
Real Analysis I: Hints for Problems of Chapter 3

Section 3.1

3. Assume that f(x) is continuous. We want to show that |f(x)| is also continuous. Let {xn} be a sequence
that converges to x. Then by definition of continuity, {f(xn)} converges to f(x). But then {|f(xn)|} converges
to |f(x)|. Hence |f(x)| is continuous.

4. Let f(x) = ln(sinx). Then x ∈ Dom(f) if and only if sinx > 0 if and only if x ∈ [2nπ, (2n + 1)π] where
n = 0, 1, 2, · · · .

5. Suppose f is continuous and f(x) = 0 for x ∈ Q. We want to show f(x) = 0 for all x. Let x ∈ R.
If x is a rational number, then f(x) = 0 by assumption. If x is not a rational number, then for each n ∈ N,
we can choose a rational number xn between x and x + 1/n. (Draw a number line to show this.) But then
|xn −x| < 1/n and hence {xn} converges to x. By continuity of f we conclude that {f(xn)} converges to f(x),
that is, limn→∞ f(xn) = f(x). Since f(xn) = 0 for all n, we see that the limit is also 0. Thus f(x) = 0.

6. If f is defined only on integers and a is an integer, then there is no sequence {xn} of integers converging
to a for which {f(xn)} does not converge to f(a). (In other words there is no sequence for which the definition
of continuity fails)
7. Let f(x) = 3x − 1. Then |(fx) − 2| ≤ ε if and only if |3x − 1 − 2| ≤ ε if and only if |3x − 3| ≤ ε if and
only if |x− 1| ≤ ε/3. Thus we can choose δ ≤ ε/3.

8. Let f(x) = x2.

a) |x2 − 1| ≤ ε iff |x + 1||x − 1| ≤ ε. If we choose x so that |x − 1| ≤ 1, then x is between 0 and 2 and
hence x + 1 is between 1 and 3. Thus, for this choice of x, we have |x2 − 1| = |x + 1||x − 1| ≤ 3|x − 1|. To
make |x2 − 1| ≤ ε, all we need to do is make 3|x − 1| ≤ ε and for this we need |x − 1| ≤ ε/3. Thus we may
choose δ = min{1, ε/3}.

b) To make |x2−4| ≤ ε, we note that |x2−4| = |x+2||x−2|. As in (a) above, choose x so that |x−2| ≤ 1.
(Draw a number line for all such x.) Then |x + 2| ≤ 5. Therefore, |x2 − 4| = |x + 2||x − 2| ≤ 5|x − 2|. If
|x − 2| ≤ ε/5, then |x2 − 4| ≤ ε. Thus we choose δ = min{1, ε/5}.

c) δ gets smaller.

9. Let f(x) = 3x3 − 2. Let ε > 0 be given. |f(x) − 1| = |3x3 − 3| ≤ ε iff 3|x3 − 1| ≤ ε. We now factor
x3−1 = (x−1)(x2+x+1) and estimate x2+x+1 assuming |x−1| ≤ 1. Note that |x−1| ≤ 1 implies 0 ≤ x ≤ 2 and
hence 0 ≤ x2 ≤ 4. Thus, if |x−1| ≤ 1, then 1 ≤ x2+x+1 ≤ 7. Now |f(x)−1| ≤ 3|x−1||x2+x+1| ≤ 3·7|x−1| ≤ ε
iff |x − 1| ≤ ε/21. We can choose δ = min{1, ε/21}.

10. Let f(x) =
√

x. Let ε > 0 be given. First let c > 0. We now assume that |x − c| ≤ c/2. (Draw a

number a line to see the interval.) Then c/2 ≤ x ≤ 3c/2 and hence
√

c/2 ≤
√

x ≤
√

3c/2. Adding
√

c to all

sides and taking the reciprocal, we get 1√
3c/2+

√
c
≤ 1√

x+
√

c
≤ 1√

c/2+
√

c
. We now use this in the hint given:

|
√

x −
√

c| =

∣∣∣∣∣
x − c√
x +

√
c

∣∣∣∣∣ ≤
|x − c|√
c/2 +

√
c
.

We can choose δ = min
{
c/2, ε

(√
c/2 +

√
c
})

(why?). For part(b), if c = 0, let δ = ε2. (Verify that this works!)



Section 3.2

1. If f(x) = x3 − 4x + 2, then f is continuous on [0, 1] and f(0) = 2 > 0 while f(1) = −1 < 0. Then by
IVT, there exists a number c ∈ [0, 1] such that f(c) = 0. Thus f(x) hasa zero in the indicated interval.

