DIPPR (Design Institute for Physical Property Data) Physical Properties Database

Revised January 2007

This database contains 33 fixed-value properties and 15 temperature-dependent properties of approximately 1793 industrially important compounds. (Accessable only from the presentation computer in the $3^{\text {rd }}$ floor computer room with IP address IP 150.250.102.72. This computer is the one with the phone next to it.)

From the third floor go to link: http://dippr.byu.edu/public/
user: rowanthermo
pswd: che\&dippr
The numeric data in the DIPPR File consist of 29 single value property constants and 15 temperature-dependent properties. Regression equations and coefficients for temperaturedependent properties are also given for calculating additional property values. All of the data are searchable, including Regression Coefficients, percent error, and minimum/maximum temperature values.

If experimental data are not available, values are estimated when possible. Temperaturedependent correlation coefficients, applicable upper and lower temperature limits, and values computed at these limits are included for temperature-dependent properties.

Properties Included (1793 commercially important chemicals and substances):
Temperature Dependent Properties

Property	DIPPR ID	Units
Heat Capacity of Ideal Gas	ICP	$\mathrm{J} /(\mathrm{kmol} \cdot \mathrm{K})$
Heat Capacity of Liquid	LCP	$\mathrm{J} /(\mathrm{kmol} \cdot \mathrm{K})$
Heat Capacity of Solid	HVP	$\mathrm{J} /(\mathrm{kmol} \cdot \mathrm{K})$
Heat of Vaporization	LDN	$\mathrm{Jmol} / \mathrm{kmol}$
Liquid Density	SVR	$\mathrm{m}^{3} / \mathrm{kmol}$
Second Virial Coefficient	SDN	$\mathrm{kmol} / \mathrm{m}^{3}$
Solid Density	ST	N / m
Surface Tension	LTC	$\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})$
Thermal Conductivity of Liquid	STC	$\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})$
Thermal Conductivity of Solid	VTC	$\mathrm{W} /(\mathrm{m} \cdot \mathrm{K})$
Thermal Conductivity of Vapor	VP	Pa
Vapor Pressure of Liquid	SVP	Pa
Vapor Pressure of Solid or Sublimation Pressure	LVS	$\mathrm{Pa} \cdot \mathrm{s}$
Viscosity of Liquid		

Viscosity of Vapor	VVS	$\mathrm{Pa} \cdot \mathrm{s}$

Constant Property	DIPPR ID	Units
Acentric Factor	ACEN	---
Auto Ignition Temperature	AIT	K
Dipole Moment	DM	C•m
Absolute Entropy of Ideal Gas at 298.15 K and 1 bar	ENT	$\mathrm{J} /(\mathrm{kmol} \cdot \mathrm{K})$
Lower Flammability Limit Temperature	FLTL	K
Upper Flammability Limit Temperature	FLTU	K
Lower Flammability Limit Percent	FLVL	Vol \% in air
Upper Flammability Limit Percent	FLVU	Vol \% in air
Flash Point	FP	K
Gibbs Energy of Formation for Ideal Gas at 298.15 K and 1 bar	GFOR	J/kmol
Standard State Gibbs Energy of Formation at 298.15 K and 1 bar	GSTD	J/kmol
Net Standard State Enthalpy of Combustion at 298.15 K	HCOM	$\mathrm{J} / \mathrm{kmol}$
Enthalpy of Formation for Ideal Gas at 298.15 K	HFOR	J/kmol
Enthalpy of Fusion at Melting Point	HFUS	$\mathrm{J} / \mathrm{kmol}$
Standard State Enthalpy of Formation at 298.15 K and 1 bar	HSTD	J/kmol
Heat of Sublimation	HSUB	$\mathrm{J} / \mathrm{kmol}$
Liquid Molar Volume at 298.15 K	LVOL	$\mathrm{m}^{3} / \mathrm{kmol}$
Melting Point at 1 atm	MP	K
Molecular Weight	MW	$\mathrm{kg} / \mathrm{kmol}$
Normal Boiling Point	NBP	K
Parachor	PAR	---
Critical Pressure	PC	Pa
Radius of Gyration	RG	m
Refractive Index	RI	---
Solubility Parameter at 298.15 K	SOLP	$\left(\mathrm{J} / \mathrm{m}^{3}\right)^{1 / 2}$
Standard State Absolute Entropy at 298.15 K and 1 bar	SSTD	$\mathrm{J} /(\mathrm{kmol} \cdot \mathrm{K})$
Critical Temperature	TC	K
Triple Point Pressure	TPP	Pa
Triple Point Temperature	TPT	K
Critical Volume	VC	$\mathrm{m}^{3} / \mathrm{kmol}$
van der Waals Area	VDWA	$\mathrm{m}^{2} / \mathrm{kmol}$
van der Waals Reduced Volume	VDWV	$\mathrm{m}^{3} / \mathrm{kmol}$

