Real Analysis I Some Examples

1. Provethat AN(BUC)=(ANB)U(ANC)

Proof: We will show that (i) AN(BUC) C (ANB)U(ANC)and (ii) (ANB)U(ANC)C AN(BUC).
To prove (i), let x € AN(BUC). Thenz € Aand x € BUC. (Why?) Thusz € Aand x € B or z € C.(Why?)
Hence v € Aand z € Bor x € A and x € C. In other words, we have z € AN B or x € AN C'. Therefore,
re€(ANB)U(ANC), thatis AN(BUC)C (ANB)U(ANCO).
Please prove (ii) in a similar manner. Also show that AU (BNC)=(AUuB)N(AUC)

2.  Prove or give a counter example.
a) A—B=B-A.

This is false. Here is one counter example. Let A = {1,3,a} and B = {1,2,3}. Then A — B = {a} while
B — A = {2}. ( Can you find another counter example)

b) (AUB)—C=An(B- Q).

This is false. Let A and B be as above and C' = ®=The empty set. Then (AUB)—-C = AUB = {1,2,3,a}
while AN (B —C)=AnN B = {3}. Can you give different example in which C' is nonempty.

c) (AUB)—A=B.
This is also false. For a counter example let A and B be as in (a) above. Explain why the statement is false.
d)If ACC and BC C, then AUB C C.

This is true and here is why. Assume A C C'and BC C. Let € (AUB). Thenx € Aorz € B. lf z € A
then x € C'.(Why?) If x ¢ A then x € B. But then x € C'. Thus in either cases, we see that z € C. Therefore,
whenever x € (AU B), then z € C and hence AU B C C.

e) AC Bifand only if AUB = B.

This is true. Note that there are two things we must show:(i) Assuming A C B, we must show AUB = B
and (ii) assuming A U B = B, we must show A C B.
Let us prove (i). Assume A C B. Let t € AUB. Thenz € Aor xz € B. If x € A, then since A C B, we must
x € B. If x ¢ A, then by the definition of union, z € B . In either cases, we have z € B. Thus AUB C B. On
the other hand, if z € B, then x € AU B. (This is true whether A is a subset of B or not!) Hence B C AU B.
Consequently, we have AU B = B.

To prove (ii), assume AU B = B. We want to show A C B. We will use proof by contradiction. (You
should give direct proof!) If A ¢ B, then there an element x € A but © ¢ B. Since x € A, we must have
x € AU B. Thus this element x belongs to A U B but does not belong to B. Therefore, A U B and B cannot
be equal. This contradicts the assumption.



3. Prove that S = {1/4,1/8,1/12,1/16,-- -} is countable by exhibiting a bijection from S on to N.

Solution: Define f : N — S by f(n) = 1/4n. By definition of S f is onto. To show that f is one-to-one,
suppose f(n) = f(m). Then 1/4n = 1/4m and hence m = n. Thus f is one-to-one. Therefore f is both
one-to-one and onto. By definition of countability, we see that S is countable.

4. Use the Principle of Mathematical Induction to show that >7_, (2k — 1)? = 4"37_" for all n € N.

Proof: Step 1. Let n = 1. Then the left hand side is >;_,(2k — 1) = 12 = 1 and the right hand side is
(4n® —n)/3 = (412 — 1)/3 = 1. Thus the statement is true for n = 1.
Step 2. Assume Y 7_, (2k — 1)? = 4"37_" is true for some n > 1. We need to show that 3771 (2k — 1) =
A1)’ —(ntl) - e begin with the left hand side and use the assumption: (Make sure that you fill in the

reason(s) for each equality.)

n+1 n
S>k—-1)% = Y (2k—1+2(n+1)—1)> (Why?)
k=1 k=1
An3 —
- ”37”+@n+1f (Why?)
An3 — And + 1202 + 11
= ANt gy = MRS )

On the other hand,
dn+1P°—(n+1) 4n°+3n*+3n+1)—n—-1 4(n’+12n° +11n+3
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Therefore, Y371 (2k — 1)% = % is true whenever Y°7_, (2k — 1)? = 4"37_". By the Principle of Mathe-
matical Induction, the formula holds for all positive integers n.

5.  Assume that there is a rational number between any two given real numbers. Use this assumption to
prove that any nonempty open interval (a,b) contains an infinite number of rational numbers.

Proof: By assumption there is a rational number, call it y, between a and b. Note that a < y. But then
a and y are real numbers and the assumption we are making guarantees the existence of a rational number,
say xg, between a and y. Now xg and y are rational numbers between a and b. Then the midpoint of zy and
y, call it z; is a rational point between a and b. Clearly xo # x1. Let x5 be the midpoint of zy and w9, x3
be the midpoint of x; and x5, and so on. Thus x,, is the midpoint of x,_; and z,_» for each n > 2. The set
{x1, 22,3, -} is an infinite set of rational numbers between a and b. (Can you rewrite this proof to make it

shorter?)

6. If a,b,c,d are positive real numbers such that a/b < ¢/d, then show that
g < atc < é
b b+d d

Proof: Since b and d are positive, we can multiply a/b < ¢/d to obtain ad — bc < 0 and hence bc — ad > 0.
(Can you think of which properties we have used? But then we have

atc a bec — ad

b+d b bb+d)

a a+tc : :
Thus ¢ < ==2. Prove the other inequality.

> 0. (Here we used algerbal)