2. Let f(x) = ax3 + bx2 + cx + d be a cubic polynomial with a 6= 0. If a > 0, then limx→∞ f(x) = +∞ and
limx→−∞ f(x) = −∞. Thus there exist positive numbers M and N such that f(−M) < 0 and f(N) > 0. By
IVT, there exists a number y ∈ [−M,N ] such that f(y) = 0. What happens if a < 0?

3. Assume that f is continuous on [a, b] and f(x) > 0 for all x. We want to show that there exists
α > 0 such that f(x) > α for all x. Suppose such a number does not exist. Then for each positive integer n
(taking α = 1/n), there must be a number xn in [a, b] such that f(xn) ≤ 1/n. But then {xn} is a sequence in
[a, b] and hence it is a bounded sequence. By Bolzano-Weierstrass Theorem, it has a convergent subsequence,
{xnk

} that converges to a point x in [a, b]. (Why should x be in [a, b]? See Problems 2.1 #7) But then
limk→∞ f(xnk

) = f(x) by continuity of f . On the other hand f(xnk
) ≤ 1

nk
and hence limk→ f(xnk

) = 0. This

means that f(x) = 0, which is a contradiction. (To what?)

5. Assume f and g are continuous on [a, b] and f(x) < g(x) for all x. We want to show that there exists
α < 1 such that f(x) ≤ αg(x) for all x. Suppose such a number does not exist. Then for each positive
integer n (taking α = 1 − 1/n), there must be a number xn in [a, b] such that f(xn) ≥ (1 − 1/n)g(xn). But
then {xn} is a sequence in [a, b] and hence it is a bounded sequence. By Bolzano-Weierstrass Theorem, it has
a convergent subsequence, {xnk

} that converges to a point x in [a, b]. But then limk→∞ f(xnk
) = f(x) and

limk→∞ g(xnk
) = g(x) by continuity of f and g. On the other hand, f(xnk

) ≥ (1 − 1/nk)g(xnk
) and hence

limk→∞ f(xnk
) ≥ limk→∞(1 − 1/nk)g(xnk

). This means that f(x) ≥ g(x), which is a contradiction.

6. For (a), let f(x) = x3 − 3x + 1, a = −2, b = 2, c = 0, and d = 1. Verify that f(−2) < 0 < 1 < f(2).
Draw the graph to see that S is not one interval but rather a union of three intervals.

For (b), we note that by IVT, there are two numbers x0 and x1 in [a, b] such that f(x0) = c and f(x1) = d.
Now show that S = [x0, x1]. Here we must use the fact that the function is increasing.

7. Let f be Lipschitz continuous on S. We want to show that f is uniformly continuous on S. Let ε > 0 be
given. Since f is Lipschitz continuous on S, there exists a constant K > 0 such that |f(x) − f(c)| ≤ K|x − c|
for ALL x and ALL c. If we choose δ = ε/K, we note that for all x and all c, if |x − c| ≤ δ, then
|f(x) − f(c)| ≤ K|x − c| ≤ Kδ = ε. Therefore, f is uniformly continuous on S.

9. Let f(x) = 1/x. To show that f(x) is not uniformly continuous on (0,∞), we need to find a positive
number ε0 and two sequences xn and cn such that limn→∞ |xn − cn| = 0 but |f(xn) − f(cn)| ≥ ε0. Let ε = 1/2,
xn = 1

2n
, and cn = n

n2+1
. Then limn→∞ |xn − cn| = 0 because limn→∞ xn = 0 and limn→∞ cn = 0. On the other

hand, for n > 1, we have

|f(xn) − f(cn)| =

∣∣∣∣∣
1

1/2n
− 1

n/(n2 + 1)

∣∣∣∣∣ = 2n − n2 + 1

n
= n − 1/n ≥ 1/2.

To show that f(x) = 1/x is uniformly continuous on [µ,∞), where µ > 0, we note that if K = 1/µ2, then
for any x and any c in [µ,∞), we have x ≥ µ and c ≥ µ, and hence 1/x ≤ 1/µ and 1/c ≤ 1/µ. Thus,

|f(x) − f(c)| =
∣∣∣∣
1

x
− 1

c

∣∣∣∣ =
|x− c|

xc
≤ |x − c|

µ2
= K|x − c|.

Thus f is Lipschitz and we apply #7 above.



