Real Analysis I: Problems for Chapter 3.

1. Prove or find a counterexample to the following statements. In all cases we assume that f and g are functions defined on the indicated intervals.
(a) If f is bounded on $[a, b]$, then f is continuous on $[a, b]$.
(b) If f is continuous on $[a, b]$, then f is bounded on $[a, b]$.
(c) If f is continuous on (a, b), then f is bounded on (a, b).
(d) If $(f(x))^{2}$ is continuous on (a, b), then f is continuous on (a, b).
(e) If f and g are not continuous on (a, b), then $f g$ is not continuous on (a, b).
(f) If f and g are not continuous on (a, b), then $f+g$ is not continuous on (a, b).
(g) If f and g are not continuous on (a, b), then $f \circ g$ is not continuous on (a, b).
(h) If $f+g$ and g are continuous on (a, b), then f is continuous on (a, b).
(i) If $f g$ and g are continuous on (a, b), then f is continuous on (a, b).
(j) If $|f(x)|$ is continuous on (a, b), then f is continuous on (a, b).
2. Determine whether or not the given functions are uniformly continuous.
(a) $f(x)=\frac{1}{x}$ with $x \in(0,1)$
(b) $f(x)=x^{3}$ with $x \in[0,2)$.
(c) $f(x)=\frac{x}{x+4}$ with $x \in[0,2)$.
3. Let $f(x)=\left(x^{2}+x-6\right) /(x-2)$. Can f be defined at $x=2$ so that f is continuous everywhere?
4. Let $f(x)= \begin{cases}2 x, & \text { if } x \in \mathbf{Q} \\ x+3, & \text { if } x \notin \mathbf{Q}\end{cases}$

Find all points at which f is continuous.
5. Let f be a continuous function on \mathbf{R} and let $S=\{x \in \mathbf{R} \mid f(x)=0\}$. If $\left\{x_{n}\right\}$ is a sequence of points in S and if $x_{n} \rightarrow x$, then show that $x \in S$.
6. Let f and g be continuous functions on \mathbf{R} and let $S=\{x \in \mathbf{R} \mid f(x) \geq g(x)\}$. If $\left\{x_{n}\right\}$ is a sequence of points in S and if $x_{n} \rightarrow x$, then show that $x \in S$.
7. Let f and g be continuous functions on \mathbf{R}. If $f(x)=g(x)$ for all rational numbers x, is it true that $f(x)=g(x)$ for all real numbers x ? Explain.
8. Use Intermediate Value Theorem to show that the polynomial $p(x)=x^{4}+7 x^{3}-9$ has two real root. Then use your calculator to find the roots.
9. Let $f(x)=x^{2}$ with $x \in[0, \infty)$. Find a positive number ϵ and two sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ such that $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=0$ but $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \epsilon$. Then conclude that $f(x)=x^{2}$ is not uniformly continuous on $[0, \infty)$.
10. Let $f(x)=\sqrt{x}$ for $x \in[0, \infty)$. Show that f is uniformly continuous but f is not Lipschitz continuous on $[0, \infty)$.
11. For each of the following functions, find $L_{P}(f)$ and $U_{P}(f)$, where $P=\left\{x_{0}, x_{1}, x_{2}, \cdots, x_{N}\right\}$ is the partition of $[a, b]$ such that each subinterval has length equal to $h=\frac{b-a}{N}$.
a) $f(x)=x^{2}+2 x+1$ on $[0,1]$ with $N=4, N=8$, and N is any integer.
b) $f(x)=x^{2}-2 x+1$ on $[0,2]$ with $N=4, N=8$, and N is any integer.
12. Let $f(x)= \begin{cases}1, & \text { if } 0 \leq x \leq 1 \\ 2, & \text { if } 1<x \leq 2 .\end{cases}$
a) Find a partition P of $[0,2]$ such that $U_{P}(f)-L_{P}(f) \leq \frac{1}{10}$.
b) For any $\epsilon>0$, show that there exists a partition P such that $U_{P}(f)-L_{P}(f) \leq \epsilon$.
c) Use the definition to find $\int_{0}^{2} f(x) d x$.
13. Use upper and lower sums to evaluate the following integrals.
a) $\int_{0}^{1} 3 x^{2} d x$
b) $\int_{0}^{2}\left(x^{2}-2 x+1\right) d x$
14. Suppose $f(x) \geq 0$ for all $x \in[a, b]$. If f is bounded, show that $L_{P}(f) \geq 0$ for all partitions P of $[a, b]$.
15. Prove or give a counter example: If $f(x) \leq g(x) \leq h(x)$ for all x and if f and h are Riemann integrable on $[a, b]$, then so is g.
16. Give an example of a function with domain $[0,1]$, such that
a) f is bounded but not Riemann integrable.
b) f is Riemann integrable but not monotone.
c) f is Riemann integrable but not continuous.
17. Suppose f is bounded on $[a, b]$ and $f(x)=0$ for all x except at finitely many values in $[a, b]$, prove that $\int_{a}^{b} f(x) d x=0$.
18. If f is Riemann integrable on $[a, b]$, then prove that $|f|$ is also Riemann integrable on $[a, b]$. Is the converse of this statement true? Prove or give a counter example.
19. (Refer to problems \#3 and \#7 page 102.) Define

$$
T_{N}=\frac{h}{2}\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{N-1}\right)+f\left(x_{N}\right)\right)
$$

and for even N

$$
S_{N}=\frac{h}{6} \sum_{i=1}^{N}\left(f\left(x_{i-1}\right)+4 f\left(\bar{x}_{i}\right)+f\left(x_{i}\right)\right),
$$

where \bar{x}_{i} is the midpoint of $\left[x_{i-1}, x_{i}\right]$ for each i.
a) For $f(x)=x^{2}$ on $[0,1]$, find M_{N}, T_{N}, and S_{N} for $N=4$ and $N=8$.
b) For $f(x)=1 / x$ on $[1,2]$, find M_{N}, T_{N}, and S_{N} for $N=4$ and $N=8$.
20. DO problem \#9 on page 103.

