Objectives:

1) Describe to a graduate student the difference between the prediction of the outlet conversion obtained from a model assuming plug flow and a laminar flow reactor model that contains both radial and axial diffusion.
2) This tutorial will have you compare the results of a POLYMATH plug flow reactor model with three models produced by COMSOL and solved using a finite element numerical method. The three models will be:
a) Plug flow reactor in laminar flow
b) Laminar flow reactor with axial diffusion
c) Laminar flow reactor with axial and radial diffusion

The governing equations for this problem can be derived from a shell balance on a ring shaped element in the cylindrical geometry. The resulting equation is

$$
\begin{equation*}
\frac{\partial C_{A}}{\partial t}=-\frac{\partial N_{A z}}{\partial z}-\frac{\partial\left(r N_{A r}\right)}{r \partial r}+r_{A} \tag{1}
\end{equation*}
$$

For cylindrical coordinates r, z the following flux equations for convective and diffusive fluxes in the z and r directions are applicable:

$$
\begin{align*}
& N_{A z}=j_{A z}+y_{A} \sum N_{i}=-D_{A B} \frac{\partial C_{A}}{\partial z}+C_{A} u_{z} \tag{2}\\
& N_{A r}=j_{A r}+y_{A} \sum N_{i}=-D_{A B} \frac{\partial C_{A}}{\partial r}+C_{A} u_{r} \tag{3}
\end{align*}
$$

Equation 3 can be simplified by eliminating the velocity term in the radial direction since this will be zero in pipe flow. Next substitute equations 2 and 3 into equation 1 to obtain

$$
\begin{equation*}
\frac{\partial C_{A}}{\partial t}=-\frac{\partial}{\partial z}\left(-D_{A B} \frac{\partial C_{A}}{\partial z}+C_{A} u_{z}\right)-\frac{\partial}{r \partial r}\left(-D_{A B} r \frac{\partial C_{A}}{\partial r}\right)+r_{A} \tag{4}
\end{equation*}
$$

At steady state and assuming constant velocity in the z direction yields the following equation

$$
\begin{equation*}
u_{z} \frac{\partial C_{A}}{\partial z}=D_{A B} \frac{\partial^{2} C_{A}}{\partial z^{2}}+D_{A B} \frac{\partial}{r \partial r}\left(r \frac{\partial C_{A}}{\partial r}\right)+r_{A} \tag{5}
\end{equation*}
$$

Notice that if the diffusive flux in equation 5 is neglected ($D_{A B}=0$) then the familiar plug flow reactor equation results

$$
\begin{equation*}
u_{z} \frac{\partial C_{A}}{\partial z}=r_{A} \tag{6}
\end{equation*}
$$

The reaction stoichiometry is given by

$$
\begin{equation*}
A+B \Leftrightarrow 2 C \tag{7}
\end{equation*}
$$

The reaction rate is given by

$$
\begin{equation*}
r_{A}=-A \exp \left(-\frac{E}{R T}\right) \rho_{c a t}\left(C_{A} C_{B}-\frac{C_{c}^{2}}{K_{e q}}\right) \tag{8}
\end{equation*}
$$

In COMSOL the equation is written as:

$$
\begin{equation*}
r A=-A * \exp (-E / R T) * r h o C a t *\left(c A * c B-c C^{\wedge} 2 / \text { Keq }\right) \tag{9}
\end{equation*}
$$

For the isothermal reactor the T is set equal to T 0 .
The equilibrium constant is given by

$$
\begin{equation*}
K_{e q}=1000 \exp \left(\frac{\Delta H_{R x}}{R}\left(\frac{1}{303 K}-\frac{1}{T}\right)\right) \tag{10}
\end{equation*}
$$

