Equilibrium Constant in a Reaction rate in a PFR Reactors:HYSYSBy Robert P. HeskethSpring 2003

In this session you will learn how to use equilibrium constants within a reaction rate expression in HYSYS. You will use the following HYSYS reactors

- *simple reaction* rate expression in a PFR
- *equilibrium reaction* rate in an Equilibrium Reactor
- Gibbs reactor.

In addition to learning how to use these reactors you will be introduced to the following HYSYS tools:

- Adjust Unit Operation
- <u>Use of Databook to make 3-D figures</u>
- Define a new stream from an existing stream
- Investigate the Temperature Independent Properties
- Clone a Chemical Species to alter temperature dependent chemical properties

Table of Contents

Reactor Types in HYSYS	1
1) CSTR model reactors – Well Mixed Tank-Type	1
2) Plug Flow Reactor: Simple Rate, Heterogeneous Catalytic, Kinetic	2
Reaction Sets (portions from Simulation Basis: Chapter 5 Reactions)	
Summary of Reactions in HYSYS	
HYSYS PFR Reactors Tutorial using Styrene with Equilibrium Considerations	
Equilibrium - Theory	
Hand Calculations for Keq	6
Using the Adjust Unit Operation	15
Examine Equilibrium Results at Large Reactor Volumes	16
Equilibrium Reactor	
Minimization of Gibbs Free Energy	
Gibbs Reactor	
Submission:	

The references for this section are taken from the 2 HYSYS manuals: Simulation Basis: Chapter 5 Reactions Operations Guide: Chapter 9 Reactors

Reactor Types in HYSYS 1) CSTR model reactors – Well Mixed Tank-Type HYSYS Reactor Name Reaction Types (See above)

HYSYS Reactor Name	Reaction Types (See above)
Conversion Reactor	Conversion ($X\% = C_0 + C_1T + C_2T^2$)
CSTR	Simple Rate, Heterogeneous Catalytic, Kinetic
Equilibrium Reactor	$K_{eq} = f(T)$; equilibrium based on reaction stoichiometry. K_{eq} predicted
	from Gibbs Free Energy
	K_{eq} specified as a constant or from a table of values
Gibbs	minimization of Gibbs free energy of all specified components,

option 1) no the reaction stoichiometry is required
option 2) reaction stoichiometry is given

2) Plug Flow Reactor: Simple Rate, Heterogeneous Catalytic, Kinetic

Taken from: 9.3 Plug Flow Reactor (PFR)

The PFR (Plug Flow Reactor, or Tubular Reactor) generally consists of a bank of cylindrical pipes or tubes. The flow field is modeled as plug flow, implying that the stream is radially isotropic (without mass or energy gradients). This also implies that axial mixing is negligible.

As the reactants flow the length of the reactor, they are continually consumed, hence, there will be an axial variation in concentration. Since reaction rate is a function of concentration, the reaction rate will also vary axially (except for zero-order reactions).

To obtain the solution for the PFR (axial profiles of compositions, temperature, etc.), the reactor is divided into several subvolumes. Within each subvolume, the reaction rate is considered to be spatially uniform.

You may add a Reaction Set to the PFR on the Reactions tab. *Note that only Kinetic, Heterogeneous Catalytic and Simple Rate reactions are allowed in the PFR.*

Reaction Sets (portions from Simulation Basis: Chapter 5 Reactions)

Reactions within HYSYS are defined inside the Reaction Manager. The Reaction Manager, which is located on the Reactions tab of the Simulation Basis Manager, provides a location from which you can define an unlimited number of Reactions and attach combinations of these Reactions in Reaction Sets. The Reaction Sets are then attached to Unit Operations in the Flowsheet.

Reaction Type	Description:
Conversion	Conversion% ($X\% = C_0 + C_1T + C_2T^2$)
Equilibrium	$K_{eq} = f(T)$; equilibrium based on reaction stoichiometry. K_{eq} predicted or specified
Gibbs	minimization of Gibbs free energy of all components
Kinetic	$r_A = -k_f C_A^{\alpha} C_B^{\beta} + k_{rev} C_R^{\varphi} C_S^{\gamma}$ where the reverse rate parameters must be thermodynamically
	consistent and rate constants are given for both the forward and reverse rate constant by
	$k = AT^n \exp(-E/RT)$
Heterogeneous	Yang and Hougen form:
Catalytic	$-r_{A} = \frac{k\left(C_{A}^{a}C_{B}^{b} - \frac{C_{R}^{r}C_{S}^{s}}{K}\right)}{1 + \sum K_{i}C_{i}^{\gamma_{i}}}$
	This form includes Langmuir-Hinshelwood, Eley-Rideal and Mars-van Krevelen etc.
Simple Rate	$r_A = -k_f \left(C_A^{\alpha} C_B^{\beta} - \frac{C_R^{\phi} C_S^{\gamma}}{K_{eq}} \right) $ in which K_{eq} is predicted from equilibrium data. K_{eq} must

Summary of Reactions in HYSYS

be given as a Table of data or in the form of $\ln(K) = A + B/T + C \ln(T) + DT$
--

HYSYS PFR Reactors Tutorial using Styrene with Equilibrium Considerations

Styrene is a monomer used in the production of many plastics. It has the fourth highest production rate behind the monomers of ethylene, vinyl chloride and propylene. Styrene is made from the dehydrogenation of ethylbenzene:

$$C_6H_5 - C_2H_5 \Leftrightarrow C_6H_5 - CH = CH_2 + H_2$$
(1)

The conversion of ethylbenzene to styrene given by reaction 1 is limited by equilibrium. As can be seen in **Error! Reference source not found.**, the equilibrium conversion increases with

Figure 1: The effect of Temperature and Steam on the Equilibrium Conversion of Ethylbenzene to Styrene. The pressure is 1.36 atm, and the initial flowrate of ethylbenzene is 152.2 mol/s

temperature. In addition, if an inert species such as steam is added the equilibrium increases. For example at 880 K, the equilibrium conversion is 0.374 and if steam at 10 times the molar flowrate of ethylbenzene is added the conversion increases to 0.725. Why does this happen? How could you have discovered this?

The reaction rate expression that we will use in this tutorial is from Hermann¹:

$$r_{EB} = -7.491 \times 10^{-2} \frac{\text{mol EB}}{g_{cat} \text{s kPa}} \exp\left[-\frac{21874 \text{ cal/mol}}{\left(1.987 \frac{\text{cal}}{\text{mol K}}\right)T}\right] \left(p_{EB} - \frac{p_{Styrene} p_{H_2}}{K_p}\right)$$
(2)

Notice that the reaction rate has units and that the concentration term is partial pressure with units of kPa.