Section 3.3

1. Let f(x) =

{
0, if x is rational
1, if x is irrational

Let P = {x0, x1, x2, · · · xN} be any partition of [0, 1]. Then in any subinterval [xi−1, xi], we can pick a
rational number ci and an irrational number di so that Mi = f(di) = 1 and mi = f(ci) = 0. Thus for any
partition P , we have LP (f) =

∑N
i=1 mi (xi − xi−1) = 0, while

UP (f) =
N∑

i=1

Mi (xi − xi−1) =
N∑

i=1

(xi − xi−1) = (x1 −x0) + (x2 − x1) + · · ·+(xN −xN−1) = xN −x0 = 1− 0 = 1

. f is not Riemann integrable since inf{UP (f)} = 1 while sup{LP (f)} = 0.

2. Let f(x) =

{
1, if x 6= 1

2

2, if x = 1
2

Let ε > 0 be given. Let P = {x0, x1, x2, · · · xN} be any partition of [0, 1] such that the length of the largest
sub interval is less than ε. (It is a matter of choosing N so large that ε > 1/N .) Suppose 1/2 is in the jth
subinterval [xj−1, xj]. On this subinterval mj = 1 while Mj = 2. On all other subintervals we have Mi = 1 and
mi = 1 (why?). We now have

UP (f) =
N∑

i=1

Mi (xi − xi−1) =
∑

i 6=j

(xi − xi−1) + 2(xj − xj−1)

and

LP (f) =
N∑

i=1

mi (xi − xi−1) =
∑

i 6=j

(xi − xi−1) + (xj − xj−1)

Subtracting the two equations we get

UP (f) − LP (f) = xj − xj−1 < ε.

Therefore, f is Riemann integrable by Lemma 3 (Page 89).

3. Suppose f is Riemann Integrable and f(x) ≥ 0 for all x ∈ [a, b]. (a) To show
∫ b
a f(x) dx ≥ 0, let

P = {x0, x1, x2, · · · , xN}. Then for each subinterval [xi−1, xi] of this partition, we have Mi = sup{f(x) | x ∈
[xi−1, xi]} ≥ 0. (Explain why Mi should be ≥ 0.) But then UP (f) ≥ 0 and hence infP{UP (f)} ≥ 0. By
definition

∫ b
a f(x) dx = infP{UP (f)} and hence

∫ b
a f(x) dx ≥ 0.

(b) Suppose f(x) ≥ 0, f is continuous and
∫ b
a f(x) dx = 0. We need to show f(x) = 0 for all x. Suppose

not. Then there exists a number c in [a, b] such that f(c) > 0. Since f is continuous, there exists a delta > 0
such that f(x) > 0 for all x in [a, b] and |x − c| ≤ δ. We can choose smaller δ, if necessary, so that c − δ and
c + δ are in [a, b]. Let x0 = a, x1 = c − δ, x2 = c + δ, x3 = b. Then P = {x0, x1, x2, x3} is a partition of
[a, b].( Draw a number line and show this partition.) Since f(x) ≥ 0 on the first and the third subintervals
we have, m1 ≥ 0 and m3 ≥ 0. On the second subinterval [c − δ, c + δ], the function is continuous. Hence it
attains its maximum and minimum. On this interval (by the choice of δ) f(x) > 0 for all x. In particular
m2 = f(d) = inf{f(x) | x ∈ [c − δ, c + δ]} > 0. Thus

LP (f) = m1(x1 − x0) + m2(x2 − x1) + m3(x3 − x2) ≥ m2(x2 − x1) > 0.

Since
∫ b
a f(x) dx is greater than or equal to any lower sum we see that

∫ b
a f(x) dx > 0. This contradicts the

assumption.
(Note: Once we assume that f(c) > 0 for some c, and f(x) ≥ 0 for all x, then

∫ b
a f(x) dx is the area of a region

under the graph and hence it must be positive. This is what we proved above, a seemingly trivial statement!!)



4. Let f(x) = 3x on [0, 1]. and let ε > be given.

(a) Let δ = ε/3. Then for all x and for c in [0, 1], |x − c| ≤ δ implies |f(x) − f(c)| ≤ ε. Now choose a
positive integer N large enough so that 1/N < δ and let

P = {0 =
0

N
,

1

N
,

2

N
, · · · , N

N
= 1}.

