}{1+x} \quad \text { uniformly on }(0,1)
$$

implies that for any $y \in(0,1)$,

$$
\int_{0}^{y} 1 d x-\int_{0}^{y} x d x+\int_{0}^{y} x^{2} d x-\int_{0}^{y} x^{3} d x+\cdots=\int_{0}^{y} \frac{1}{1+x} d x
$$

from which we conclude that

$$
y-\frac{y^{2}}{2}+\frac{y^{3}}{3}-\frac{y^{4}}{4}+\cdots=\log (1+y)
$$

2)

$$
1+x+x^{2}+x^{3}+\cdots=\frac{1}{1-x} \quad \text { uniformly on }(0,1)
$$

implies that for all $x \in(-1,1)$,

$$
1+2 x+3 x^{2}+4 x^{3}+\cdots=\frac{1}{(1-x)^{2}}
$$

Theorem 9.5C If the power series $\sum_{k=0}^{\infty} a_{k} x^{k}$ convegres to $f(x)$ on $[-b, b]$ for some $b>0$, then for any $x \in[-b, b]$,

$$
f^{\prime}(x)=\sum_{k=1}^{\infty} k a_{k} x^{k-1}
$$

Corollary 9.5D
If $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}, \quad$ then $\quad f^{(n)}(x)=\sum_{k=n}^{\infty} k(k-1)(k-2) \cdots(k-n+1) a_{k} x^{k-n}$.

Example (A Continuous Nowhere Differentiable Function)

Let $f_{0}(x)=$ the distance from x to the nearest integer. (Thus $f_{0}(0.45)=0.45$ and $f_{0}(3.67)=0.33$)
Define $f_{k}(x)=f_{k}\left(10^{k} x\right)$ and

$$
F(x)=\sum_{k=0}^{\infty} \frac{f_{k}(x)}{10^{k}}
$$

Then F is continouos everywhere and differentiable nowhere.
Example Another example of everywhere continuous and nowhere differentiable function is due to Weierstrass and is given by

$$
G(x)=\sum_{k=0}^{\infty} \frac{\cos \left(3^{n} x\right)}{2^{n}}
$$