HYSYS Reaction rates are given in units of volume of gas phase. For example, to convert from units of kgcat given in equation 3 to the units required by HYSYS given in equation 4, you must use equation 5. 4

$$r \quad [=]\frac{\mathrm{mol}}{\mathrm{s}\,k\mathrm{gcat}} \tag{3}$$

$$r_{HYSYS} \left[=\right] \frac{\text{mol}}{\text{sm}_{\text{gas}}^3} \tag{4}$$

$$r_{HYSYS} = r\rho_c \frac{(1-\phi)}{\phi} \tag{5}$$

From the source of the original reaction rate studies¹ the properties of the catalyst and reactor are given as:

$$\phi = 0.445 \tag{6}$$

$$\rho_{cat} = 2146 \text{ kg}_{cat} / \text{m}_{cat}^3 \tag{7}$$

$$D_p = 4.7 \text{ mm}$$
 (8)

For our rates we have been using the units mol/(L s). Take out a piece of paper and write down the conversion from gcat to HYSYS units. Verify with your neighbor that you have the correct reaction rate expression. Please note that if you change the void fraction in your simulation you will need to also change the reaction rate that is based on your void fraction.

Equilibrium - Theory

In HYSYS, for most reactions you will need to input the equilibrium constant as a function of temperature. The equilibrium constant is defined by equation as

$$K = \exp\left(\frac{-\Delta G_{rxn}}{RT}\right) \tag{9}$$

for the stoichiometry given by equation 1 the equilibrium constant is defined in terms of activities as

$$K = \frac{a_{styrene}a_{H_2}}{a_{EB}} \tag{10}$$

for a gas the activity of a species is defined in terms of its fugacity

$$a_i = \frac{f_i}{f_i^0} = \frac{f_i}{1 \operatorname{atm}} = \gamma_i p_i \tag{11}$$

where γ_i has units of atm⁻¹.

Now combining equations 9, 10, and 11 results in the following for our stoichiometry given in equation 1,

$$K_{P} = \exp\left(\frac{-\Delta G_{rxn}}{RT}\right) \operatorname{atm}$$
(12)

It is very important to note that the calculated value of K_p will have units and that the units are 1 atm, based on the standard states for gases.

To predict ΔG_{rxn} as a function of temperature we will use the fully integrated van't Hoff equation given in by Fogler² in Appendix C as

$$\ln \frac{K_P|_T}{K_P|_{T_R}} = \frac{\Delta H^o_R|_{T_R} - T_R \Delta \hat{C}_P}{R} \left(\frac{1}{T_R} - \frac{1}{T}\right) + \frac{\Delta \hat{C}_P}{R} \ln \left(\frac{T}{T_R}\right)$$
(13)

Now we can predict $K_P|_T$ as a function of temperature knowing only the heat of reaction at standard conditions (usually 25°C and 1 atm and not STP!) and the heat capacity as a function of temperature. What is assumed in this equation is that all species are in one phase, either all gas or all vapor. For this Styrene reactor all of the species will be assumed to be in the gas phase and the following modification of equation 13 will be used

$$\ln \frac{K_P|_T}{K_P|_{T_R}} = \frac{\Delta H_R^o|_{T_R} - T_R \Delta \hat{C}_P^{vapor}}{R} \left(\frac{1}{T_R} - \frac{1}{T}\right) + \frac{\Delta \hat{C}_P^{vapor}}{R} \ln\left(\frac{T}{T_R}\right)$$
(14)

The heat capacity term is defined as

$$\hat{C}_{p}^{vapor} = \frac{\int_{T_{R}}^{T} C_{p}^{vapor} \mathrm{d}T}{\left(T - T_{R}\right)}$$
(15)

and for the above stoichiometry

$$\Delta \hat{C}_{p}^{vapor} = \hat{C}_{p_{styrene}}^{vapor} + \hat{C}_{p_{H_2}}^{vapor} - \hat{C}_{p_{EB}}^{vapor}$$
(16)

Now for some hand calculations!

To determine the equilibrium conversion for this reaction we substitute equation 11 into equation 10 yielding

$$K_P = \frac{p_{styrene} p_{H_2}}{p_{EB}} \tag{17}$$

Defining the conversion based on ethylbenzene (EB) and defining the partial pressure in terms of a molar flowrate gives:

$$p_{i} = \frac{F_{i}}{F_{T}} P = \frac{\left(F_{i_{0}} - F_{EB_{0}}\chi_{EB}\right)}{F_{T}} P$$
(18)

Substituting equation 18 for each species into equation 17 with the feed stream consisting of no products and then simplifying gives

$$K_P = \frac{P}{F_T} \left(\frac{F_{EB_0} \chi_{EB}^2}{1 - \chi_{EB}} \right)$$
(19)

where the total molar flow is the summation of all of the species flowrates and is given by

$$F_T = F_{EB} + F_{styrene} + F_{H_2} + F_{steam}$$
(20)

With the use of a stoichiometry table the total flowrate can be defined in terms of conversion as

$$F_T = F_{EB_0} + F_{steam_0} + F_{EB_0} \chi_{EB}$$
⁽²¹⁾

Substituting equation 21 into equation 19 gives the following equation

$$K_{P} = \frac{P}{\left(F_{T0} + F_{EB_{0}}\chi_{EB}\right)} \left(\frac{F_{EB_{0}}\chi_{EB}^{2}}{1 - \chi_{EB}}\right)$$
(22)

The above equation can be solved using the quadratic equation formula and is

$$\chi_{EB} = \frac{-K_P F_{steam_0} + \sqrt{(K_P F_{steam_0})^2 + 4F_{EB_0}(P + K_P)K_P F_{T0}}}{2F_{EB_0}(P + K_P)}$$
(23)

There are 2 very important aspects to Styrene reactor operation that can be deduced from equation 19 or 22. Knowing that at a given temperature K_p is a constant then

- 1. Increasing the total pressure, *P*, will decrease χ_{EB}
- 2. Increasing the total molar flowrate by adding an inert such as steam will increase χ_{EB}

The following page gives sample calculations for all of the above. From these sample calculations at a temperature of 880 K the equilibrium constant is 0.221 atm. At an inlet flowrate of 152.2 mol ethylbenzene/s and no steam the conversion is 0.372. At an inlet flowrate of 152.2 mol ethylbenzene/s and a steam flowrate of 10 times the molar flowrate of ethylbenzene the conversion increases to 0.723.

Once you have calculated K_p as a function of temperature, then you can enter this data into a table for the reaction rate.

Hand Calculations for Keq

Equilibrium Calc.