Construct a polymath model for this problem given that the activation energy E is $95,238 \mathrm{~J} / \mathrm{mol}$, the preexponential is $\mathrm{A}=1.1 \times 10^{8} \mathrm{~m}^{6} /(\mathrm{mol} \mathrm{kg} \mathrm{s})$, and the heat of reaction is $\Delta H_{R x}=-83680 \mathrm{~J} / \mathrm{mol}$. The fluid is fed at an inlet temperature is 320 K the inlet flowrate is $5 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s}$. The reactant concentrations for A and B are equimolar at $500 \mathrm{~mol} / \mathrm{m}^{3}$. The density of the catalyst is $1500 \mathrm{~kg} / \mathrm{m}^{3}$. The reactor is 1 m in length with a radius of $\mathrm{Ra}=0.1 \mathrm{~m}$.
To save time you can copy and paste the model given below. Make sure there are no mistakes in this model.
$\mathrm{d}(\mathrm{FA}) / \mathrm{d}(\mathrm{V})=\mathrm{rA} \# \mathrm{molA} / \mathrm{m}^{\wedge} 3$
$r A=-k$ * 1500 * (cA * cB - cC ^ $2 / \mathrm{Keq})$ \# molA/m^3/s
$\mathrm{d}(\mathrm{FC}) / \mathrm{d}(\mathrm{V})=-2$ * rA
$\mathrm{FC}(0)=0$
$d(F B) / d(V)=r A$
$\mathrm{FB}(0)=.25$
$\mathrm{FA}(0)=0.25$
$\mathrm{cA}=\mathrm{FA} /$ flow
$\mathrm{cB}=\mathrm{FB} /$ flow
$\mathrm{cC}=\mathrm{FC} /$ flow
delH $=-83680$
Keq $=1000$ * $\exp (\mathrm{delH} / 8.314$ * (1/303-1 / T) $)$
$\mathrm{L}=\mathrm{V} /\left(\mathrm{pi} * 0.1^{\wedge}\right.$ 2)
pi $=3.14159265359$
$\mathrm{k}=1.1 \mathrm{e} 8$ * $\exp (-95238 / 8.314 / \mathrm{T})$
TO = 320
flow $=5 \mathrm{e}-4 \# \mathrm{~m}^{\wedge} 3 / \mathrm{s}$
$\mathrm{FT}=\mathrm{FA}+\mathrm{FB}+\mathrm{FC}$
$\mathrm{T}=\mathrm{TO}$
FTO $=0.5$
$\mathrm{X}=(0.25-\mathrm{FA}) / 0.25$
$\mathrm{V}(0)=0$
$V(f)=0.03141$

1) Calculate the Reynolds number of this flow if the average density is $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and viscosity is $0.0016 \mathrm{~kg} /(\mathrm{m} \mathrm{s})$.
2) Submit a POLYMATH model of this process. Plot the molar flowrates and the conversion of A as a function of volume of reactor and length of reactor. (remember constants in POLYMATH are given using the! function).

Since we are in laminar flow the parabolic velocity profile for a pipe flow is given as

$$
\begin{equation*}
u_{z}=2 * u_{0}\left(1-\left(\frac{r}{R_{a}}\right)^{2}\right) \tag{11}
\end{equation*}
$$

With the average velocity or superficial velocity given by

$$
\begin{equation*}
u_{0}=\frac{5 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s}}{\pi R_{a}^{2}} \tag{12}
\end{equation*}
$$

The manual explaining today's tutorial is located on the webct.rowan.edu page under the heading 3.1 FEMLAB ECRE Manual. This manual is also on the CD that came with you textbook. I have attached the appropriate pages from the manual that you need to skim in several pages following this one. You will be entering this model in the REAL version of COMSOL and must turn in all assignments using the COMSOL model. You are of course welcome to compare your answers with the prepackaged models on your CD FEMLAB3 ECRE-VERSION that came with the book.

1. Quickly review the model description on the following pages and make a sketch of the geometry and the boundary conditions for this geometry.

FEMLAB ECRE

Model Description, Equations, and Input Data

This chapter uses the FEMLAB ECRE Version to study an elementary, exothermic, 2nd-order reversible reaction

$$
A+B \Leftrightarrow 2 C
$$

in a tubular reactor (liquid phase, laminar flow regime). To keep its temperature down, the reactor uses a cooling jacket with a variable coolant temperature. The following model setup proceeds in stages, gradually leading to the final configuration. The first version of the model deals with an isothermal tubular reactor with composition variations in both the radial and axial directions. The second stage extends the model to include the energy balance for the reactor. By this addition, the isothermal reactor is turned into an adiabatic reactor. The third stage introduces an isothermal cooling jacket, and finally the fourth stage models a non-isothermal cooling jacket.

The following section provides a general description for all of the above-mentioned models.

Model Description

Figure 2-1: Model geometry for the 2-dimensional rotationally symmetric models.

Figure 2-1 illustrates the model geometry. We assume that the variations in angular direction around the central axis are negligible, and therefore the model can be axi-symmetric.

The system is described by a set of differential equations on a 2 D surface that represents a cross section of the tubular reactor in the $z-r$ plane. That 2D surface's borders represent the inlet, the outlet, the reactor wall, and the center line. Assuming that the diffusivity for the three species is of the same magnitude, you can model the reactor using three differential equations; one mass balance for one of the species (as noted in the next section, mass balances are not necessary for the other two species), one heat balance for the reactor core, and one heat balance for the heating jacket. Due to rotational symmetry, the software need only solve these equations for half of the domain shown in Figure 2-1.

