Real Analysis I Some Examples

1. Prove that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

Proof: We will show that (i) $A \cap(B \cup C) \subseteq(A \cap B) \cup(A \cap C)$ and (ii) $(A \cap B) \cup(A \cap C) \subseteq A \cap(B \cup C)$. To prove (i), let $x \in A \cap(B \cup C)$. Then $x \in A$ and $x \in B \cup C$. (Why?) Thus $x \in A$ and $x \in B$ or $x \in C$.(Why?) Hence $x \in A$ and $x \in B$ or $x \in A$ and $x \in C$. In other words, we have $x \in A \cap B$ or $x \in A \cap C$. Therefore, $x \in(A \cap B) \cup(A \cap C)$, that is $A \cap(B \cup C) \subseteq(A \cap B) \cup(A \cap C)$.
Please prove (ii) in a similar manner. Also show that $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
2. Prove or give a counter example.
a) $A-B=B-A$.

This is false. Here is one counter example. Let $A=\{1,3, a\}$ and $B=\{1,2,3\}$. Then $A-B=\{a\}$ while $B-A=\{2\}$. (Can you find another counter example)
b) $(A \cup B)-C=A \cap(B-C)$.

This is false. Let A and B be as above and $C=\Phi=$ The empty set. Then $(A \cup B)-C=A \cup B=\{1,2,3, a\}$ while $A \cap(B-C)=A \cap B=\{3\}$. Can you give different example in which C is nonempty.
c) $(A \cup B)-A=B$.

This is also false. For a counter example let A and B be as in (a) above. Explain why the statement is false.
d) If $A \subset C$ and $B \subset C$, then $A \cup B \subset C$.

This is true and here is why. Assume $A \subset C$ and $B \subset C$. Let $x \in(A \cup B)$. Then $x \in A$ or $x \in B$. If $x \in A$ then $x \in C$.(Why?) If $x \notin A$ then $x \in B$. But then $x \in C$. Thus in either cases, we see that $x \in C$. Therefore, whenever $x \in(A \cup B)$, then $x \in C$ and hence $A \cup B \subset C$.
e) $A \subset B$ if and only if $A \cup B=B$.

This is true. Note that there are two things we must show:(i) Assuming $A \subset B$, we must show $A \cup B=B$ and (ii) assuming $A \cup B=B$, we must show $A \subset B$.
Let us prove (i). Assume $A \subset B$. Let $x \in A \cup B$. Then $x \in A$ or $x \in B$. If $x \in A$, then since $A \subset B$, we must $x \in B$. If $x \notin A$, then by the definition of union, $x \in B$. In either cases, we have $x \in B$. Thus $A \cup B \subset B$. On the other hand, if $x \in B$, then $x \in A \cup B$. (This is true whether A is a subset of B or not!) Hence $B \subset A \cup B$. Consequently, we have $A \cup B=B$.

To prove (ii), assume $A \cup B=B$. We want to show $A \subset B$. We will use proof by contradiction. (You should give direct proof!) If $A \not \subset B$, then there an element $x \in A$ but $x \notin B$. Since $x \in A$, we must have $x \in A \cup B$. Thus this element x belongs to $A \cup B$ but does not belong to B. Therefore, $A \cup B$ and B cannot be equal. This contradicts the assumption.
3. Prove that $S=\{1 / 4,1 / 8,1 / 12,1 / 16, \cdots\}$ is countable by exhibiting a bijection from S on to \mathbf{N}.

Solution: Define $f: \mathbf{N} \rightarrow \mathbf{S}$ by $f(n)=1 / 4 n$. By definition of $S f$ is onto. To show that f is one-to-one, suppose $f(n)=f(m)$. Then $1 / 4 n=1 / 4 m$ and hence $m=n$. Thus f is one-to-one. Therefore f is both one-to-one and onto. By definition of countability, we see that S is countable.
4. Use the Principle of Mathematical Induction to show that $\sum_{k=1}^{n}(2 k-1)^{2}=\frac{4 n^{3}-n}{3}$ for all $n \in \mathbf{N}$.

Proof: Step 1. Let $n=1$. Then the left hand side is $\sum_{k=1}^{1}(2 k-1)^{2}=1^{2}=1$ and the right hand side is $\left(4 n^{3}-n\right) / 3=\left(41^{2}-1\right) / 3=1$. Thus the statement is true for $n=1$.
Step 2. Assume $\sum_{k=1}^{n}(2 k-1)^{2}=\frac{4 n^{3}-n}{3}$ is true for some $n \geq 1$. We need to show that $\sum_{k=1}^{n+1}(2 k-1)^{2}=$ $\frac{4(n+1)^{3}-(n+1)}{3}$. We begin with the left hand side and use the assumption: (Make sure that you fill in the reason(s) for each equality.)

$$
\begin{aligned}
\sum_{k=1}^{n+1}(2 k-1)^{2} & =\sum_{k=1}^{n}(2 k-1)^{2}+(2(n+1)-1)^{2} \quad(\text { Why? }) \\
& =\frac{4 n^{3}-n}{3}+(2 n+1)^{2} \quad(\text { Why? }) \\
& =\frac{4 n^{3}-n}{3}+4 n^{2}+4 n+1=\frac{4 n^{3}+12 n^{2}+11 n+3}{3} \quad \text { (Why?) }
\end{aligned}
$$

On the other hand,

$$
\frac{4(n+1)^{3}-(n+1)}{3}=\frac{4\left(n^{3}+3 n^{2}+3 n+1\right)-n-1}{3}=\frac{4\left(n^{3}+12 n^{2}+11 n+3\right.}{3} .
$$

Therefore, $\sum_{k=1}^{n+1}(2 k-1)^{2}=\frac{4(n+1)^{3}-(n+1)}{3}$ is true whenever $\sum_{k=1}^{n}(2 k-1)^{2}=\frac{4 n^{3}-n}{3}$. By the Principle of Mathematical Induction, the formula holds for all positive integers n.
5. Assume that there is a rational number between any two given real numbers. Use this assumption to prove that any nonempty open interval (a, b) contains an infinite number of rational numbers.

Proof: By assumption there is a rational number, call it y, between a and b. Note that $a<y$. But then a and y are real numbers and the assumption we are making guarantees the existence of a rational number, say x_{0}, between a and y. Now x_{0} and y are rational numbers between a and b. Then the midpoint of x_{0} and y, call it x_{1} is a rational point between a and b. Clearly $x_{0} \neq x_{1}$. Let x_{2} be the midpoint of x_{0} and x_{2}, x_{3} be the midpoint of x_{1} and x_{2}, and so on. Thus x_{n} is the midpoint of x_{n-1} and x_{n-2} for each $n>2$. The set $\left\{x_{1}, x_{2}, x_{3}, \cdots\right\}$ is an infinite set of rational numbers between a and b. (Can you rewrite this proof to make it shorter?)
6. If a, b, c, d are positive real numbers such that $a / b<c / d$, then show that

$$
\frac{a}{b}<\frac{a+c}{b+d}<\frac{b}{d} .
$$

Proof: Since b and d are positive, we can multiply $a / b<c / d$ to obtain $a d-b c<0$ and hence $b c-a d>0$. (Can you think of which properties we have used? But then we have

$$
\frac{a+c}{b+d}-\frac{a}{b}=\frac{b c-a d}{b(b+d)}>0 . \quad \text { (Here we used algerba!) }
$$

Thus $\frac{a}{b}<\frac{a+c}{b+d}$. Prove the other inequality.