CASE 1 NO Steam CASE 2 Steam
FEB_0 = 152.2 mol/s FEB_0 = 152.2 mol/s
Fishang = D Fisham = 1522 mol/s
Fishang = D Fisham = 10
T = 880 K Po = 1.378 atm

$$F_{EG}$$
 = 10
T = 880 K F_{EG} = 0.221 atm
 F_{EG} = 0.221

$$\begin{split} \Xi_{g,villovion} \quad Calculations \\ \underline{Stoic Table} \\ \overline{zB} \quad \overline{FeB_o} \quad -F_{\overline{z}B_o} \chi \quad \overline{F_{EB}} = \overline{F_{EB_o}}(1-\chi) \\ s \quad o \quad +F_{\overline{z}B_o} \chi \quad \overline{F_{s}} = \overline{F_H} = \overline{F_{4B_o}} \chi \\ H \quad o \quad +\overline{F_{EB_o}} \chi \quad \overline{F_H} = \overline{F_{zB_o}} \chi \\ W \quad \overline{F_{Wo}} \quad o \quad \overline{F_{Wo}} \\ -F_{i} = \frac{\overline{F_i}}{\overline{F_r}} P \quad \overline{F_r} = \overline{F_{EB_o}} + \overline{F_{wo}} + \overline{F_{2B_o}} \chi \\ K\rho = \frac{\overline{F_{eB_o}} \chi_{\overline{EB}}^2 P}{\overline{F_r} (1-\chi_{\overline{z}B})} = \frac{\overline{F_{EB_o}} \chi^2 P}{(\overline{F_{To}} + \overline{F_{2B_o}} \chi)(1-\chi)} \\ (k\rho F_{To} + k\rho F_{\overline{z}B_o} \chi)(1-\chi) = \overline{F_{2B_o}} \chi^2 P \\ k\rho F_{To} + k\rho F_{\overline{z}B_o} \chi - k\rho F_{To} \chi - k\rho F_{\overline{z}B_o} \chi^2 P \\ \chi^2 (\overline{F_{zB}} + k\rho F_{\overline{z}B_o}) + \chi (\overline{k\rho} F_{To} - k\rho F_{\overline{z}B_o}) - k\rho F_{To} = o \\ - \frac{b \pm \sqrt{\overline{V^2 - 4ac}}}{2a} \quad \text{where} \quad a\chi^2 + b\chi + c = o \\ \chi = \frac{-k\rho (F_{Wo}) \pm \sqrt{(k\rho F_{Wo})^2 + 4F_{\overline{z}B_o}(P + k\rho)}}{2F_{2B_o}(P + k\rho)} \end{split}$$

Procedure to Install a Reaction Rate with an Equilibrium Constant -Simple **Reaction Rates**

- 1. Start HYSYS
- 2. Since these compounds are hydrocarbons, us the Peng-Robinson thermodynamic package. (Additional

🔊 NoN	ame.hsc - HYSYS 3	3.0.1	
<u>Eile</u>	dit <u>B</u> asis <u>T</u> ools <u>y</u>	⊻indow <u>H</u> elp	
	ê 🖬 🔺 🗄	I -Q [™]	Environment: Basis Mode: Steady State
🕴 Co	mponent List View		
	Add Component Components Traditional Electrolyte Hypothetical Other	Selected Components E-Benzene Styrene Hydrogen H2D	Components Available in the Component Library- <u>Match</u> Sim Name Full Name / Synonym <u>Authane C1 Ethane C2 Propane C3 i-Butane i-C4 i-Butane i-C4 </u>

Press here to

start adding

rxns

information on HYSYS thermodynamics packages can be found in the Simulation Basis Manual Appendix A: Property Methods and Calculations. Note an alternative package for this system is the PRSV)

- 3. Install the chemicals for a styrene reactor: ethylbenzene, styrene, hydrogen and water. If they are not on this list then use the Sort List... button feature
- 4. Now return to the Simulation Basis Manager by selecting the Rxns tab and pressing the Simulation Basis Mgr... button or close the Fluid Package Basis-1 window and selecting Basis Manager from the menu.
- 5. To install a reaction, press the *Add Rxn* button.
- 6. From the Reactions view, highlight the Simple Rate reaction type and press the Add Reaction button. Refer to Section 4.4 of the Simulation Basis Manual for information concerning reaction types and the addition of reactions.
- 7. On the Stoichiometry tab select the first row of the Component column in Stoichiometry Info matrix. Select **ethylbenzene** from the drop down list in the Edit Bar. The Mole Weight column should automatically provide the molar weight of ethylbenzene. In the Stoich Coeff field enter -1 (i.e. 1 moles of ethylbenzene will be consumed).
- 8. Now define the rest of the Stoichiometry tab as shown in the adjacent figure.
- 9. Go to Basis tab and set the Basis as partial pressure, the base component as ethylbenzene and

🛸 Simple Rate Reaction: Rxn-1 🛛 🖃 🗙	Simple Rate Reaction: Rxn-1
1.000	Basis
Stoichiometry and Rate Information	Basis Partial Pres
Component Male Weight Staich Coeff	Base Component E-Benzene
E-Benzene 106.166 -1.000	Rxn Phase VapourPhase 🔪
Sturene 104.152 1.000	Min Temperature -273.1 C
Hudrogen 2,016 1,000	Max Temperature 3000 C
Add Comp	Basis Units atm
Balance Error 0.00000 Balance Reaction Heat (25 C) 1.2e+05 kJ/kgmole	<u>R</u> ate Units gmole/L-s _
Stoichiometry Basis / Parameters	Stoichiometry Basis_Parameters
Delete Name Rxn-1 Not Ready	Delete Name Rxn-1 Not Ready

Return to the Simulation

Basis Manager to Build

Reactions or Reaction

Simulation Basis Mgr..

Sets.

Rxns Tabular Notes

actions

have the reaction take place only in the vapor phase.

- 10. The pressure basis units should be atm and the units of the reaction rate given by equation 24 is mol/(L s). Since the status bar at the bottom of the property view shows Not Ready, then go to the Parameters tab.
- 11. Next go to the Parameters tab and enter the activation energy from equation 2 is $E_a = 21874 cal/mol$. Convert the pre-exponential from units of kPa to have units of atm so that a comparison can be made later in this tutorial. :

$$A = 7.491 \times 10^{-2} \left(\frac{\text{mol}}{\text{gcat s kPa}}\right) \frac{10^3 \text{g}_{\text{cat}}}{\text{kg}_{\text{cat}}} \left(\frac{2146 \text{ kg}_{\text{cat}}}{\text{m}_{\text{cat}}^3}\right) \frac{(1 - 0.445) \text{m}_{\text{cat}}^3}{\text{m}_{\text{R}}^3} \left(\frac{\text{m}_{\text{R}}^3}{0.445 \text{ m}_{\text{gas}}^3}\right) \frac{1 \text{m}_{\text{gas}}^3}{10^3 \text{ L}_{\text{gas}}}$$
$$= 200.5 \frac{\text{mol}}{\text{L}_{\text{gas}} \text{s kPa}} \left(\frac{1 \text{kPa}}{1000 \text{Pa}}\right) \frac{1.01325 \times 10^5 \text{Pa}}{\text{atm}}$$
$$= 20315 \frac{\text{mol}}{\text{gcat s atm}}$$
(24)

- 12. Leave β blank or place a zero in the cell. Notice that you don't enter the negative sign with the pre-exponential.
- 13. Now you must regress your equilibrium constant values, with units of atm, using the equation ln(K) = A + B/T + C ln(T) + DT(25)

$$\ln(K) = A + B/T + C\ln(T) + DT$$
(25)

14. Below is the data table that is produced using the integrated van't Hoff expression shown in equation 14. These data can either be regressed using Microsoft Excel's multiple linear Regression or a nonlinear regression program such as polymath.Make sure that the units of Kn are the same as your basis units.