For each subinterval [ i−1
N

, i
N

], we have mi = 3 i−1
N

and Mi = 3 i
N

. (Draw the graph of f(x) = 3x and use N = 8
to see this or simply observe that the function is increasing.) But then

LP (f) =
N∑

i=1

mi(xi − xi−1) = 0 · 1

N
+ 3

1

N

1

N
+ 3

2

N

1

N
+ ·3N − 1

N

1

N

and

UP (f) =
N∑

i=1

Mi(xi − xi−1) = 3
1

N

1

N
+ 3

2

N

1

N
+ 3

2

N

1

N
+ ·3N − 1

N

1

N
+ 3

N

N

1

N
.

Hence UP (f) − LP (f) = 3N
N

1
N

= 3/N < 3δ = ε as required.

(b) Let k be any integer and let P = {0 = 0
k
, 1

k
, 2

k
, · · · , k

k
= 1}. Let x∗

i = i
k
. Then x∗

i is in the subinterval
[ i−1

k
, i

k
]. Note then that xi − xi−1 = 1/k and f(x∗

i ) = 3i/k. We form the Riemann sum

sk =
k∑

i=1

f(x∗
i )(xi − xi−1) =

k∑

i=1

3i

k

1

k
=

3

k2

k∑

i=1

i =
3

k2

k(k + 1)

2
=

3(k + 1)

2k
.

Thus by Corollary 3.3.2 (page 91), we have
∫ 1

0
f(x)dx = lim

k→∞
sk = lim

k→∞

3(k + 1)

2k
=

3

2
.

5. Since f is continuous on [a, b], by Corollary 3.3.2
∫ b
a f(x)dx = limk→∞ sk, where sk =

∑k
i=1 f(x∗

i )(xi −xi−1)
is a Riemann sum. Any Riemann sum can be divided into parts where f is positive and f is negative. On
the positive parts f(x∗

i )(xi − xi−1) is the area of the rectangle whose height is f(x∗
i ) and width is (xi − xi−1).

On the negative parts f(x∗
i )(xi − xi−1) is negative one times the area of the rectangle whose height is −f(x∗

i )
and width is (xi − xi−1). Thus the Riemann sums are the sum of the areas of the rectangles above the x-axis
minus the sum of the areas of the rectangles below. Passing to the limit, we conclude that

∫ b
a f(x)dx can be

interpreted as the sum of the areas above the x-axis minus the areas below. The Theorems mentioned make
sense because areas under graph of functions satisfy these properties. (You may want to draw graphs for each
of the theorems and the corollary.)

7. Note that f(x) = x2 is increasing on [1, 2]. Thus for any partition P = {x0, x1, x2, · · · , xN} of [1, 2],
mi = f(xi−1) and Mi = f(xi). In other words, the lower sums are obtained by using the left endpoint of the
subintervals while upper sums are obtained by using the right endpoints.

8. First observe that for any x and c in [1, 3], we have x ≥ 1 and c ≥ 1. Hence
∣∣∣∣
1

x
− 1

c

∣∣∣∣ =
|x− c|

xc
≤ |x − c|

. Next note that the function is decreasing and therefore for any partition P = {x0, x1, x2, · · · , xN} of [1, 3],
mi = f(xi) and Mi = f(xi−1). In other words, the lower sums are obtained by using the left endpoint of the
subintervals while upper sums are obtained by using the right endpoints. Choose N = 102 and let the above
partition be chosen so thatx0 = 1, x1 = 1 + 2/N, x2 = 1 + 4/N, x3 = 1 + 6/N and so on. (Note then that
xN = 1 + 2n/N = 3 as required!) Compute LP (f) and UP (f) and subtract.



9. Show that ex ≤
√

1 + xex ≤
√

2ex for all x ∈ [0, 1] and integrate.

13 First note if x < c, then
∫ c
a f(t)dt =

∫ x
a f(t)dt +

∫ c
x f(t)dt. If f is continuous on [a, b] then it is bounded:

say |f(t)| < M for all t in [a, b]. Let ε > 0 be given and let δ = ε/M . The for all x and all c in [a, b], is
|x − c| ≤ δ and x < c, then

|F (x)− F (c)| =
∣∣∣∣
∫ x

a
f(t)dt −

∫ c

a
f(t)dt

∣∣∣∣ =
∣∣∣∣
∫ c

x
f(t)dt

∣∣∣∣ ≤
∫ c

x
|f(t)|dt ≤ M(c − x) ≤ Mδ = ε.

(Explain each eqality and inequality in the above argument.) Give the argument for the case if x > c.