Model Equations

You describe the mass balances and heat balances in the reactors with partial differential equations (PDEs), while one ordinary differential equation (ODE) is required for the heat balance in the cooling jacket. The equations are defined as follows.

MASS BALANCE, SPECIES A:

$$
D_{p} \frac{1}{r} \frac{\partial C_{A}}{\partial r}+D_{p} \frac{\partial^{2} C_{A}}{\partial r^{2}}+D_{p} \frac{\partial^{2} C_{A}}{\partial z^{2}}-2 U\left(1-\left(\frac{r}{R}\right)^{2}\right)^{2} \frac{\partial C_{A}}{\partial z}+r_{A}=0
$$

where D_{p} denotes the diffusion coefficient, C_{A} is the concentration of species A, U is the flow velocity, R gives the radius of the reactor, and r_{A} is the reaction rate. In this model we assume that the species A, B, and C have the same diffusivity, which implies that we must solve only one material balance; we know the other species' concentrations through stoichiometry.

BOUNDARY CONDITIONS FOR THE MASS BALANCE:

- Inlet $(z=0)$

$$
C_{A}(r, 0)=C_{A 0}
$$

- At the wall $(r=R)$

$$
\frac{\partial C_{A}}{\partial r}(R, z)=0
$$

- Center (symmetry) line

$$
\frac{\partial C_{A}}{\partial r}(0, z)=0
$$

The boundary condition selected for the outlet does not set any restrictions except that convection dominates transport out of the reactor. Thus this condition keeps the outlet boundary open and does not set any restrictions on the concentration.

- Outlet $(z=L)$

$$
\frac{\partial C_{A}}{\partial z}(r, L)=0
$$

where L denotes the length of the reactor.

ENERGY BALANCE INSIDE THE REACTOR:

$$
k \frac{1}{r} \frac{\partial T}{\partial r}+k \frac{\partial^{2} T}{\partial r^{2}}+k \frac{\partial^{2} T}{\partial z^{2}}-2 U\left(1-\left(\frac{r}{R}\right)^{2}\right) \rho C_{p} \frac{\partial T}{\partial z}-r_{A}\left(-\Delta H_{R x}\right)=0
$$

where k denotes the thermal conductivity, T is temperature, ρ is density, C_{p} equals the heat capacity, and $\Delta H_{R x}$ is the reaction enthalpy.

BOUNDARY CONDITIONS FOR THE ENERGY BALANCE:

- Inlet ($z=0$)

$$
T(r, 0)=T_{0}
$$

- At the wall $(r=R)$

$$
-\frac{\partial T}{\partial r}(R, z)=\frac{U_{k}}{k}\left(T-T_{a}\right)
$$

where T_{a} denotes the temperature in the cooling jacket.

- Center (symmetry) line

$$
-\frac{\partial T}{\partial r}(0, z)=0
$$

As for the mass balance, choose the boundary condition at the outlet for the energy balance such that it keeps the outlet boundary open. This condition sets only one restriction, that the heat transport out of the reactor be convective.

- Outlet $(z=L)$

$$
-\frac{\partial T}{\partial z}(r, L)=0
$$

ENERGY BALANCE OF THE COOLANT IN THE COOLING JACKET:

Here we assume that only axial temperature variations are present in the cooling jacket. This assumption gives a single ODE for the heat balance:

$$
\frac{\partial T_{a}}{\partial z}=\frac{2 \pi R U_{k}\left(T-T_{a}\right)}{m_{c} C_{P c}}
$$

where m_{c} is the mass flow rate of the coolant, $C_{P c}$ represents its heat capacity, and U_{k} gives the heat-transfer coefficient between the reactor and the cooling jacket. You can neglect the contribution of heat conduction in the cooling jacket and thus assume that heat transport takes place only through convection.

BOUNDARY CONDITION FOR THE COOLING JACKET:

You can describe the cooling jacket with a ID line. Therefore you need only an inlet boundary condition.

- Inlet $(z=0)$

$$
T_{a}(0)=T_{a 0}
$$

Model Parameters

We now list the model's input data. You define them either as constants or as logical expressions in FEMLAB's Option menu. In defining each parameter in FEMLAB, for the constant's Name use the left-hand side of the equality in the following list (in the first entry, for example, Diff), and use the value on the right-hand side of the equality (for instance, 1E-9) for the Expression that defines it.