Make sure that the units of Kp are	the same as your basis	units. I (K)	кр	o (atm)
Data Analysis	? ×		500	7.92E-07
Analysis Tools			550	1.10E-05
Descriptive Statistics			600	9.99E-05
Exponential Smoothing	Cancel		650	6.46E-04
F-Test Two-Sample for Variances			700	3.20E-03
Histogram	Help		750	0.013
Moving Average			775	0.024
Random Number Generation Rank and Percentile			800	0.043
Regression			810	0.054
Sampling	*		820	0.067
			830	0.082
Regression	<u>? ×</u>		840	0.101
Input	ОК		850	0.124
Input <u>Y</u> Range: \$8\$2:\$8\$28	Consul 1		8 60	0.151
Input X Range: \$C\$2:\$E\$28			870	0.183
E	Help		880	0.221
Constant is Zero			890	0.266
Contidence Level 195 %			900	0.318
Output options	ī		910	0.379
💿 Output Range: \$G\$1 💽			920	0.450
C New Worksheet Ply:			930	0.532
C New <u>W</u> orkbook			950	0.736
Residuals			970	1.003
Residuals Residual Plots			990	1.348
I✓ Standardized Residuals I✓ Line Fit Plots			1010	1.791
Normal Probability			1030	2.351
I Normal Probability Plots			1050	3.051
				10

	Simple Rate Reaction: H	ermann eq	
15. The results of the regression of the predicted K values with the HYSYS equilibrium constant equation 25 are	Forward Reaction A J 2.0e+04 E 9.2e+04 B B <empty></empty>	Equation Help r = k * {f(Basis) - f'(Basis) / K'} k = A * exp { -E / RT } * T^B In (K') = A' + B'/T + C' In(T) + D' * T T in Kelvin	
shown in the adjacent	B'	Coefficients	
table. Add these	A'	-13.2117277	
constants to the Simple	B'	-13122.4699	
Rate window. Make sure	C'	4.353627619	
you add many significant	— D'	-0.00329709	
digits!			
16. Name this reaction from	Delete <u>N</u> ame	Hermannieg Ready	
Rxn-1 to Hermann eq.	· · ·		

Rx

Close the Simple Rate Window after observing the green Ready symbol.

- 17. By default, the Global Rxn Set is present within the Reaction Sets group when you first display the Reaction Manager. However, for this procedure, a new Reaction Set will be created. Press the Add Set button. HYSYS provides the name Set-1 and opens the Reaction Set property view.
- 18. To attach the newly created Reaction to the Reaction Set, place the cursor in the <empty>

Simulation Basis Manager		- ×	Reaction Set: Set-1	
		F	Name Set-1	
Rxn Components Reactions Eternzene Itermann eq Styterne Add Bxn Hydrogen Add Bxn Delete Rxn Copy Rxp	Reaction Sets View Set Set Add Set Delete Set Copy Set Assoc. Fluid Pkgs Import Set Basis-1 Export Set Add to FP		Set Info Set Type Solver Method Auto S Active List OK Hermann eq 🐼	Kinetic Ready elected
Fluid Pkgs / Hypotheticals / Oil Manager Reactions / Compo	nent Maps / UserProperty /		View Active	View Inactive
	Return to Simulation Environment		Make Inactive -≥	≤- Make Active

cell under Active List.

- 19. Open the drop down list in the Edit Bar and select the name of the Reaction. The Set Type will correspond to the type of Reaction that you have added to the Reaction Set. The status message will now display Ready. (Refer to Section 4.5 – Reaction Sets for details concerning Reactions Sets.)
- 20. Press the Close button to return to the Reaction Manager.
- 21. To attach the reaction set to the Fluid Package (your Peng Robinson thermodynamics), highlight Set-1 in the Reaction Sets group and press the Add to FP button. When a Reaction Set is

×

12

attached to a Fluid Package, it becomes available to unit operations within the Flowsheet using that particular Fluid Package.

- 22. The Add 'Set-1' view appears, from which you highlight a Fluid Package and press the Add Set to Fluid Package button.
- 23. Press the Close button. Notice that the name of the Fluid Package (Basis-1) appears in the Assoc. Fluid Pkgs group when the Reaction Set is highlighted in the Reaction Sets group.
- 24. Now Enter the Simulation Environment by pressing the button in the lower right hand portion
- 25. Install a PFR reactor. Either through the
 - 25.1. Flowsheet, Add operation
 - 25.2. f12
 - 25.3. or icon pad. Click on PFR, then release left mouse button. Move cursor to pfd screen and press left mouse button. Double click on the reactor to open.

- 27. Next go to the Parameters portion of the Design window. Click on the radio button next to the pressure drop calculation by the Ergun equation.
- 28. Next add the reaction set by selecting the reactions tab and choosing Reaction Set from the drop down menu.
- 29. Go to the Rating Tab. Remember in the case of distillation columns, in which you had to specify the number of stages? Similarly with PFR's you have to specify the volume. In this case add the volume as 250 m³, 7 m length, and a void fraction of 0.445 as shown in the figure.

