Real Analysis I1
Chapter 9 Sequences and Series of Functions

9.1 Pointwise Convergence of Sequence of Functions

Definition 9.1 A Let {f,,} be a sequence of functions defined on a set of real numbers £. We say that
{f.} converges pointwise to a function f on E for each z € FE, the sequence of real numbers {f,(x)}
converges to the number f(z). In other words, for each = € E' | we have

lim fu() = f(a).
Example 1) Let
folz)=2", xe€]0,1]

and let
0 fo<z<1

f(f”):{ 1 ifz=1.
Then {f,} converges to f pointwise on [0, 1].

2) Let

gn(x) = 1 nt, x € [0, 00]
Then {g,} converges to g(x) = 0 pointwise on [0, co].
3) Let

ha(z) = % z € [0, o]

Then {h,} converges to h(z) = 0 pointwise on [0, c0].

4) Let

o(z) = { 1 ifxe|—-n,n]

0 otherwise.

Then {x,} converges to x(x) =1 pointwise on [—o0, 00].

Remark. Suppose {f,} converges pointwise to f on E. Then given € > 0, and given x € E, there exists
N = N(z,¢€) € I, such that
|fu(z) — f(2)] <, for all n > N.

In general N depends on € as well as x.

For example, consider the sequence of Example 1 above: fiz) = 2™ and f(z) =0, (0 <z < 1)and f(1) = 1.
If e = 1/2, then, for each x € [0, 1], there exists N such that

) — f(@)] < % for all (n > N) (%)

For z =0 or z =1, then (x) holds with N = 1. For x = 3/4 = 0.75, (%) holds with N =3 and for = 0.9
we need N = 7.



We claim that there is no N for which (x) hold for all z € [0,1]. For if there is such an N, then for all
x €1[0,1), (*) implies

" <

N | —

In particular we would have

1
N
< —
N
for all z € [0,1). Taking limit as z — 1~ we would have 1 < 1/2, which is a contradiction

If g, is as given in Example 2 above :

x
then we have
1
for all z € [0, 00) and hence for a given € > 0, any N with N > 1/e will imply that

lgn(z) — 0] <€ for all n > N and for all z € [0, 00).

We leave to you to analyze the situations for the sequences in Examples 3 and 4 above

9.2  Uniform Convergence of Sequence of Functions

Definition 9.2A Let {f,} be a sequence of functions on E. We say that {f,} converges uniformly to
f on E if for given € > 0, there exists N = N(¢), depending on € only, such that

|fn(x) — f(z)] <€ forall n > N and forall =€ F.
If {f.} converges to f uniformly to f on E, we write

fn — f uniformly on FE.
Remark. 1)

Unlike the pointwise converges, in the case of uniform convergence, we note N depends
only on € and not on x.
2) If f, — f uniformly on E, then f, — f pointwise on E. The sequence f,(z) = 2™ on [0, 1] discussed in
Example 1 of the previous section shows that the converse of the above statement is not true.
Example The sequence

T

:1+na:

converges uniformly to 0 on [0,00). It is a good exercise to show whether the sequences of Examples 3 and 4
of the previous section are uniformly convergent or not.

9n ()

The following corollary is a restatement of the definition of uniform converges. It is useful to show that a
sequence is not uniformly convergent.

Corollary 9.2B The sequence { f,,} does not converge uniformly to f on F if and only if there exists an
€ > 0 such that there is no N > 0 for which

|fn(x) — f(z)],e forall n> N forallx € E
holds.



Remark 1) If f,, — f uniformly on E and € > 0, then there exists N > 0 such that for all n > N, the
entire graph of y = f,(z) lies between the graphs of y = f(z) — e and y = f(x) + €.

2) If f, — 0 uniformly on F and € > 0, then there exists N > 0 such that for all » > N and all z € E,
| fu(z)| < e. This implies that for all n > N,

sup |fu(x)| <€ and hence lim sup | fn(z)| <e.
z€E N0 2eE

Since € > 0 is an arbitrary positive number, we conclude that

If f,, — 0 uniformly on £, then lim sup |f,(z)| = 0.
TR aeE

The converse is also true and the proof is an exercise.

Example For the sequence

n
hp(z) = ———
(z) 1 + n2z?
we have ) )
sup |hn(z)] > hy, (—) = and hence lim sup |h,(z)| # 0.
2€[0,00) n/ 2 00 2600,00)

Thus {h,} does not converge uniformly to 0 on [0, c0).

Theorem 9.2E
fn — f uniformly on E if and only if lim sup|f,(z) — f(x)| = 0.
o0 R
Theorem 9.2F (Cauchy Criterion for Uniform Convergence) A sequence { f,} converges uniformly

on FE if and only if for a given € > 0, there exists N > 0 such that for all n > m > N and for all x € F,

(@) = f(z)] <e.

Theorem 9.2G If {f,} is a sequence of continuous functions on a bounded and closed interval [a, b] and
{fn} converges pointwise to a continuous function f on [a,b], then f,, — f uniformly on [a, b].

9.3 Consequences of Uniform Convergence

Theorem 9.3A If f, — f uniformly on [a, b], if f,, are continuous at ¢ € [a, b], then f is continuous at c.
Corollary 9.3B If f, — f uniformly on [a, b], if f,, are continuous on [a, b], then f is continuous on [a, b].

Remark Does f, € Rla,b] and f — f pointwise on [a,b] imply that f € R[a,b]? The answer is no. For
example, let

A={ry, ry, 13, -}
be the set of all rational numbers in [0, 1], and let

An = {Th T2, =y ’f’n}.