The constants in the model are:

- Diffusivity of all species, Diff $=1 \mathrm{E}-9 \mathrm{~m}^{2} / \mathrm{s}$
- Activation energy, $\mathrm{E}=95238 \mathrm{~J} / \mathrm{mol}$
- Rate constant, $\mathrm{A}=1.1 \mathrm{E} 8 \mathrm{~m}^{6} /(\mathrm{mol} \cdot \mathrm{kg} \cdot \mathrm{s})$
- Gas constant, $\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{K}$ (do not confuse this constant with the geometrical extension of the radius)
- Inlet temperature, $\mathrm{TO}=320 \mathrm{~K}$
- Total flow rate, vo $=5 \mathrm{E}-4 \mathrm{~m}^{3} / \mathrm{s}$
- Reactant concentrations in the feed, $\mathrm{CAO}=\mathrm{CBO}=500 \mathrm{~mol} / \mathrm{m}^{3}$
- Reactor radius, $\mathrm{Ra}=0.1 \mathrm{~m}$
- Catalyst density, $\rho_{\text {Cat }}$, rhoCat $=1500 \mathrm{~kg} / \mathrm{m}^{3}$
- Heat of reaction, $\Delta H_{R x}, \mathrm{dHrx}=-83680 \mathrm{~J} / \mathrm{mol}$
- Equilibrium constant at 303 degrees $\mathrm{K}, \mathrm{Keq0}=1000$
- Thermal conductivity of the reaction mixture, $\mathrm{ke}=0.559 \mathrm{~J} / \mathrm{m} \cdot \mathrm{s} \cdot \mathrm{K}$
- Average density of the reaction mixture, ρ, r ho $=1000 \mathrm{~kg} / \mathrm{m}^{3}$
- Heat capacity of the reaction mixture, $\mathrm{Cp}=4180 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$
- Overall heat-transfer coefficient, $\mathrm{Uk}=1300 \mathrm{~J} / \mathrm{m}^{2} \cdot \mathrm{~s} \cdot \mathrm{~K}$
- Inlet temperature of the coolant, $\mathrm{TaO}=298 \mathrm{~K}$
- Heat capacity of the coolant, $\mathrm{CpJ}=4180 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$
- Coolant flow rate, $\mathrm{mJ}=0.01 \mathrm{~kg} / \mathrm{s}$

Next, the following section lists the definitions for the expressions this model uses.
Again, to put each expression in FEMLAB form, use the left-hand side of the equality (for instance, u 0) for the variable's Name, and use the right-hand side of the equality (for instance, v0/(pi*Ra^2)) for its Expression.

- The superficial flow rate is defined according to the analytical expression

$$
u_{0}=\frac{v_{0}}{\pi(R a)^{2}}
$$

which we define in FEMLAB as $u 0=v 0 /\left(\mathrm{pi}^{*} \mathrm{Ra}^{\wedge} 2\right)$.

- The superficial, laminar flow rate

$$
u_{z}=2 u_{0}\left(1-\left(\frac{r}{R a}\right)^{2}\right)
$$

in FEMLAB form becomes $u z=2 * u 0^{*}\left(1-(r / R a) \cdot{ }^{\wedge} 2\right)$.

- The conversion of species A is given by

$$
x_{A}=\frac{C_{A 0}-C_{A}}{C_{A 0}}
$$

which in FEMLAB form is $x A=(C A O-C A) / c A 0$.

- The concentration of B is according to

$$
C_{B}=C_{B 0}-C_{A 0} x_{A}
$$

which in FEMLAB form becomes $\mathrm{CB}=\mathrm{CBO}-\mathrm{CAO} \mathrm{A}^{\mathrm{xA}}$.

- The concentration of C is expressed as

$$
C_{c}=2 C_{A 0} x_{A}
$$

which in FEMLAB form becomes $C C=2 * C A 0 * x A$.

- The rate of reaction takes two forms:
- Before adding the heat balance, the reaction looks like

$$
r_{A}=-A \exp \left(-\frac{E}{R T_{0}}\right) \rho_{c a t}\left(c_{A} c_{B}-\frac{c_{c}^{2}}{K_{e q}}\right),
$$

which in FEMLAB form is $r A=-A^{*} \exp (-E / R / T O) * r_{\text {hoCat }}{ }^{*}\left(C A * C B-C C^{\wedge} 2 / K e q\right)$.

- After you add the energy balance, the reaction expression becomes

$$
r_{A}=-A \exp \left(-\frac{E}{R T}\right) \rho_{c a t}\left(c_{A} c_{B}-\frac{c_{c}^{2}}{K_{e q}}\right),
$$

which in FEMLAB form is $r A=-A^{*} \exp (-E / R / T) * r_{h o C a t *}^{*}\left(C A . * C B-C C^{\wedge} 2 / K e q\right)$.

- The temperature-dependent equilibrium constant is given by the following expressions:
- For the isothermal case

$$
K_{e q}=K_{e q 0} \exp \left(\frac{\Delta H_{R x}}{R}\left(\frac{1}{303}-\frac{1}{T_{0}}\right)\right)
$$

which in FEMLAB form is $\operatorname{Keq}=\operatorname{Keq} 0^{*} \exp \left(\operatorname{dHrx} / \mathrm{R}^{*}(1 / 303-1 / \mathrm{TO})\right)$.

- After adding the energy balance you obtain

$$
K_{e q}=K_{e q 0} \exp \left(\frac{\Delta H_{R x}}{R}\left(\frac{1}{303}-\frac{1}{T}\right)\right)
$$

which in FEMLAB form is $\operatorname{Keq}=\operatorname{Keq}^{*} \exp \left(\mathrm{dHrx} / \mathrm{R}^{*}(1 / 303-1 / \mathrm{T})\right)$.

- The heat-production term becomes

$$
Q=-r_{a} \Delta H_{R x}
$$

which in FEMLAB form is $Q=-r A * d H r x$.
2. Open Comsol Multiphysics 3.4, Select the New Tab, Choose Axial symmetry (2D).
3. Choose Chemical Engineering Module, Mass balance, Convection and Diffusion, Steadystate analysis.
4. In the Dependent variables space replace the c with cA

5. Select Add
6. Select OK
7. Now you must draw the geometry of a tube in COMSOL. This is a rectangle. Remember that the center of the pipe is at a radial position of 0 and the wall of the pipe is at a dimension of 0.1 m . The length of pipe will be set at 1 m .
8. For this model the length of the reactor is much longer than radius. To see the trends in both directions a set of unequal axes can be obtained. To obtain an "unequal" axes setting, Choose Options, Axis/Grid settings and select the Axis tab and then clear the Axis equal check box. Enter -0.1 in the r min edit field, 0.2 in the r max edit field and -0.1 and 1.1 in the z min and z max edit fields, respectively. To obtain a Grid spacing of 0.1 go to the Grid tab and click on the Auto box. Change the settings to 0.1 and 0.1 . Then Click OK
9. Now draw the rectangle that represents half of a reactor. (eg. from $\mathrm{r}=0$ to $\mathrm{r}=0.1 \mathrm{~m}$ and $\mathrm{z}=0$ to $\mathrm{z}=1.0 \mathrm{~m}$.
10. Go to the Physics menu and select Subdomain Settings, which opens up the corresponding dialog box. Select subdomain 1 in the Subdomain Settings list. This dialog box displays the equation that forms the basis for
 this application mode, while the edit fields show the input data used in the equation.
11. Now choose Physics, subdomain Settings and select subdomain 1. Enter Diff, rA, 0 and uz as shown in the figure below. The edit fields correspond to the diffusion coefficient, reaction-rate expression, and velocity distribution in the reactor-all of which you can freely define. To review and change the definition of the input data, follow this procedure
12. Select the Init tab (this sets the initial conditions for the reactor)
 Now enter cA0 in the initial value box.

Subdomain Settings - Convection and Diffusion (ched)

13. Select Options, Constants and then enter Constants -

14. Select Options, Scalar Expressions and enter the following expressions. Some of these expressions will be used in later models.

15. Go to the Physics menu and select Subdomain Settings, which opens up the corresponding dialog box. Select subdomain 1 in the Subdomain Settings list. Enter the reaction rate rA, the z-velocity and the diffusion coefficient Diff

16. Go to the Init tab and enter the initial concentration variable cA0 and then select OK

17. Go to the Physics menu and select Boundary Settings. Enter the boundary conditions, insulation for 1 and 4 which corresponds to no flow of mass through the wall and the centerline ($\mathrm{r}=0$). You can click on the figure to verify which boundary is 1 and which is 4 . The boundary that you click on turns red and the number in the boundary settings selection menu is highlighted in blue. Then give the concentration of A entering the reactor, cA0, at the inlet boundary 2 and specify a convective flux for the reactor outlet 3. This
 term means that fluid will flow out of the reactor at boundary 3.

18. Now create a mesh. Go to the Mesh mode by pressing the

Multiphysics - Geom1/Convection and Diffusi
Mesh Solve Postprocessing Multiphysics Help \triangle Initialize Mesh
Δ Refine Mesh

- Δ Refine Selection

20. You should probably refine this mesh by choosing the Mesh, Refine Mesh option. Notice the short cut figure for later refining of the mesh. To obtain the images that are shown later you will need to refine certain areas of the mesh. This can be done by choosing the Mesh, Refine Selection button or option.

21. Note in this case that the scales on the r- and z-axes are not equal, which gives a distorted view. If desired, you can select equal scale settings in the Axis/Grid Settings menu item under the Options menu. In order to return to the original unequal scale settings, once again go to the Axes/Grid Settings menu and clear the Axis equal check box. Enter -0.1 in the r min edit field, 0.2 in the r max edit field and -0.1 and 1.1 in the z min and z max edit fields, respectively.
22. The model in this exercise is nonlinear; thus press the Solver Parameters and verify that the Stationary nonlinear solver is selected.
23. Solve the problem using the Solve Problem button or drop down menu.

I Click the Postprocessing Mode button. The default plot shows the concentration of species A in the reactor.

2 Click the Plot Parameters button.

3 Click on the Surface tab.

4 On the Surface page, enter -rA in the Expression edit field.

5 Click Apply.

6 To plot the conversion of species A, enter xA in the Expression edit field in the Plot Parameters dialog box.

7 Click Apply.

8 In order to define the location of the maximum and minimum conversion, click the Max/Min tab.

9 Enter xA in the Expression edit field in the Subdomain max/min data dialog box.
$\mathbf{1 0}$ Click the Max/min marker check box and click Apply.
II To visualize the relation between residence time and conversion, first click the Max/ min marker check box to deselect it and click the Arrow tab in the Postprocessing menu.
$\mathbf{1 2}$ Select Total flux, cA in the Predefined quantities drop-down list.

I3 Click the Arrow plot check box and click OK.

14 To visualize the local conversion in selected cross sections along the length of the reactor, first go to the Postprocessing menu and select Cross-Section Plot Parameters.
15 Click the Line/Extrusion tab.
16 Enter XA in the Expression edit field.
$\mathbf{1 7}$ Enter 0 in the $\mathbf{r} \mathbf{0}$ edit field and 0.1 in the $\mathbf{r l}$ edit field.
18 Enter 0 in both the $\mathbf{z 0}$ and $\mathbf{z I}$ edit fields.
19 Check the Multi parallel lines box, then click the Vector with distances option.

20 Enter 00.51 in the Vector with distances edit field to generate three cross-section plots at the inlet, in the middle of the reactor, and at the outlet, respectively.

21 Click the Line Settings button. In the dialog box that opens, select the Cycle option in the Line color drop-down list; select Dotted line in the Line style drop-down list; and select Cycle in the Line marker drop-down list.


```
See note on making graphs on page 27 of 31 of this pdf file
``` step 15 and then return
\(\mathbf{2}\) Finally, to generate the following plot, click OK twice: first in the Line Settings dialog box, and then in the Cross-Section Plot Parameters dialog box.

Radial Conversion Profiles

Figure 2-2: Radial conversion profiles at the inlet, outlet and halfway through an isothermal reactor.
24. In Step 22 of the pdf file it asked you to make a Cross-Section plot. I prefer to use as the \(x\)-axis data the \(r\) coordinate. Also in the line Settings box I always request a legend.

25. Also a title to the graph as well as axis labels can be specified. Select the General tap and the Title/Axis button.
26. This plot can now be pasted into a word document by selecting the MS windows copy icon.

General LinelExtrusion Point
© LineתExtrusion plot
-Plot type
© Line plot
Extrusion plot
\begin{tabular}{|ll|}
\hline Y -axis data \\
Predefined quantities: \(: ~\) \\
Expression: & \(\times \mathrm{A}\) \\
\hline
\end{tabular}

\(\checkmark\) Multiple parallel lines

OK
Cancel
Apply

Cross-Section Plot Parameters
General Line/Extrusion Point
Plot type-

27. To obtain a table of data shown on the cross section plot then you must click on the ASCII button and then save this file.
28. The file will be a text file that can be opened by excel for further analysis. Open the txt file by having excel look for text files.
29. Then start the conversion of the data using a delimited file. \(\\)

30．The data is placed in two columns（ \(\mathrm{x}, \mathrm{y}\) ）．The first cross－section at \(\mathrm{z}=0 \mathrm{~m}\) is listed，followed by the second cross－section \(\mathrm{z}=0.5 \mathrm{~m}\) ，followed by the third cross－section at \(\mathrm{z}=1.0 \mathrm{~m}\) ．To find these I always use the Edit，Search feature and find the ending r data point．
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{区 Microsoft Excel－cross－sectiondata isothermal lamina} \\
\hline \multicolumn{6}{|l|}{：区id File Edit View Insert Format Iools Data Windo} \\
\hline \multicolumn{6}{|l|}{県 \(\begin{gathered}\text { \％} \\ \text { Arial }\end{gathered}\)} \\
\hline \multicolumn{6}{|l|}{} \\
\hline \multicolumn{2}{|r|}{C202} & \multicolumn{4}{|c|}{\(f_{x}\) Start of data for \(\mathrm{z}=0.5 \mathrm{~m}\)} \\
\hline & A & B & C & D & E \\
\hline 198 & 0.098492 & 0 & & & \\
\hline 199 & 0.098995 & 0 & & & \\
\hline 200 & 0.099497 & 0 & & & \\
\hline 201 & 0.1 & 0 & End of data & \(\mathrm{z}=0 \mathrm{~m}\) & \\
\hline 202 & 0 & 0.269076 & Start of dain & or \(\mathrm{z}=0.5 \mathrm{~m}\) & \\
\hline 203 & 5．03E－04 & 0.269081 & & & \\
\hline 204 & 0.001005 & 0.269096 & & & \\
\hline 205 & 0.001508 & 0.269121 & & & \\
\hline 206 & 0.00201 & 0.269155 & & & \\
\hline 400 & 0.099497 & 0.950558 & & & \\
\hline 401 & 0.1 & 0.960809 & End of data & \(\mathrm{z}=0.5\) & \\
\hline 402 & 0 & 0.424049 & Start of data & or \(\mathrm{z}=1.0 \mathrm{~m}\) & \\
\hline 403 & 5．03E－04 & 0.424055 & & & \\
\hline 404 & 0.001005 & 0.424074 & & & \\
\hline 405 & 0.001508 & 0.424105 & & & \\
\hline 406 & 0.00201 & 0.424148 & & & \\
\hline 407 & 0.002513 & 0.424203 & & & \\
\hline 408 & 0.003015 & 0.424271 & & & \\
\hline 409 & 0.003518 & 0.424352 & & & \\
\hline 410 & 0.00402 & 0.424444 & & & \\
\hline 411 & 0.004523 & 0.424549 & & & \\
\hline 412 & 0.005025 & 0.424667 & & & \\
\hline 413 & 0.005528 & 0.424797 & & & \\
\hline 414 & 0.00603 & 0.424939 & & & \\
\hline 415 & 0.006533 & 0.425094 & & & \\
\hline 416 & 0.007035 & 0.425261 & & & \\
\hline 417 & 0.007538 & 0.425441 & & & \\
\hline \multicolumn{6}{|l|}{14＊M cross－sectiondata isothermal la／} \\
\hline \multicolumn{6}{|l|}{} \\
\hline \multicolumn{6}{|l|}{Ready} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{\({ }^{2}\) Microsoft Excel－cross－sectiondata isothermal la} \\
\hline \multicolumn{6}{|l|}{域 Eile Edit Yiew Insert Format Iools Data \(\underline{\underline{y}}\)} \\
\hline \multicolumn{6}{|l|}{} \\
\hline \multicolumn{6}{|l|}{} \\
\hline \multicolumn{2}{|r|}{C202} & \multicolumn{4}{|l|}{－fx Start of data for \(\mathrm{z}=0.5 \mathrm{~m}\)} \\
\hline & A & B & C & D & E \\
\hline 198 & 0.098492 & 0 & & & \\
\hline 199 & 0.098995 & 0 & & & \\
\hline 200 & 0.099497 & 0 & & & \\
\hline 201 & 0.1 & 0 & End of data & \(\mathrm{r}=0 \mathrm{~m}\) & \\
\hline 202 & 0 & 0.269076 & Start of dain & or \(\mathrm{z}=0.5 \mathrm{~m}\) & \\
\hline 203 & 5．03E－04 & 0.269081 & & & \\
\hline 204 & 0.001005 & 0.269096 & & & \\
\hline 205 & 0.001508 & 0.269121 & & & \\
\hline 206 & 0.00201 & 0.269155 & & & \\
\hline 598 & 0.098492 & 0.957453 & & & \\
\hline 599 & 0.098995 & 0.964472 & & & \\
\hline 600 & 0.099497 & 0.969844 & & & \\
\hline 601 & 0.1 & 0.973568 & End of data & \(\mathrm{r}=1.0 \mathrm{~m}\) & \\
\hline 602 & \％ & Elements & （triangular） & & \\
\hline 603 & 1 & 2 & & & \\
\hline 604 & 2 & 3 & & & \\
\hline 605 & 3 & 4 & & & \\
\hline 606 & 4 & 5 & & & \\
\hline 607 & 5 & 6 & & & \\
\hline 608 & 6 & 7 & & & \\
\hline 609 & 7 & 8 & & & \\
\hline 610 & 8 & 9 & & & \\
\hline 611 & 9 & 10 & & & \\
\hline 612 & 10 & 11 & & & \\
\hline 613 & 11 & 12 & & & \\
\hline 614 & 12 & 13 & & & \\
\hline 615 & 13 & 14 & & & \\
\hline \multicolumn{6}{|l|}{14＊M cross－sectiondata isothermal la／} \\
\hline \multicolumn{6}{|l|}{} \\
\hline \multicolumn{6}{|l|}{Ready} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Find and Replace & & & ？\(x\) \\
\hline \multicolumn{4}{|l|}{Find Replace} \\
\hline \multirow[t]{3}{*}{Find what： 0.1} & & & \(\checkmark\) \\
\hline & & & Options＞＞ \\
\hline & Find All & Find Next & Close \\
\hline
\end{tabular}