- 30. Return to the Reactions tab and modify the specifications for your catalyst to the density and particle size given on page 4.
- 31. Go to the Design Tab and select heat transfer. For this tutorial we will have an isothermal reactor so leave this unspecified.
- 32. Close the PFR Reactor

³ PFR-100 - Set-1		- ×
Reactions Overall Details Results	Reaction Info Reaction Info Initialize segment reactions from: © Current © Previous © Be-init Integration Information 10e-06 Minimum Step Fraction 1.0e-06 Minimum Step Length 7.0e-06 m Catalyst Data 20 Particle Diameter 0.00470 m Particle Sphericity 1.000 Solid Density 2146.0 kg/m3 Bulk Density 1191.0 kg/m3 Solid Heat Capacity 250.000 kJ/kg-C	
Design Reaction Delete	ns Rating Worksheet Performance Dynamics Not Solved	Ignored
Design Connections Parameters Heat Transfer User Variables Notes	SS Duty Calculation Option Formula © Direct Q Value Heat Transfer © Heating © Cooling Energy Stream Heat Duty Duty <empty></empty>	

33. Open the workbook

- 34. Isn't it strange that you can't see the molar flowrate in the composition window? Do you have a composition tab? Let's add the molar flowrates to the workbook windows. Go to Workbook setup either by right clicking on a tab or choosing workbook setup form the menu.
- 35. If you don't have a composition tab then, press the Add button on the left side and add a material stream and rename it Compositions.
- 36. In the Compositions workbook tab, select Component Molar Flow and then press the All radio button.
- 37. To change the units of the variables go to Tools, preferences
- 38. Then either bring in a previously named preference set or go to the variables tab and clone the SI set and give this new set a name.
- 39. Change the component molar flowrate units from kmol/hr to gmol/s.
- 40. Change the Flow units from kmol/hr to gmol/s
- 41. Next change the Energy from kJ/hr to kJ/s.
- 42. Save preference set as well as the case. Remember that you need to open this preference set every time you use this case.

Select Variable(s) For	Main	X	Session Preferences (cumene.PRF)	
Variable Steady State Specs Vapour Fraction Temperature Pressure Molar Flow Mass Flow Liquid Volume Flow Heat Flow Power Std Liq Vol Flow Spec Comp Mole Frac Comp Volume Frac Comp Molar Flow Comp Molar Flow Description	Variable <u>Specifics</u> ALL Available Components Comp Molar Flow	All/Single C Single Fill Cancel <u>O</u> K	Image: Simulation Variables Reports Files Resources Extensions Dial Simulation Variables Reports Files Resources Extensions Dial	View Users

Back to the Simulation

- 43. Now add a feed composition of pure ethylbenzene at 152.2 gmol/s, 1522 gmol/s of water, 880 K, and 1.378 bar. Then set the outlet temperature to 880K to obtain an isothermal reactor. Remember you can type the variable and then press the space bar and type or select the units.
- 44. No the reactor should solve for the outlet concentrations. Take a note of the pressure drop in the Design Parameters menu. I got a pressure drop of 86.38 kPa. Now change the length of the reactor to 8 m. If you get the above message then your reactor has not converged and you

need to make adjustments to get your reactor to converge (*e.g.* the product stream is empty!) Now it is your task to reduce the pressure drop to an acceptable level. What do you need to alter? Refer to the Ergun Equation given by

$$\frac{dP}{dz} = -\frac{G}{\rho D_p} \left(\frac{1-\phi}{\phi^3}\right) \left[\frac{150(1-\phi)\mu}{D_p} + 1.75G\right]$$
(26)

Using the Adjust Unit Operation

45. Obtain a solution that will meet the following pressure drop specification $\Delta P \le 0.1P_0$ One way of doing this quickly is to use the adjust function. Go to Flowsheet, Add operation (or

press f12 or the green A in a diamond on the object palette.

46. Now select the adjusted variable as the tube length and the target variable as the Pressure Drop. Set the pressure drop to 13.78 kPa (exactly 10% of P0).

ADJ-1		×
Connections	Adjust <u>N</u> ame ADJ-1	
Connections	Adjusted Variable	
Notes	Object: PFR-100 Select Var	
	Variable: Tube Length	
	Target Variable	
	Object: PFR-100 Select Var	
	Variable: Pressure Drop	
	Target Value	
	Source Specified Target Value	
	User Supplied Another Object	
Connections	Parameters Monitor User Variables	
	Unknown Maximum	
Delete	Start	Ignored

47. Next go to the Parameters tab and set the tolerance, step size and maximum iterations. If you have problems you can always press the Ignored button in the lower right hand corner of the page, then go back to the reactor and change the values by hand. If it stops, it may ask you if you want to continue. Answer yes. You can watch the stepping progress by going to

the monitor tab.

- 48. Try this again, but this time get your pressure drop to 1% of P0.
- 49. Now turn this Adjust unit off by clicking on the ignored button.

Examine Equilibrium Results at Large Reactor Volumes

- 50. You equilibrium conversion should be around 72.6%. Comparing this to the hand calculated results for a steam to hydrocarbon molar ratio of 10 is 72.3% at 880 and 137.8kPa.
- 51. Set your pressure drop to zero by turning off the Ergun equation in the Reactor, Design Tab, Parameters option. Set the pressure drop to zero. The conversion is now 72.5%! Which again is very close to your hand calculations.

ADJ-1			
Parameters	Solving Parameters		
Parameters	Simultaneous Solutio	n	
	Method	Secant =	
	Step Size	0.2000 m	
	Minimum (Optional)	1.0000 m	
	Maximum (Optional)	7.0000 m	
	Maximum Iterations	10	
		Sim Adj Manager	
	Deptimizer Controlled		
Connections Pa	rameters Monitor User Variables]	
	OK		
Delete			🔲 Ignored
	HYSYS		>

Adjust ADJ-1 is at maximum iterations. Do you wish to continue for another 30 iterations?

No

?

ADJ-1

Delete

Monitor	-Iteration Histo	ry		1			
bles	Total Itera	tions	249				
s	Iter	Adjusted Va [m]	alue Ta	rget Value [kPa]	Res	idual	-
	239		3.972	14.501		0.8012	
	240		3.962	14.396		0.6961	
	241		3.952	14.292		0.5916	
	242		3.942	14.188		0.4876	_
	243		3.942	14.188		0.4876	_
	244		3.932	14.084		0.3841	- 1
	245		3.922	13.981		0.2813	- 1
	246		3.911	13.879	-	0.1789	- 1
	247		3.901	13.777	1	0.715e-002	-
	248		3.891	13.5/5	-2		
Connections / F	Parameters M	onitor User Ig	Variables nored	Ignored button		Ignore	a
Connections / f	Parameters M	onitor User Ig	Variables nored	Ignored button		Ignore:	di T-
Connections / f	et-1 Reaction	onitor <u>User</u> Ig Balance ction Extents	Variables nored	Ignored button		₽ Ignore	aj
Connections (F Delete PFR-100 - 5 Reaction: Overall	et-1	Balance ction Extents	Variables nored	Ignored button	Extent	I Ignore	di
Connections (F Delete PFR-100 - 5 Reaction: Overall Details	et-1 Reaction Herman	Balance tion Extents Act. % (Variables nored Peactic Cnv. Base 72.47 E-6	Ignored button	Extent 110.3	I Ignore	
Connections (f Delete PFR-100 - 5 Reaction: Overall Details Results	et-1	Balance ction Extents Act. % (n eq	Variables nored C Reactio Cnv. Base 72,47 E-f	Ignored button	Extent 110.3	Ignore	3 3
Delete PFR-100 - S Reaction: Overall Details Results	et-1 Reaction	Balance tion Extents	Variables nored	Ignored button	Extent 110.3	Ignore	
Connections (F Delete S' PFR-100 - S Reaction: Overall Details Results	et-1	Balance ction Extents Act. % C	Variables nored	Ignored button	Extent 110.3	gnore	e e
Connections (F Delete * PFR-100 - 5 Reactions Overall Details Results	et-1	Balance ction Extents Act. % C	Variables nored	Ignored button	Extent 110.3		di
Connections (F Delete * PFR-100 - S Reaction: Overall Details Results	et-1 Reaction	Balance ction Extents Act. % (n eq	Variables nored	Ignored button	Extent		, m
Connections (F Delete PFR-100 - S Reaction: Overall Details Results	et-1	Balance ction Extents Act. % C	Variables nored	Ignored button	Extent 110.3		indi L
Delete PFR-100 - S Reaction: Overall Details Results	et-1	Balance ction Extents Act % C	Variables nored	Ignored button	Extent 110.3		- -
Connections (F Delete * PFR-100 - S Reaction: Overall Details Results	et-1 Reaction Herman	Balance tion Extents Act % C n eq	Variables nored	Ignored button	Extent 110.3		
Connections (F Delete S' PFR-100 - S Reaction: Overall Details Results	et-1	Balance tion Extents Act. % C n eq	Variables nored	Ignored button	Extent 110.3		ingi in
Connections (F Delete * PFR-100 - 5 Reaction: Overall Details Results	et-1	Balance ction Extents Act. % (n eq	Variables nored	Ignored button	Extent 110.3		