Let x, be the characteristic function of A, and x be the characteristic of A. Since Y, is discontinuous only at
a finite number of points (where ?7), we see that x,, € Rla,b]. On the other hand, y is not continuouos at any
point in [0, 1] and hence x & R[a, b]. Clearly x, — x on [0, 1] pointwise.



Theorem 9.3E If f, € R[a,b] and if f,, — f uniformly on [a, b], then f € R|a,b].

Remark In Theorems 9.3A and 9.3E, uniform convergence is sufficient. The sequence h,(r) = 5
for z € [0, 00), converges to the continuous function h(z) = 0. Recall that the converges is not uniform. The
sequence f,(x) = 2™ on [0, 1] can be used to show that uniform convergence is not necessary for theorem 9.3E
(explain).

Remark When does f, — f imply f; f— f; f? To answer this question, we consider the following
example. Let

2n ift<ax<?2
fulx) =
0  otherwise
Then
1 o 2 1 1
/ folz)dx = / 2ndx = 2n (— — —) =2 and hence  lim / fo(z)dz = 2.
0 1 n n n—oo Jq

On the other hand, for fixed z € [0, 1], we can choose an N so that © > 2/N and hence f,(z) = 0 for alln > N.
Therefore

1
fn — 0 pointwise and hence / lim f,(z)dz =0.
0 n—oo
Theorem 9.3G If f, € Rla,b] and if f,, — f uniformly on [a, ], then

b b
=1
Remark Let f,(z) = £ on [0,1] and let f(z) = 0. Then f, — f uniformly but f/(1) = 1 while f'(1) = 0.
Thus
Jim f1(2) = £'(2)

does not hold at x = 1.

Theorem 9.3I If f/(z) exists for each n and each = € [a, b], if f! is continuous on [a, b], if {f,} convegres
uniformly to f on [a,b], and if {f]} convegres uniformly to g on [a, b], then g = f'.

9.4 Convergence and Uniform Convergence of Series of Functions

Definiton 9.4A Let {u,} be a sequence of functions and let s, (x) = >}_; ug(z) be the nth partial sum
of the infintie series Y22, ur(x). We say Y32, up converges pointwise to f on E if s, — f pointwise on F. In
this case we write

Z ur = f pointwise on F
k=1

Example Let uy = 2%, =1 <2 <1 and let f(z);Z. Then
> u, = f pointwise on (—1,1).
k=1
Definiton 9.4B We say that > 72, u converges to f uniformly on E if s,, — f uniformly on E. We write

Z ur = f uniformly on FE
k=1



Theorem 9.4C If > 72, u, = f uniformly on F, and if {uy} is continuous on E, then f is continuous on E.

Exnaple Let

1, if0<zx<1
= — " < r< = A — ’ =
up(z)=2(l—2"), (0<z<1, n=0,1,2,--), andlet f(z) { 0. ifz=0.
Then > u,, = f pointwise on [0, 1].(Verify this) Clearly f is not continuous at x = 0 while u,, is continuous

for each n.

Theorem 9.4E (Weierstrass M-Test) If {u;} is a sequence of continuous functions such that |ug(z)| <
M, for all x € F and if >~ M}, is convergent, then

Z ur = f uniformly on F
k=1
Notation if {ax} and {b;} are two sequences, and if a;, < by, we write
Z ap << Z bk
k=1 k=1

Thus Weierstrass’ Theorem states that

if Z U << Z M), < 0o, then, for some functionf, Z ur = f uniformly on £
k=1 k=1 k=1

Example Since

> sin(nzx 1
Z (2 ) << Z 3 < 0%
n=1 n n=1 n

Weierstrass’Theorem implies that

i sin(nz)
n=1 77,2

converges uniformly on R.

Theorem 9.4F If the power series 372, axx® converges for z = z¢ (with zg # 0), then the power series
converges uniformly on [—xz1, x;] for any =1 € [0, |xo]].

Theorem 9.4G Let {ux} is a sequence of continouous nonnegative functions on [a,b] and if Y272 us
convgres pointwise to a continuous function f on [a, b], then

> ur = f uniformly on [a,b].
k=1



Integration and Differentiation of Series of Functions

9.5
and suppose Y 72, ur = f uniformly on

Theorem 9.5A  Let {u;} be sequence of fucntions in R]a, b].

[, ). Then f € Rfa,b] and
/abf( da:—/a (Zuk )dif—i</abuk(x)dx>

k=1
Theorem 9.5B If {uy} is differentiable on [a, b], if {u}} is continuous on |[a, b, if Y ux, = f uniformly,

and if Y uj, converges uniformly on [a, b], then

> ) = S

Example 1)
l—z+a?>—23 + .- = uniformly on (0, 1)
1+z
implies that for any y € (0, 1),
[de = [Tedo s [atde - [Tatar 4 /yld
- x = x
’ v o 1+
from which we conclude that
vy oy loo(1
ST og(1 +y).
2)
l+z+2°+2° + -+ = - uniformly on (0, 1)
—x
implies that for all x € (—1,1),
1

2 3
If the power series Y32, axz® convegres to f(x) on [—b,b] for some b > 0, then for any

o0
"(z) = Z kapxF1.
k=1

Theorem 9.5C
€ [—b, b,

Corollary 9.5D
If f(z Zakz then f("

Example (A Contlnuous Nowhere Differentlable Function)

Zk‘ —2)---(k—n+ Dagz™™.

Let fo(z) = the distance from z to the nearest integer. (Thus f;(0.45) = 0.45 and f((3.67) = 0.33)

Define fi.(z) = fix(10*x) and

k=0

Then F' is continouos everywhere and differentiable nowhere.

Example  Another example of everywhere continuous and nowhere differentiable function is due to
Weierstrass and is given by

>, cos ( 3"
=)~

k=0