Critical Compressibility Factor	ZC	---

Integrating DIPPR Heat Capacities
Ideal Gas Heat Capacity is given as:

$$
\begin{aligned}
& C_{p i}=A+B\left[\frac{C / T}{\sinh (C / T)}\right]^{2}+D\left[\frac{E / T}{\cosh (E / T)}\right]^{2} \text { with T in Kelvin and } \mathrm{Cp}[=] \mathrm{J} / \mathrm{kmol} * \mathrm{~K} \\
& \Delta H=\int C_{p} \mathrm{~d} T=A \Delta T+B C\left[\operatorname{coth}\left(C / T_{2}\right)-\operatorname{coth}\left(C / T_{1}\right)\right]-D E\left[\tanh \left(E / T_{2}\right)-\tanh \left(E / T_{1}\right)\right]
\end{aligned}
$$

Remember that the enthalpy of a gas is calculated from its standard state enthalpy (See equation 8-19 in Fogler $4^{\text {th }}$ ed. on page 482.)

Below is an example of calculating heat capacities and average heat capacities using DIPPR values for oxygen.

Oxygen Heat Capacities Values

 The table below gives a summary of the constant property values that are independent of temperature. You will need the Ideal Gas Heat of Formation for an enthalpy calculation.Address eet http://dippr.byu.edu/public/chemsearch.asp?Mode=Printout1\&ChemID=901