Ignored

Now set the feed flowrate of steam to zero. You should get a conversion of 37.4%. This

Molar Flow (gmole/s)

again is what your spreadsheet calculation shows for 880K and 137.8 kPa.

- 52. How do you know that you have reached the equilibrium conversion that is limiting this reaction? Make a plot of the molar flowrate of ethylbenzene using the tool in the performance tab and composition option of the reactor.
- 53. Next, make a plot of conversion as a function of both reactor temperature and pressure. Becareful how you set up this databook. I had 943 data states by varying both

 $100kPa \le P \le 500kPa$ and $500K \le T \le 1050K$. Remember

that you have to setup a workbook so that you only need to specify the temperature in one cell. I would suggest that you add a spreadsheet to keep all of your calculations in one area.

					SPRDSH	I T-1		××
SPRDS	HT-1		7	<u>×</u>				
-Spread: Numb Numb	sheet Pa <u>r</u> ameters er of Columns <mark> </mark> 4 er of Rows 10	Dynamic Execution Before Pressure-Flo After Pressure-Flo	low Step 🔽 w Step 🔽		_Imported ⊻aria	ables	Spreadsheet <u>N</u> ame SPRDSH1	F-1
Units 9	Set styrene -	Each Composition	Step 🗖		Cell	Object	Variable Description	Edit I <u>m</u> port
		Alway Update Exp			B1	Feed	Pressure	Add Import
-Exportabl	e Cells (Visible in Spreadsheet's V	Variable List)			B2 B4	Field	Comp Molar Flow (E-Benzene)	
Cell	Visible Name	Variable Name	Variable Type	1	85	Product	Comp Molar Flow (E-Benzene)	Delete Import
B8	B8: Temperature	Temperature	Temperature		B7	Feed	Temperature	
B6	B6: conversion	conversion					· · · · · · · · · · · · · · · · · · ·	
B3	B3: %pressure drop	%pressure drop	· · · · · · · · · · · · · · · · · · ·		Exported Varia	ables		
C1	C1: pressure drop	pressure drop	Pressure 🔹		Cell	Object	Variable Description	E <u>d</u> it Export
					B8	Product	Temperature	Add Expo <u>r</u> t
								Delete Export
<u> </u>								
Conn	ections Parameters Formu	las Spreadsheet Ca	ilculation Order 🏼 🗦 🗍	J	_		, , , ,	
Del	ete F <u>u</u> nction Help.	Spreadsheet	Only	ed	Connection Delete	ns Parameters	Formulas / Spreadsheet / Calculat on Help Spreadsheet Only.	ion Order Ales /

- 54. Now make a plot of the effect of steam flow and temperature on conversion. You will need to add a new feed stream to the reactor.
 - 54.1. Make your Feed stream have only 152.2 mol of ethylbenzene per second.
 - 54.2. Make a second feed steam called water have a flow of 0 mol/s. Create a second cell in your spreadsheet that you can export the temperature to the Water feed stream temperature as well as the outlet stream, Product, to make the reactor

isothermal and to the. Notice that you had to specify one cell for each export.

- 54.3. Reorder your workbook by going into the menu for the workbook and choosing order/hide/reveal <u>Objects</u>. Then put the water stream next to the feed stream.
- 54.4. In the Data book bring in the following variables so that the

III SP	RDSHT-1					
	urrent Cell Variable <u>Type:</u> <u>Temperature</u> <u>Exportable</u> <u>Magles in:</u> <u>Rad</u>					
+B7	7					
	A	В	С	D		
1	Pin	137.8 kPa	0.0000 kPa			
2	P out	137.8 kPa				
3	% Pin	0.0000				
4	EB flow in	152.2000 gmole/s				
5	EB flow out	<empty></empty>				
7	conversion	<empty></empty>				
	T reactor	990.0 K				
9	T water	1 880.0 K				
10	, Mator		1			
•			pa	Þ		
	Connections Parame	eters Formulas S	oreadsheet Calcul	ation Order es		
	Delete	Function Help	Spreadsheet Onl	y 🗖 [gnored]		

water molar flow will be considered an independent variable. (don't do the number of states in these examples!)

	🔦 DataBook 🛛 🚽 🔀
🔦 DataBook	
Ayailable Data Entries Object Variable Feed Temperature Water Molar Flow Feed Pressure PFR-100 Act. % Cnv. (Act. % Cnv1)	Available Case Studies Case Studies Data Selection Image: Conversion Conversion Add Delete Delete View SPRDSHT-1 B6: conversion Image: Conversion Feed Temperature Pressure Image: Conversion
	Available Displays O Table Image: Constraint of the second sec
Variables Process Data Tables Strip Charts Data Recorder	Variables / Process Data Tables / Strip Charts / Data Recorder Case Studies

Equilibrium Reactor

55. Now we will install a second reactor that only contains an equilibrium reaction. Use either the object palette

Reactor.

create a new one.

HYSYS

<u>^</u>

60. Go to the Library tab and choose the library reaction. Wow it was in there all the time!

61. Look at the Keq page.A plot of the data given in the HYSYS table and the equation that HYSYS uses to fit the data is given below. This comparison shows that the hand calculations and the HYSYS stored values are in good agreement with each other in the temperature range of $500 \le T \le 920$ K. Above 920 K the values of K begin to deviate from each other.

