
Real Analysis I: Hints for Problems of Chapter 2

Section 2.1

2. For a given ε > 0, verify that the value of N in parenthesis is the appropriate choice. (You should try to
obtain this bound for N)

(a) limn→∞
(
1 + 10√

n

)
= 1

(
N ≥ 100

ε2

)
(b) limn→∞

(
1 + 1

3
√

n

)
= 1

(
N ≥ 1

ε3

)

(c) limn→∞ (3 + 2−n) = 3
(
N ≥ − ln(ε)

ln(2)

)
(d) limn→∞

(√
n+1

n

)
= 1

(
N ≥ 1

ε3

)

3. For a given ε > 0, verify that the value of N in parenthesis is the appropriate choice. (You should try to
obtain this bound for N)

(a) limn→∞
(
5 − 2

ln n

)
= 5

(
N ≥ e2/ε

)
(b) limn→∞

(
3n+1
n+2

)
= 3

(
N ≥ 5

ε
− 2

)

(c) limn→∞
(

n2+6
2n2−2

)
= 1

2

(
N ≥

√
5
ε
+ 1

)
(d) limn→∞

(
2n

n!

)
= 1

(
N ≥ 2 + ln(ε)1

ln(2)−ln(3)

)

Note that for (d) we have used the fact that if n > 2, then

2n

n!
=

2

1
· 2

2
· 2

3
· 2

4
· · · 2

n
≤ 2

(
2

3

)n−2

.

4. For a given M > 0, verify that the value of N in parenthesis is the appropriate choice. (You should try
to obtain this bound for N)

(a) limn→∞ 2n = ∞
(
N ≥ lnM

ln 2

)
(b) limn→∞ (−n2) = −∞

(
N ≥

√
M

)

(c) limn→∞
√

ln n = ∞
(
N ≥ eM2

)

5. Suppose limn→∞ an = a and also limn→∞an = b, where a 6= b. Let ε = |a−b|
2

. The ε > 0 and hence there
exist positive integers N1 and N2 such that |an − a| ≤ ε

3
for all n ≥ N1 and |an − b| ≤ ε

3
for all n ≥ N2. Let

N = max{N1, N2} and choose n > N . Then

ε = |a − b| = |a − an + an − b| ≤ |a − an| + |an − b| ≤ ε

3
+

ε

3
=

2

3
ε.

(Verify each of the above inequality.) But this implies that 1 ≤ 2/3, which is absurd. Therefore a = b and
hence a sequences cannot have more than one limit.

6. Suppose limn→∞ an = a and b < a. Let ε = a−b
2

. Then ε > 0 and so there exist a positive integer N such that
|an − a| ≤ ε for all n ≥ N . For all n ≥ N , we then conclude that −ε ≤ an − a ≤ ε. The first inequality implies
that for all n ≥ N , an ≥ a−ε = a−(a−b)/2 = (a+b)/2 > b. Hence there are infinitely many n for which an > b.

7. Suppose limn→∞ an = a and an ≥ b for all n. If possible assume a < b. Let ε = b−a
2

. Then ε > 0 and so
there exist a positive integer N such that |an − a| ≤ ε for all n ≥ N . For all n ≥ N , we then conclude that
−ε ≤ an − a ≤ ε. The second inequality implies that for all n ≥ N , an ≤ a + ε = a + (b− a)/2 = (a + b)/2 < b.
Hence there are infinitely many n for which an < b. But this contradict the assumption that an ≥ b for all n.
Therefore a ≥ b.

8. For an and bn given below, verify that all conditions hold. Also find your own.

(a) an = 1
n2 bn = n. (b) an = 1

n
bn = n2 (c) an = 1

n
bn = n + 2 (d) an = (−1)n

n
bn = n



Section 2.2

2. Note first that limn→∞ an = 0 iff limn→∞|an| = 0. Now verify the following inequality for each given
sequence and apply the Squeezing Theorem.

(a) |an| ≤ e−n (b) |an| ≤
∣∣∣sin

(
1
n

)∣∣∣ (c) |an| ≤ 1
ln n

6. First show that if limn→∞ an = a and k is a positive integer then limn→∞(an)k = ak. Then let
P (x) = bmxm + bm−1x

m−1 + · · · + b1x + b0 be any polynomial. Now use repeated application of the sum rule
for limits, to show that

lim
n→∞

P (an) = lim
n→∞

bk (an)k + lim
n→∞

bk−1 (an)k−1 + · · ·+ lim
n→∞

b1 (an) + b0 = P (a).

7. Suppose limn→∞ an = ∞ and an ≤ bn. Let M > 0 be given. Then there exists N such that an ≥ M for
all n ≥ N . But then for all n ≥ N we have bn ≥ an ≥ M and hence limn→∞ bn = ∞.

8. Note that

an =
√

n + 1 −
√

n =
(
√

n + 1 −
√

n)(
√

n + 1 +
√

n)√
n + 1 +

√
n

=
1√

n + 1 +
√

n
.

Hence 0 ≤ an ≤ 1
2
√

n
. Now use the squeeze theorem to show that limn→∞ an = 0.

Section 2.4

4. If {xn} and {yn} are Cauchy sequences, the they are convergent. Hence {xn−yn} also converges. Since all
convergent sequences are Cauchy, we conclude that {xn − yn} is Cauchy. (Can you give a direct proof without
using a theorem?)

5. We argue the same way as in #4. If {an} is Cauchy it is convergent and hence, by the product rule for
limit of sequences, {a2

n} converges. Thus it is a Cauchy sequence. The converse is not true. Here is an example
you should verify: an = (−1)n.

6. Suppose limn→∞ bn = 0 and |am − an| ≤ bm for all m ≥ n. We need to show {an} is Cauchy. Let ε > 0
be given. Then there exists N such that |bn| ≤ ε for all n ≥ N . But then for any m ≥ n ≥ N , we have
|am − an| ≤ bn ≤ ε. Hence {an} is Cauchy.
6. Suppose |an+1 − an| ≤ 2−n for all n. Note then that(Explain each step)

|an+2 − an| = |an+2 − an+1 + an+1 − an| ≤ |an+2 − an+1| + |an+1 − an| ≤ 2−(n+1) + 2−n =
(

1

2

)n+1

+
(

1

2

)n

Repeating this yields

|am − an| ≤
(

1

2

)m−1

+
(

1

2

)m−2

+ · +
(

1

2

)n

.

For example if we repeat this we get

|a10 − a6| ≤ |a10 − a9| + |a9 − a8| + |a8 − a7| + |a7 − a6| ≤
(

1

2

)9

+
(

1

2

)8

+
(

1

2

)7

+
(

1

2

)6

.

But then we have (Explain each step.)

(
1

2

)m−1

+
(

1

2

)m−2

+ · +
(

1

2

)n

=
m−1∑

k=n

(
1

2

)k

≤
∞∑

k=n

(
1

2

)k

=

(
1
2

)n

1 − 1
2

=
(

1

2

)n−1

.

With bn =
(

1
2

)n−1
,we get |am − an| ≤ bm for all m ≥ n. Now apply the #6.