Chemical Database				UNITS	(tampatire	(\%)
Property Constants				New search	LiNKS	feedback
Chemical Abstracts Name:oxygen IUPAC Name:oxygen Synonym: refrigerant 732 Chernical Abstracts Number*: 7782-447					Structural	
Property (click property name for references and data)	Units	Value	Note	Quality Code		
				Data type	Reliability	Source type
Molecular Weight Critical Temperature Critical Pressure Critical Volume Crit Compress Factor	$\begin{gathered} \mathrm{kg} / \mathrm{kmol} \\ \mathrm{~K} \\ \mathrm{~Pa} \\ \mathrm{~m} \mathrm{~m}^{n} / \mathrm{kmol} \\ \text { unitless } \end{gathered}$	31.9988 154.58 $5.04300 \mathrm{E}+06$ $7.34000 \mathrm{E}-02$ 0.288		Experimental Experimental Experimental Defined	$\begin{aligned} & <3 \% \\ & <5 \% \\ & <10 \% \\ & \text { None } \end{aligned}$	Evaluated Evaluated Evaluated Staff
Melting Point Triple Pt Temperature Triple Pt Pressure Normal Boiling Point Liq Molar Volume	$\begin{gathered} \mathrm{K} \\ \mathrm{~K} \\ \mathrm{~Pa} \\ \mathrm{~K} \\ \mathrm{~m}^{\wedge} 3 / \mathrm{kmol} \end{gathered}$	$\begin{gathered} 54.361 \\ 54.361 \\ 150 \\ 90.188 \\ 2.80225 \mathrm{E}-02 \end{gathered}$	$\underline{1}$	Experimental Experimental Experimental Experimental Experimental	$\begin{aligned} & <1 \% \\ & <1 \% \\ & <3 \% \\ & <1 \% \\ & <1 \% \end{aligned}$	Evaluated Evaluated Evaluated Evaluated Staff
IG Heat of Formation IG Gibbs of Formation IG Absolute Entropy Std Heat of Formation Std Gibbs of Formation	J/kmol J/kmol J/kmol*K J/knol J/kmol	0.0 0.0 $2.05043 \mathrm{E}+05$ 0.0 0.0	$\underline{3}$	Experimental Defined	$<0.2 \%$ Unknown	Evaluated Staff
Std Absolute Entropy Heat Fusion at Melt Pt Std Net Heat of Comb Acentric Factor Radius of Gyration	J/kmol*K J/kmol J/kmol unitless Ill	$\begin{gathered} 2.05043 \mathrm{E}+05 \\ 4.44000 \mathrm{E}+05 \\ 0.0 \\ 2.21798 \mathrm{E}-02 \\ 6.80000 \mathrm{E}-11 \end{gathered}$		Experimental Experimental Defined Defined	$\begin{aligned} & <0.2 \% \\ & <3 \% \\ & \text { None } \\ & <3 \% \end{aligned}$	Evaluated Evaluated Staff Staff
Solubility Parameter Dipole Moment van der Waals Volume yan der Waals Area Refractive Index	$\begin{gathered} \left(\mathrm{J} / \mathrm{m}^{\wedge} \mathrm{c}^{*}\right)^{\wedge} 0.5 \\ \mathrm{~m}{ }^{\wedge} 3 / \mathrm{kmol} \\ \mathrm{~m}^{2} 2 \\ \text { unitless } \end{gathered}$	$\begin{gathered} 8.18200 \mathrm{E}+03 \\ 0.0 \\ 1.30000 \mathrm{E}-02 \\ 2.35000 \mathrm{E}+08 \\ 1.221 \end{gathered}$	$\begin{aligned} & \underline{4} \\ & \underline{5} \\ & \underline{5} \end{aligned}$	Defined Defined Defined Experimental	$\begin{gathered} \text { None } \\ <3 \% \\ <5 \% \\ \text { Unknown } \end{gathered}$	Staff Staff Staff Evaluated
Flash Point Lower Flammability Limit Upper Flammability Linnit Lower F Fammm Limit Temp Upper Flamm Linit Temp			$\begin{aligned} & \hline \frac{7}{7} \\ & \frac{7}{7} \end{aligned}$			
Auto Ignition Temp Parachor Heat of Sublimation Dielectric Constant	K unitless J/kmol unitless		7			
Issue Date: 7/1/1981 Notes: 1. Triple point temper 2. Determined at the 3. Calculated from th standard state abs 4. For the hypothetic	ure. mal boiling p tandard state ate entropy. iquid at 298	thalpy of form $101325 \mathrm{~Pa} .$	ion and	Revision D the	: 81/1994	

Below is the page showing the temperature Dependent properties.