FEMLAB ECRE can also calculate integral expressions of the solution. One such entity is the mixing cup outlet concentration, which gives the average concentration in the liquid that exits the reactor. For species A , the average concentration is defined according to the equation
\[
C_{A, a v}=\frac{\int_{\text {outlet }} 2 \pi r C_{A} u_{z} d r}{\int_{\text {outlet }} 2 \pi r u_{z} d r}
\]
along the outlet boundary. Start by calculating the integral of \(C_{A} u_{z}\) over the outlet boundary.
23 Go to the Postprocessing menu and select Boundary Integration.
24 Select boundary 3 in the Boundary selection list.

25 Enter \(2 * \mathrm{pi}{ }^{*} \mathrm{r}^{*} \mathrm{cA}\) *uz in the Expression edit field.

\section*{26 Click Apply.}

The value of the integral appears in the status bar at the bottom and reads 0.114385 . You can now calculate the integral of \(u_{z}\).

27 Enter 2*pi*r*uz in the Expression edit field and click Apply.
The value of this integral is \(5 \mathrm{e}-4\), which gives an average concentration of \(0.114385 / 5 \mathrm{e}-4\), which is approximately 230 mole \(\mathrm{m}^{-3}\).

You have now completed a review of the model and are ready to run it with varying input parameters.

\section*{Questions and Exercises}

To answer the following questions you can either use the results in the model just described or you can solve it again with a new set of input data.

I Why is the concentration of species A near the reactor wall lower than the concentration near the center?

2 Where in the reactor do you find the minimum and maximum reaction rates?
3 How much is the average conversion? (Hint: See the calculation of the average concentration in the previous section.)
4 This exercise requires that you change the activation energy for the reaction in the model. Do so by going to the Options menu and working with the Constants menu item (see item 5 in the section "Model Equations and Input Data" on page 21). We have already tabulated the notations in the section "Model Parameters" on page 15. After changing the input data, click the Solve button to solve the problem.

It is useful to take the graphs you obtain by changing the activation energy and examine them in both two and three dimensions. Once in the Postprocessing mode
you can toggle between a two- and three-dimensional plot by clicking the 2D Surface Plot button or 3D Surface Plot button.

0
\(\stackrel{+}{5}\)
3D Surface Plot|
a How do the conversion profiles and the average conversion change if you increase the activation energy by a factor of 1.5 ?
b How do these same entities change if you decrease the activation energy by multiplying the original value by a factor of 0.95 ?

The reaction rate is very sensitive to changes in activation energy. Altering the activation energy to a lower value increases the reaction rate. A high reaction rate in combination with the low flow rate close to the wall results in very large concentration gradients. In order to capture an accurate concentration profile, you must apply a dens mesh in the inlet area near the wall.

You have now investigated the isothermal reactor example. Let's proceed by introducing the energy balance in the reactor.

To be Submitted:
1) POLYMATH model and requested plots
2) Reynolds number calculations
3) Answer Questions 1-4 on pages 29 and 30 of 32 in the pdf file (ECRE tutorial pages 31\&32).
4) Reset your model to the base case conditions. Now run the COMSOL model with the diffusivity set to zero and remove the parabolic velocity profile by setting the \(z\)-velocity to the average velocity of \(u 0\).
a) Produce a surface plot and a crosssection plot to compare with the previous case of laminar flow. Compare the base case with the case of zero diffusivity and a uniform velocity profile.
b) Make a new cross section plot of conversion as a function of axial position. Choose to plot in a new
 figure and keep your old plot. You will need to change your titles. Make a plot in excel of this data compared to \(X_{A}\) vs L data obtained from your POLYMATH model.
c) Compare the average outlet conversion from the COMSOL laminar flow model (base case) with the conversions obtained from the POLYMATH PFR model and the COMSOL model with zero diffusivity and the uniform velocity profile. Write a statement on the comparison of the conversion of these two data sets.
5) Reset the base case to have only axial diffusion with value of \(\operatorname{Diff}=1 \mathrm{e}-2 \mathrm{~m}^{2} / \mathrm{s}\). See Figure on next page. Then repeat the analysis in steps a though c of question 4).

In the Table for anisotropic the Diffusivities are:
\begin{tabular}{|l|l|}
\hline Dr (radial) & \\
\hline & Dz (axial) \\
\hline
\end{tabular}```