🔤 Eq	e Equilibrium Reaction: Rxn-1 🛛 🔜 🗙						
	0.0e-01				[-
A	A -5.9e+00 K Table						
В	-1.3e+04		Т	Keq	KCalo	% Error	•
С	3.1e+00		366.5	1.936e-011	1.929e-011	0.4	
D	-1.5e-03		422.0	3.404e-009	3.413e-009	-0.3	
E	0.0e-01		477.6	1.854e-007	1.863e-007	-0.5	
F	0.0e-01		533.1	4.498e-006	4.511e-006	-0.3	
G	0.0e-01		588.7	6.081e-005	6.075e-005	0.1	
Н	0.0e-01		644.3	5.309e-004	5.283e-004	0.5	
R2	0.999989		699.8	3.304e-003	3.286e-003	0.6	Ţ
T Hi T Lo	<empty> <empty></empty></empty>	Ī	Active			Erase Tabl	
__St	Stoichiometry (Basis Keq (Approach (Library						
Del	Delete Name Rxn-1 Ready K Table						

Comparison of HYSYS Predictions with Hand Calculations

- 62. Attach the equilibrium reaction to a new reaction set starting with step 17 on page 11. *(The step 17 is a hyperlink and is active in adobe.)* Title the new set Equilibrium Reactor Set. When finished return to the step 63.
- 63. Return to the reactor using the green arrow and bring in the new reaction set to the equilibrium reactor. Now you see why you need in some cases more than one reaction set. Another reason is that you may want one set of reactions for a dehydrogenation reactor and then a separate set for an oxidation reactor.
- 64. Bring in the equilibrium reaction set into the reactor

65. Now specify the EQ Feed stream to be identical to the Feed stream. This can be done by double clicking on the EQ Feed title or name. And then choosing the Define from Other Stream... option.

Worksheet	Stream Name	EQ Feed
Conditions	Vapour / Phase Fraction	<empty)< td=""></empty)<>
Conditions	Temperature [K]	<empty)< td=""></empty)<>
Properties	Pressure [kPa]	<empty)< td=""></empty)<>
Composition	Molar Flow [gmole/s]	<empty)< td=""></empty)<>
Composition	Mass Flow [kg/h]	<empty)< td=""></empty)<>
K Value	Std Ideal Liq Vol Flow [m3/h]	<empty)< td=""></empty)<>
User Variables	Molar Enthalpy [kJ/kgmole]	<empty)< td=""></empty)<>
	Molar Entropy [kJ/kgmole-C]	<empty)< td=""></empty)<>
Notes	Heat Flow [kJ/s]	<empty)< td=""></empty)<>
Cost Parameters	Lig Vol Flow @Std Cond [m3/h]	<empty)< td=""></empty)<>
	Fluid Package	Basis-1
	JI	
- Worksheet	ttachments Dynamics	

🏁 Spec Stream As		<u> </u>
Available Streams	Chosen Stream Condition	\$
EQ Liquid	Vap Phase Fraction	<empty></empty>
EQ Vapor	Temperature	<empty></empty>
Pred	Pressure	<empty></empty>
Water T	Molar Flow	<empty></empty>
, watci	Mass Flow	<empty></empty>
Copy Stream Conditions	Std Ideal Liq Vol Flow	<empty></empty>
	Molar Enthalpy	<empty></empty>
🗖 Vapour Fraction 📄 Molar Enthalpy	Molar Entropy	<empty></empty>
Temperature 🗖 Molar Entropy		└─── ↓
Pressure		Mole Fractions
	E-Benzene	<empty></empty>
Composition Correlations	Styrene	<empty></empty>
	Hydrogen H20	<empty></empty>
Flow Cost Parameters	1120	(onpy/
Flow Basis		
Molar		
C Mass		
C Liquid Volume		
, Eldard Foranio		
	P 1	
Cancel		<u>0</u> K

66. Define the temperature of one outlet stream to be equal to the feed. Examine the following 2 conditions from your PFR simulations at 880 K and 1.378 bar with:

Cases	HYSYS Library	Hand Calculations
$F_{EB_0} = 152.2 mol/s$	$\chi = 40.03$	$\chi = 37.4$
$F_{steam} = 0$	<i>K</i> = 0.2595	<i>K</i> = 0.221
$F_{EB_0} = 152.2 mol/s$	$\chi = 74.95$	$\chi = 72.5$
$F_{steam} = 1522 mol/s$	<i>K</i> = 0.2595	K = 0.2595

📴 ERV-100 - Equilibri	um Reactor Set					
Reactions Details	-Reaction Balance	ents OR	e <u>a</u> ction Balanc	ce		
Results		Act. % Cnv.	Base Comp	Egm Const.	Rxn Extent	
	Library rxn	40.03	E-Benzene	0.2595	60.93	
					Result for no steam flow	
Design Reaction	ns Rating Work	sheet Dynam	iics			
Delete			OK			<u>I</u> gnored

- 67. Now add the values from your hand calculation into the equilibrium reactor. Go to view reaction and enter these values within the reactor's reaction tab. Within the equilibrium reaction choose the basis tab and select the Ln(Keq)
 Equation:
 Coefficient
- 68. Next enter the following table of coefficients for this equation

Coefficients
-13.2117277
-13122.4699
4.353627619
-0.00329709

69. Now rerun the above cases. This will predict the PFR equilibrium values given in the table below.

Cases	HYSYS Library	Hand Calculations	Regression from Hand Calculations
$F_{EB_0} = 152.2 mol/s$	$\chi = 40.03$	$\chi = 37.4$	$\chi = 37.4$
$F_{steam} = 0$	<i>K</i> = 0.2595	K = 0.221	<i>K</i> = 0.221
$F_{EB_0} = 152.2 mol/s$	$\chi = 74.95$	$\chi = 72.5$	$\chi = 72.5$
$F_{steam} = 1522 mol/s$	<i>K</i> = 0.2595	K = 0.221	K = 0.221

Notice that with the PFR you need a large volume or mass of catalyst to achieve these equilibrium values. You previously tried this with your PFR and you came close to these above values. In step 51 on page 16 your PFR values were 37.42 and 72.5%.

70. Which values are correct? Since, no reference is given by HYSYS to the library reaction and you know the source of the hand calculations³ you should trust your hand calculations.