Address http://dippr.byu.edu/public/chemsearch.asp?M Mode=Printout2\&ChemID=901						
Chemical Database Temperature-Dependent Properties			UNITS			
Chemical Abstracts Name: oxygen		$\begin{array}{r} \mathrm{O}_{2} \\ \text { oxygen } \end{array}$				
Property (click property name for references and data sets)	NoteEquation \#Quality	Coefficients				
		A	B	C	D	E
Solid Density Min: $(20.65,4.4552 \mathrm{E}+01)$ Max: $(20.65,4.4552 \mathrm{E}+01)$	$\frac{100}{<25 \%}$	$4.4552 \mathrm{E}+01$				
Liquid Density Min: (54.35, 4.0770E+01) Max: $(154.58,1.3605 \mathrm{E}+01)$	$\frac{105}{<1 \%}$	$3.9143 \mathrm{E}+00$	2.8772E-01	$1.5458 \mathrm{E}+02$	$2.9240 \mathrm{E}-01$	
Solid Vapor Pressure	$\underline{1}$					
Vapor Pressure Min: $(54.36,1.4754 \mathrm{E}+02)$ Max: $(154.58,5.0206 \mathrm{E}+00)$	$\frac{101}{<1 \%}$	5.1245E+01	$-1.2002 \mathrm{E}+03$	$-6.4361 \mathrm{E}+00$	$2.8405 \mathrm{E}-02$	$1.0000 \mathrm{E}+00$
Heat of Vaporization Min: $(54.36,7.7419 \mathrm{E}+06)$ Max: (154.58,0.0)	$\begin{gathered} \frac{2}{206} \\ \frac{106}{1 \%} \end{gathered}$	$9.0080 \mathrm{E}+06$	4.5420E-01	-4.0960E-01	3.1830E-01	
Solid Heat Capacity Min: $(13.46,4.7613 \mathrm{E}+03)$ Max: $(43.78,4.6573 \mathrm{E}+04)$	$\frac{100}{<5 \%}$	-1.3800E+04	$1.3790 \mathrm{E}+03$			
Liquid Heat Capacity Min: $(54.36,5.3646 \mathrm{E}+04)$ Max: (142,9.0662E+04)	$\frac{100}{<3 \%}$	$1.7543 \mathrm{E}+05$	-6.1523E+03	$1.1392 \mathrm{E}+02$	-9.2382E-01	$2.7963 \mathrm{E}-03$
Ideal Gas Heat Capacity Min: $(50,2.9103 \mathrm{E}+04)$ Max: (1500, 3.6533E+04)	$\frac{107}{<1 \%}$	$2.9103 \mathrm{E}+04$	$1.0040 \mathrm{E}+04$	$2.5265 \mathrm{E}+03$	$9.3560 \mathrm{E}+03$	$1.1538 \mathrm{E}+03$
Second Virial Coefficient Min: (77.29,-3.3311E-01) Max: (772.9, 1.9176E-02)	$\frac{104}{<5 \%}$	3.9840E-02	$-1.5840 \mathrm{E}+01$	-7.8300E+04	$4.6000 \mathrm{E}+13$	$-3.4000 \mathrm{E}+15$
Liquid Viscosity Min: $(54.36,7.1704 \mathrm{E}-04)$ Max: $(150,6.9896 \mathrm{E}-05)$	$\frac{101}{<25 \%}$	-4.1476E+00	$9.4040 \mathrm{E}+01$	$-1.2070 \mathrm{E}+00$		
Vapor Viscosity Min: $(54.35,3.7725 \mathrm{E}-06)$ Max: $(1500,6.3705 \mathrm{E}-05)$	$\frac{102}{<5 \%}$	1.1010E-06	5.6340E-01	$9.6300 \mathrm{E}+01$		
Solid Thermal Conductivity	$\underline{1}$					
Liq Thermal Conductivity Min: $(60,1.9130 \mathrm{E}-01)$ Max: $(150,6.7100 \mathrm{E}-02)$	$\frac{100}{<5 \%}$	2.7410E-01	-1.3800E-03			
Vap Thermal Conductivity Min: $(80,6.9091 \mathrm{E}-03)$ Max: (2000, 1.2655E-01)	$\frac{102}{<10 \%}$	4.4994E-04	$7.4560 \mathrm{E}-01$	$5.6699 \mathrm{E}+01$		
Surface Tension Min: $(54.35,2.2500 \mathrm{E}-02)$ Max: $(154.58,0.0)$	$\frac{106}{<3 \%}$	$3.8066 \mathrm{E}-02$	$1.2136 \mathrm{E}+00$			
Issue Date:7/1/1981 Notes: 1. No experimental val 2. Data calculated fron	satisfactory eyron equati	rediction meth used in regr	available. sion.	$\text { sion Date: } 8 / 1$	1992	

http://dippr.byu.edu/public/chemsearch.asp?Mode=Reference\&Che $\underline{\mathrm{mID}=901 \& \text { Property }=\mathrm{ICP}}$

From the Property Calculator:

2987. TRC Thermodynamic TablesHydrocarbons; Thermodynamics Research Center, The Texas A\&M University System, College Station, TX, 1985.	
Temperature (K)	Ideal Gas Heat Capacity ($\mathrm{J} / \mathrm{kmol} * \mathrm{~K}$)
50	$2.91030 \mathrm{E}+04$
100	$2.91060 \mathrm{E}+04$
150	$2.91090 \mathrm{E}+04$
200	$2.91260 \mathrm{E}+04$
273.16	$2.92720 \mathrm{E}+04$
298.15	$2.93760 \mathrm{E}+04$
300	$2.93850 \mathrm{E}+04$
400	$3.01060 \mathrm{E}+04$
500	$3.10910 \mathrm{E}+04$
600	$3.20900 \mathrm{E}+04$
700	$3.29810 \mathrm{E}+04$
800	3.37330E+04
900	$3.43550 \mathrm{E}+04$
1000	$3.48700 \mathrm{E}+04$
1100	$3.53000 \mathrm{E}+04$
1200	$3.56670 \mathrm{E}+04$
1300	$3.59880 \mathrm{E}+04$
1400	$3.62770 \mathrm{E}+04$
1500	$3.65440 \mathrm{E}+04$

