Real Analysis I: Hints for Problems of Chapter 2 Section 2.1

2. For a given $\epsilon > 0$, verify that the value of N in parenthesis is the appropriate choice. (You should try to obtain this bound for N)

(a) $\lim_{n \to \infty} \left(1 + \frac{10}{\sqrt{n}} \right) = 1$ $\left(N \ge \frac{100}{\epsilon^2} \right)$ (b) $\lim_{n \to \infty} \left(1 + \frac{1}{\sqrt[3]{n}} \right) = 1$ $\left(N \ge \frac{1}{\epsilon^3} \right)$

(c)
$$\lim_{n \to \infty} (3+2^{-n}) = 3 \quad \left(N \ge -\frac{\ln(\epsilon)}{\ln(2)}\right)$$
 (d) $\lim_{n \to \infty} \left(\sqrt{\frac{n+1}{n}}\right) = 1 \quad \left(N \ge \frac{1}{\epsilon^3}\right)$

3. For a given $\epsilon > 0$, verify that the value of N in parenthesis is the appropriate choice. (You should try to obtain this bound for N)

(a)
$$\lim_{n \to \infty} \left(5 - \frac{2}{\ln n} \right) = 5 \quad \left(N \ge e^{2/\epsilon} \right)$$
 (b) $\lim_{n \to \infty} \left(\frac{3n+1}{n+2} \right) = 3 \quad \left(N \ge \frac{5}{\epsilon} - 2 \right)$

(c)
$$\lim_{n \to \infty} \left(\frac{n^2 + 6}{2n^2 - 2}\right) = \frac{1}{2}$$
 $\left(N \ge \sqrt{\frac{5}{\epsilon} + 1}\right)$ (d) $\lim_{n \to \infty} \left(\frac{2^n}{n!}\right) = 1$ $\left(N \ge 2 + \frac{\ln(\epsilon)1}{\ln(2) - \ln(3)}\right)$

Note that for (d) we have used the fact that if n > 2, then

$$\frac{2^n}{n!} = \frac{2}{1} \cdot \frac{2}{2} \cdot \frac{2}{3} \cdot \frac{2}{4} \cdots \frac{2}{n} \le 2\left(\frac{2}{3}\right)^{n-2}$$

4. For a given M > 0, verify that the value of N in parenthesis is the appropriate choice. (You should try to obtain this bound for N)

(a) $\lim_{n \to \infty} 2^n = \infty$ $\left(N \ge \frac{\ln M}{\ln 2}\right)$ (b) $\lim_{n \to \infty} (-n^2) = -\infty$ $\left(N \ge \sqrt{M}\right)$

(c)
$$\lim_{n \to \infty} \sqrt{\ln n} = \infty \quad \left(N \ge e^{M^2}\right)$$

5. Suppose $\lim_{n\to\infty} a_n = a$ and also $\lim_{n\to\infty} a_n = b$, where $a \neq b$. Let $\epsilon = \frac{|a-b|}{2}$. The $\epsilon > 0$ and hence there exist positive integers N_1 and N_2 such that $|a_n - a| \leq \frac{\epsilon}{3}$ for all $n \geq N_1$ and $|a_n - b| \leq \frac{\epsilon}{3}$ for all $n \geq N_2$. Let $N = \max\{N_1, N_2\}$ and choose n > N. Then

$$\epsilon = |a - b| = |a - a_n + a_n - b| \le |a - a_n| + |a_n - b| \le \frac{\epsilon}{3} + \frac{\epsilon}{3} = \frac{2}{3}\epsilon.$$

(Verify each of the above inequality.) But this implies that $1 \le 2/3$, which is absurd. Therefore a = b and hence a sequences cannot have more than one limit.

6. Suppose $\lim_{n\to\infty} a_n = a$ and b < a. Let $\epsilon = \frac{a-b}{2}$. Then $\epsilon > 0$ and so there exist a positive integer N such that $|a_n - a| \le \epsilon$ for all $n \ge N$. For all $n \ge N$, we then conclude that $-\epsilon \le a_n - a \le \epsilon$. The first inequality implies that for all $n \ge N$, $a_n \ge a - \epsilon = a - (a-b)/2 = (a+b)/2 > b$. Hence there are infinitely many n for which $a_n > b$.

7. Suppose $\lim_{n\to\infty} a_n = a$ and $a_n \ge b$ for all n. If possible assume a < b. Let $\epsilon = \frac{b-a}{2}$. Then $\epsilon > 0$ and so there exist a positive integer N such that $|a_n - a| \le \epsilon$ for all $n \ge N$. For all $n \ge N$, we then conclude that $-\epsilon \le a_n - a \le \epsilon$. The second inequality implies that for all $n \ge N$, $a_n \le a + \epsilon = a + (b-a)/2 = (a+b)/2 < b$. Hence there are infinitely many n for which $a_n < b$. But this contradict the assumption that $a_n \ge b$ for all n. Therefore $a \ge b$.

8. For a_n and b_n given below, verify that all conditions hold. Also find your own. (a) $a_n = \frac{1}{n^2}$ $b_n = n$. (b) $a_n = \frac{1}{n}$ $b_n = n^2$ (c) $a_n = \frac{1}{n}$ $b_n = n+2$ (d) $a_n = \frac{(-1)^n}{n}$ $b_n = n$

Section 2.2

2. Note first that $\lim_{n\to\infty} a_n = 0$ iff $\lim_{n\to\infty} |a_n| = 0$. Now verify the following inequality for each given sequence and apply the Squeezing Theorem.

(a) $|a_n| \le e^{-n}$ (b) $|a_n| \le \left|\sin\left(\frac{1}{n}\right)\right|$ (c) $|a_n| \le \frac{1}{\ln n}$

6. First show that if $\lim_{n\to\infty} a_n = a$ and k is a positive integer than $\lim_{n\to\infty} (a_n)^k = a^k$. Then let $P(x) = b_m x^m + b_{m-1} x^{m-1} + \cdots + b_1 x + b_0$ be any polynomial. Now use repeated application of the sum rule for limits, to show that

$$\lim_{n \to \infty} P(a_n) = \lim_{n \to \infty} b_k (a_n)^k + \lim_{n \to \infty} b_{k-1} (a_n)^{k-1} + \dots + \lim_{n \to \infty} b_1 (a_n) + b_0 = P(a).$$

7. Suppose $\lim_{n\to\infty} a_n = \infty$ and $a_n \leq b_n$. Let M > 0 be given. Then there exists N such that $a_n \geq M$ for all $n \geq N$. But then for all $n \geq N$ we have $b_n \geq a_n \geq M$ and hence $\lim_{n\to\infty} b_n = \infty$.

8. Note that

$$a_n = \sqrt{n+1} - \sqrt{n} = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

Hence $0 \le a_n \le \frac{1}{2\sqrt{n}}$. Now use the squeeze theorem to show that $\lim_{n\to\infty} a_n = 0$.

Section 2.4

4. If $\{x_n\}$ and $\{y_n\}$ are Cauchy sequences, the they are convergent. Hence $\{x_n - y_n\}$ also converges. Since all convergent sequences are Cauchy, we conclude that $\{x_n - y_n\}$ is Cauchy. (Can you give a direct proof without using a theorem?)

5. We argue the same way as in #4. If $\{a_n\}$ is Cauchy it is convergent and hence, by the product rule for limit of sequences, $\{a_n^2\}$ converges. Thus it is a Cauchy sequence. The converse is not true. Here is an example you should verify: $a_n = (-1)^n$.

6. Suppose $\lim_{n\to\infty} b_n = 0$ and $|a_m - a_n| \le b_m$ for all $m \ge n$. We need to show $\{a_n\}$ is Cauchy. Let $\epsilon > 0$ be given. Then there exists N such that $|b_n| \le \epsilon$ for all $n \ge N$. But then for any $m \ge n \ge N$, we have $|a_m - a_n| \le b_n \le \epsilon$. Hence $\{a_n\}$ is Cauchy.

6. Suppose $|a_{n+1} - a_n| \le 2^{-n}$ for all *n*. Note than that(Explain each step)

$$|a_{n+2} - a_n| = |a_{n+2} - a_{n+1} + a_{n+1} - a_n| \le |a_{n+2} - a_{n+1}| + |a_{n+1} - a_n| \le 2^{-(n+1)} + 2^{-n} = \left(\frac{1}{2}\right)^{n+1} + \left(\frac{1}{2}\right)^n$$

Repeating this yields

$$|a_m - a_n| \le \left(\frac{1}{2}\right)^{m-1} + \left(\frac{1}{2}\right)^{m-2} + \dots + \left(\frac{1}{2}\right)^n$$

For example if we repeat this we get

$$|a_{10} - a_6| \le |a_{10} - a_9| + |a_9 - a_8| + |a_8 - a_7| + |a_7 - a_6| \le \left(\frac{1}{2}\right)^9 + \left(\frac{1}{2}\right)^8 + \left(\frac{1}{2}\right)^7 + \left(\frac{1}{2}\right)^6$$

But then we have (Explain each step.)

$$\left(\frac{1}{2}\right)^{m-1} + \left(\frac{1}{2}\right)^{m-2} + \dots + \left(\frac{1}{2}\right)^n = \sum_{k=n}^{m-1} \left(\frac{1}{2}\right)^k \le \sum_{k=n}^{\infty} \left(\frac{1}{2}\right)^k = \frac{\left(\frac{1}{2}\right)^n}{1 - \frac{1}{2}} = \left(\frac{1}{2}\right)^{n-1}.$$

With $b_n = \left(\frac{1}{2}\right)^{n-1}$, we get $|a_m - a_n| \le b_m$ for all $m \ge n$. Now apply the #6.