🖗 Equilibrium Reaction: library		
Basis Partial Press Basis Partial Press Phase VapourPhase Min Temperature 0.0000 K Max Temperature 3273 K Basis Units atm	g Source Ln(Keq) Equation Gibbs Free Energy Fixed Keq Keq vs T Table Step Equilibrium Reaction: Library rxn	
Stoichiometry Basis Keq Approach Library Delete Name library Ready	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
	Stoichiometry Basis Keq Approach Library Delete <u>N</u> ame Library rxn Ready In(K) Eqn	

Minimization of Gibbs Free Energy

- 71. Go back to the reaction screen and choose the Gibbs Free Energy radio button.
- 72. You get a conversion of 74.80 and K=0.2569. In an older version of HYSYS you mistakenly got 100% conversion. In the Gibbs Free energy minimization, the equilibrium constant is determined from the Ideal Gas Gibbs Free Energy Coefficients in the HYSYS library.

😤 Equilibrium Reaction: library Ŧ Basis Basis Keq Source Partial Press Phase Min Temperature VapourPhase | Ln(Keq) Equation 0.0000 K Gibbs Free Energy Max Temperature 3273 K Fixed Keq C Keq vs T Table Basis Units atm -Auto Detect Stoichiometry Basis (Keq Approach / Library , Delete <u>N</u>ame library Gibbs ERV-100 - library eq -# X Beaction Balance Reactions <u>Reaction Extents</u> C Reaction Balance Details Act. % Cnv. | Base Comp | Eqm Const. | Rxn Extent Results 100.0 E-Benzene 128906269. library 152.2 Old Version: 100%

- 73. Examine these values.
 - 73.1. Enter the basis environment.
 - 73.2. View the property package
 - 733 Select styrene and view the component
 - 73.4. Choose the temperature dependent tab: Tdep. In the current version of HYSYS the temperature dependent properties of Styrene are given for all the ideal gas properties. In an old version of HYSYS, only one coefficient was given for the Ideal Gas Gibbs Free Energy. In this case the Ideal Gas Gibbs Free Energy was a constant and independent of temperature!

Delete

This was incorrect. In the previous version new values were obtained from Aaron

Design Reactions Rating Worksheet Dynamics

Ignored

Sharono		4 🔉 Styrene	×	
styrene		Temperature Dependent	Properties	
Temperature Dependen Vapour E <u>n</u> thalpy Gibbs Free Energy G = a + b*T + c*T^2 + d*T G, in kJ/kgmole T, in degree K Min Temperature [C] Max Temperature [C] Coefficient Name	Properties ○ ⊻apour Pressure /-Ideal Gas @ 25 C ^3 + e*T^4 25.00 426.85 GibbsFree Coeff 2 13899e+05	C Vapour Enthalpy G Gibbs Free Energy Molar Gibbs Free Energy G = a + b*T + c*T^2 + d* G (kJ/kgmole) T (K) Min Temperature [K] Max Temperature [K] Coefficient Name a b c d	 ✓ Vapour Pressure - Ideal Gas @ 25 C T^3 + e*T^4 298.15 700.00 GibbsFree Coeff 1.48115e+05 2.10044e+02 3.55403e-02 0.00000e-01 	
Old b	0.00000e-01	e	0.00000e-01	
Version c	0.00000e-01		<empty></empty>	
G=constant	0.00000e-01	h	<empty></empty>	
- t	0.00000e-01 V	i	<empty></empty>	
ID Critical Point TDep UserProp Delete ID Critical Point TDep UserProp UserProp ID Critical Point TDep UserProp ID Critical Point TDep UserProp ID Delete Edit Properties				

- 74. To modify properties you must create a hypothetical component that can either be a clone of
- a current chemical or an entirely new hypothetical component in which the properties are estimated using standard and proprietary methods. See the Adobe pdf help manual: Simulation Guide Chapter 3. (go to the link in the reaction engineering homepage) Many of the estimations are based on the UNIFAC structure which is described in section 3.4.3 of that chapter.

Gibbs Reactor

- 75. Now install a 3rd reactor called a Gibbs Reactor and label the streams and define the feed and outlet temperature of the streams.
- 76. Put in the conditions given in step 65 on page 22 above. Notice that the same result as an

equilibrium reactor using the gibbs free energy results. The only difference for this reactor is that you did not need to specify the stoichiometry of the reaction.

🏝 GBR-100		××
Design Connections Parameters User Variables Notes	Name GBR-100	sur Outlet is Vapor
	Energy (Optional)	d D <u>u</u> tlet Is Liquid V
Design Reaction	is /Rating / Worksheet / Dynamics /	

🖗 GBR-100					×				
Reactions	Reactor Type								
Overall	Gibbs Reactions Only	Line this	ention when the						
Details	O Specify Equilibrium Rea	ctions reaction	soption when the						
Dordins	© <u>N</u> O Reactions (=Separa	ator) not kno	wn.						
	Solving Option								
	Maximum Number of Iterat	ions	100						
	Tolerance	1.000000e-007							
	2	∲ GBR-100							
		Beactions	- <u>G</u> ibbs Reaction D	etails					_
		Overall	Flow Specs	C Ato	m Matrix				
	Ions Hating Worksheet	Details	Components	Total Feed [gmole/s]	Total Prod [gmole/s]	Inerts	Frac Spec	Fixed Spec [gmole/s]	
			E-Benzene	<empty></empty>	<empty></empty>		<empty></empty>	<empty></empty>	
			Styrene	<empty></empty>	<empty></empty>		<empty></empty>	<empty></empty>	_
			Hydrogen	<empty></empty>	<empty></empty>		<empty></empty>	<empty></empty>	_
			H20	<empty></empty>	<empty></empty>		1.000	0.0000	-
									-
									-
									-
		Total Prod = FracSpec * Total Feed + Fived Spec							
		Design Reactions Rating Worksheet Dynamics							
		Delete Unknown Duty							

Submission:

At the end of this exercise submit

- 1) The following graphs from PFR
 - a) the effect of temperature and pressure on equilibrium conversion (see step 53)
 - b) the effect of the molar flow of steam and temperature on equilibrium conversion at a fixed pressure and ethylbenzene flowrate (see step 54).
 - c) Short summary of the effect of T, P and steam flow on equilibrium conversion.
- 2) Pfd of the three reactors

References:

¹ Hermann, Ch.; Quicker, P.; Dittmeyer, R., "Mathematical simulation of catalytic dehydrogenation of ethylbenzene to styrene in a composite palladium membrane reactor." J. Membr. Sci. (1997), 136(1-2), 161-172.

² Fogler, H. S. *Elements of Chemical Reaction Engineering*, 3rd Ed., by, Prentice Hall PTR, Englewood Cliffs, NJ

^{(1999).} ³ "Thermodynamics Source Database" by Thermodynamics Research Center, NIST Boulder Laboratories, M. Frenkel director, in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, July 2001, National Institute of Standards and Technology, Gaithersburg MD, 20899 (<u>http://webbook.nist.gov</u>). ⁴ Yaws, C.L. and Chiang, P.Y., "Find Favorable Reactions Faster", *Hydrocarbon Processing*, November 1988, pg

^{81-84.}