Real Analysis I: Exercises for Chapter Two.

1. Use the definition of the limit to establish the following limits.
a) $\lim _{n \rightarrow \infty}\left(\frac{n}{n^{2}+1}\right)=0$.
b) $\quad \lim _{n \rightarrow \infty}\left(\frac{n^{2}-3}{2 n^{2}+1}\right)=\frac{1}{2}$.
c) $\lim _{n \rightarrow \infty}\left(\frac{\sqrt{n}}{n+10}\right)=0$.
d) $\lim _{n \rightarrow \infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)=0$.
2. Show that a) $\lim _{n \rightarrow \infty}\left(\frac{n^{2}}{n!}\right)=0$.
b) $\lim _{n \rightarrow \infty}\left(\frac{2^{n}}{n!}\right)=0$.
3. If $\left\{b_{n}\right\}$ is a bounded sequence and $\lim _{n \rightarrow \infty} a_{n}=0$, then show that $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=0$. Explain why the product rule for limits cannot be used.
4. Let $a_{n}=\sqrt{n+1}-\sqrt{n}$. Show that $\left\{a_{n}\right\}\left\{\sqrt{n} a_{n}\right\}$ both converge and find their limits.
5. Suppose $0<a<b$. (a) Determine $\lim _{n \rightarrow \infty}\left(\frac{a^{n+1}+b^{n+1}}{a^{n}+b^{n}}\right)$. b) $\lim _{n \rightarrow \infty}\left(a^{n}+b^{n}\right)^{1 / n}=b$.
6. Let $\left\{a_{\}}\right.$be a sequence of positive numbers such that $\lim _{n \rightarrow \infty}\left(\frac{a_{n+1}}{a_{n}}\right)=r$ exists. If $r<1$, then show that $\lim _{n \rightarrow \infty} a_{n}=0$. (Hint: Choose b so that $r<b<1$. [Give an example of such a number b]. Let $\epsilon=b-r$. Then argue that there exists a number N so that $a_{n}<a_{N} b^{n-N}$ for all $n>N$. Show that $\lim _{n \rightarrow \infty} a_{N} b^{n-N}=0$ and use the Squeeze Theorem.)
7. Let $0<a<1$ and $b>1$. Use the result of Problem 6 to find the following limits.
a) $\lim _{n \rightarrow \infty}\left(a^{n}\right)$.
b) $\lim _{n \rightarrow \infty}\left(\frac{b^{n}}{2^{n}}\right)$.
c) $\lim _{n \rightarrow \infty}\left(\frac{n}{b^{n}}\right)$.
d) $\lim _{n \rightarrow \infty}\left(\frac{2^{3 n}}{3^{2 n}}\right)$.
8. Let $a_{1}=4$ and $a_{n+1}=\frac{1}{2} a_{n}+2$. Prove that $\left\{a_{n}\right\}$ is a bounded and monotone. Find the limit.
9. Let $a_{1}=\sqrt{p}$, where $p>0$. Define $a_{n+1}=\sqrt{p+a_{n}}$. Prove that $\left|a_{n}\right| \leq 1+2 \sqrt{p}$. Also show that $\left\{a_{n}\right\}$ is monotone. Find the limit.
10. Give an example of an unbounded sequence that has a convergent subsequence.
11. Show that the following sequences are divergent. a) $\left\{1-(-1)^{n}+1 / n\right\}$.
b) $\left\{\cos \left(\frac{n \pi}{4}\right)\right\}$.
12. Let $S=[0, \infty)$. Find three lower bounds of S. Show that $\inf S=0$ and that S has no upper bound.
13. Let $T=(0, \infty)$. Does inf T exist? Does T have an upper bound? Does sup T exist? Prove your statements.
14. Let $S=\left\{\left.\frac{n}{n+1} \right\rvert\, n\right.$ is a positive integer $\}$. Show in detail that $\inf S=1 / 2$ and that $\sup S=1$.
15. Suppose a is a lower bound of a set S. If there is a sequence $\left\{s_{n}\right\}$ of elements of S that converges to a, then show that a is the greatest lower bound of S.
16. Let $a_{n}=\left\{\begin{array}{ll}1 / n & \text { if } n \text { is odd } \\ 0 & \text { if } n \text { is even }\end{array} \quad\right.$ Does $\lim _{n \rightarrow \infty} a_{n}$ exist? Prove your assertion.
17. Let $a_{n}=\left\{\begin{array}{ll}1 / n & \text { if } n \text { is odd } \\ 1 & \text { if } n \text { is even }\end{array} \quad\right.$ Does $\lim _{n \rightarrow \infty} a_{n}$ exist? Prove your assertion.
18. Let $a_{n} \geq 0$ for all n and suppose $\lim _{n \rightarrow \infty} a_{n}=a$. Use the definition of limit to prove that $\lim _{n \rightarrow \infty} \sqrt{a_{n}}=\sqrt{a}$.
19. Give example of two sequences that do not converge but for which
(a) the sum converges.
(b) the product converges.
(c) the quotient converges.
(Note: The sequences do not have to be the same sequences for all cases.)
20. Give an example of sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ for which $\left\{a_{n}\right\}$ converges, $\left\{b_{n}\right\}$ is bounded but $\left\{a_{n} b_{n}\right\}$ does not converge.
21. Let $a_{1}=1$ and for each $n \geq 1$, let $x_{n+1}=\frac{1}{4}\left(2 x_{n}+3\right)$. Show that $\left\{x_{n}\right\}$ is convergent and find its limit. (Hint: Show that $\left\{x_{n}\right\}$ is bounded and increasing.)
22. Let $s_{n}=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\cdots \frac{1}{n}=\sum_{k=1}^{n} \frac{1}{k}$.
a) Show that $\left\{s_{n}\right\}$ is not Cauchy.
b) Show that $\lim _{n \rightarrow \infty}\left|s_{n+1}-s_{n}\right|=0$.
23. Suppose $\left|a_{n+2}-a_{n+1}\right| \leq r\left|a_{n+1}-a_{n}\right|$ where $0<r<1$. Show that $\left\{a_{n}\right\}$ is a Cauchy sequence. (Hint: Show that $\left|a_{n+1}-a_{n}\right| \leq r^{n-1}\left|a_{2}-a_{1}\right|$.)
24. For each of the following sets find $\inf S$ and $\sup S$. Make sure to justify your answers.
(a) $S=\left\{x \in \mathbf{R} \mid x^{2}<2\right\}$
(b) $S=\left\{x \in \mathbf{R} \mid x>0\right.$ and $\left.x^{2}>2\right\}$
(c) $S=\left\{x \in \mathbf{R} \mid x^{2}>2\right\}$
(d) $S=\left\{\left.n-\frac{1}{n} \right\rvert\, n \in \mathbf{N}\right\}$
25. If A and B are nonempty subsets of \mathbf{R} such that $A \subseteq B$, then show that $\inf B \leq \inf A \leq \sup A \leq \sup B$.
26. Show that a nonempty subset finite set contains both its maximal and minimal elements.