Here are the fitted values of Heat Capacity for oxygen gas at temperatures of 300 K and 1000 K . Notice that these are not the average heat capacities for the range of 300 to 1000 K .
\qquad

calculate the average heat capacity value from DIPPR constants POLYMATH can be used to numerically integrate - or to check you analytical integration. For Example from the result below the value of the average heat capacity for oxygen from 300 K to 1000 K is 3.235×10^{4} $\mathrm{J} /(\mathrm{kmol} \mathrm{K})$. This result can also be obtained from a numerical integration.

$$
\begin{aligned}
C_{p i}= & A+B\left[\frac{C / T}{\sinh (C / T)}\right]^{2}+D\left[\frac{E / T}{\cosh (E / T)}\right]^{2} \text { with T in Kelvin and } C p[=] \mathrm{J} / \mathrm{kmol} * \mathrm{~K} \\
\Delta H= & \int_{300 K}^{1000 K} C_{p} \mathrm{~d} T=A(1000-300)+B C[\operatorname{coth}(C / 1000 K)-\operatorname{coth}(C / 300 K)] \\
& -D E[\tanh (E / 1000 K)-\tanh (E / 300 K)] \\
\bar{C}_{p}= & \frac{\int_{300 K}^{1000 k} C_{p} \mathrm{~d} T}{1000 K-300 K}=3.235 \times 10^{4} \mathrm{~J} /(\mathrm{kmol} \mathrm{~K})
\end{aligned}
$$

This is given as the final value of Cpavg in the POLYMATH program given below.

For a numerical integration Polymath can be used:

Ordinary Differential Equations
Calculated values of DEQ variables

Variable		Initial value	Minimal value	Maximal value	Final value
1	T	298.	298.	1000.	1000.
2	H	0	0	$2.27 \mathrm{E}+07$	$2.27 \mathrm{E}+07$
3	A	$2.91 \mathrm{E}+04$	$2.91 \mathrm{E}+04$	$2.91 \mathrm{E}+04$	$2.91 \mathrm{E}+04$
4	B	$1.004 \mathrm{E}+04$	$1.004 \mathrm{E}+04$	$1.004 \mathrm{E}+04$	$1.004 \mathrm{E}+04$
5	C	2526.5	2526.5	2526.5	2526.5
6	D	9356.	9356.	9356.	9356.
7	E	1153.8	1153.8	1153.8	1153.8
8	Cp	$2.935 \mathrm{E}+04$	$2.935 \mathrm{E}+04$	$3.486 \mathrm{E}+04$	$3.486 \mathrm{E}+04$
9	Cpavg	0	0	$3.235 \mathrm{E}+04$	$3.235 \mathrm{E}+\mathbf{0 4}$

Differential equations

$1 \mathrm{~d}(\mathrm{H}) / \mathrm{d}(\mathrm{T})=\mathrm{Cp}$

Explicit equations

$1 \mathrm{~A}=2.9103 \mathrm{e} 4$
$2 B=1.0040 \mathrm{e} 4$
$3 \mathrm{C}=2526.5$
$4 \mathrm{D}=9.3560 \mathrm{e} 3$
$5 \mathrm{E}=1.1538 \mathrm{e} 3$
$6 C p=A+B *(C / T / \sinh (C / T))^{\wedge} 2+D *(E / T / \cosh (E / T))^{\wedge} 2$
7 Cpavg $=\mathrm{H} /(1000-300)$

General

Total number of equations	8
Number of differential equations	1
Number of explicit equations	7
Elapsed time	0.000 sec
Solution method	RKF_45
Step size guess. h	0.000001
Truncation error tolerance. eps	0.000001

Note you can change the units of your system on this page:

